1
|
Dibble JP, Deboer SR, Mersha M, Robinson TJ, Felling RJ, Zeiler SR, Tovar JD. In Vivo Formation and Tracking of π-Peptide Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25091-25097. [PMID: 35838681 DOI: 10.1021/acsami.2c04598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The photophysics associated with the self-assembly of π-peptide molecules into 1-D nanostructures has been well-established, thus revealing the creation of nanoscale electronic conduits in aqueous media. Such materials have therapeutic potential in many biomedical applications. In this work, we report the in vivo deployment of these π-peptide nanostructures in brain tissue using photothrombotic stroke as a model application. A test peptide was used for brain injections, and the nanostructures formed were visualized with electron microscopy. A new peptide bearing a low-energy fluorescence dye was prepared to facilitate direct visualization of π-peptide localization in the brain cavity by way of fluorescence microscopy. This work demonstrates feasibility for in vivo application of π-peptide nanostructures toward pressing biomedical challenges.
Collapse
Affiliation(s)
- Jessie P Dibble
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Scott R Deboer
- Medstar Franklin Square Medical Center, 9000 Franklin Square Drive, Baltimore, Maryland 21237, United States
| | - Mahlet Mersha
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Thomas J Robinson
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - Ryan J Felling
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
- Department of Pediatrics, Johns Hopkins School of Medicine, 1800 Orleans Street, Baltimore, Maryland 21287, United States
| | - Steven R Zeiler
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, Maryland 21287, United States
| | - John D Tovar
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Abstract
OBJECTIVE Up to 50% of the nearly 800,000 patients who experience a new or recurrent stroke each year in the United States fail to achieve full independence afterward. More effective approaches to enhance motor recovery following stroke are needed. This article reviews the rehabilitative principles and strategies that can be used to maximize post-stroke recovery. LATEST DEVELOPMENTS Evidence dictates that mobilization should not begin prior to 24 hours following stroke, but detailed guidelines beyond this are lacking. Specific classes of potentially detrimental medications should be avoided in the early days poststroke. Patients with stroke who are unable to return home should be referred for evaluation to an inpatient rehabilitation facility. Research suggests that a substantial increase in both the dose and intensity of upper and lower extremity exercise is beneficial. A clinical trial supports vagus nerve stimulation as an adjunct to occupational therapy for motor recovery in the upper extremity. The data remain somewhat mixed as to whether robotics, transcranial magnetic stimulation, functional electrical stimulation, and transcranial direct current stimulation are better than dose-matched traditional exercise. No current drug therapy has been proven to augment exercise poststroke to enhance motor recovery. ESSENTIAL POINTS Neurologists will collaborate with rehabilitation professionals for several months following a patient's stroke. Many questions still remain about the ideal exercise regimen to maximize motor recovery in patients poststroke. The next several years will likely bring a host of new research studies exploring the latest strategies to enhance motor recovery using poststroke exercise.
Collapse
|
3
|
Srivastava R, Mailo J, Dunbar M. Perinatal Stroke in Fetuses, Preterm and Term Infants. Semin Pediatr Neurol 2022; 43:100988. [PMID: 36344024 DOI: 10.1016/j.spen.2022.100988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Perinatal stroke is a well-defined heterogenous group of disorders involving a focal disruption of cerebral blood flow between 20 weeks gestation and 28 days of postnatal life. The most focused lifetime risk for stroke occurs during the first week after birth. The morbidity of perinatal stroke is high, as it is the most common cause of hemiparetic cerebral palsy which results in lifelong disability that becomes more apparent throughout childhood. Perinatal strokes can be classified by the timing of diagnosis (acute or retrospective), vessel involved (arterial or venous), and underlying cause (hemorrhagic or ischemic). Perinatal stroke has primarily been reported as a disorder of term infants; however, the preterm brain possesses different vulnerabilities that predispose an infant to stroke injury both in utero and after birth. Accurate diagnosis of perinatal stroke syndromes has important implications for investigations, management, and prognosis. The classification of perinatal stroke by age at presentation (fetal, preterm neonatal, term neonatal, and infancy/childhood) is summarized in this review, and includes detailed descriptions of risk factors, diagnosis, treatment, outcomes, controversies, and resources for family support.
Collapse
Affiliation(s)
- R Srivastava
- Division of Pediatric Neurology, Department of Pediatrics, University of Albertam, AB, Canada
| | - J Mailo
- Division of Pediatric Neurology, Department of Pediatrics, University of Albertam, AB, Canada
| | - M Dunbar
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada.
| |
Collapse
|
4
|
Srivastava R, Dunbar M, Shevell M, Oskoui M, Basu A, Rivkin MJ, Shany E, de Vries LS, Dewey D, Letourneau N, Hill MD, Kirton A. Development and Validation of a Prediction Model for Perinatal Arterial Ischemic Stroke in Term Neonates. JAMA Netw Open 2022; 5:e2219203. [PMID: 35767262 PMCID: PMC9244611 DOI: 10.1001/jamanetworkopen.2022.19203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Perinatal arterial ischemic stroke (PAIS) is a focal brain injury in term neonates that is identified postnatally but is presumed to occur near the time of birth. Many pregnancy, delivery, and fetal factors have been associated with PAIS, but early risk detection is lacking; thus, targeted treatment and prevention efforts are currently limited. OBJECTIVE To develop and validate a diagnostic risk prediction model that uses common clinical factors to predict the probability of PAIS in a term neonate. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, a prediction model was developed using multivariable logistic regression with registry-based case data collected between January 2003, and March 2020, from the Alberta Perinatal Stroke Project, Canadian Cerebral Palsy Registry, International Pediatric Stroke Study, and Alberta Pregnancy Outcomes and Nutrition study. Criteria for inclusion were term birth and no underlying medical conditions associated with stroke diagnosis. Records with more than 20% missing data were excluded. Variable selection was based on peer-reviewed literature. Data were analyzed in September 2021. EXPOSURES Clinical pregnancy, delivery, and neonatal factors associated with PAIS as common data elements across the 4 registries. MAIN OUTCOMES AND MEASURES The primary outcome was the discriminative accuracy of the model predicting PAIS, measured by the concordance statistic (C statistic). RESULTS Of 2571 term neonates in the initial analysis (527 [20%] case and 2044 [80%] control individuals; gestational age range, 37-42 weeks), 1389 (54%) were male, with a greater proportion of males among cases compared with controls (318 [60%] vs 1071 [52%]). The final model was developed using 1924 neonates, including 321 cases (17%) and 1603 controls (83%), and 9 clinical factors associated with risk of PAIS in term neonates: maternal age, tobacco exposure, recreational drug exposure, preeclampsia, chorioamnionitis, intrapartum maternal fever, emergency cesarean delivery, low 5-minute Apgar score, and male sex. The model demonstrated good discrimination between cases and controls (C statistic, 0.73; 95% CI, 0.69-0.76) and good model fit (Hosmer-Lemeshow P = .20). Internal validation techniques yielded similar C statistics (0.73 [95% CI, 0.69-0.77] with bootstrap resampling, 10-fold cross-validated area under the curve, 0.72 [bootstrap bias-corrected 95% CI, 0.69-0.76]), as did a sensitivity analysis using cases and controls from Alberta, Canada, only (C statistic, 0.71; 95% CI, 0.65-0.77). CONCLUSIONS AND RELEVANCE The findings suggest that clinical variables can be used to develop and internally validate a model to predict the risk of PAIS in term neonates, with good predictive performance and strong internal validity. Identifying neonates with a high probability of PAIS who could then be screened for early diagnosis and treatment may be associated with reductions in lifelong morbidity for affected individuals and their families.
Collapse
Affiliation(s)
- Ratika Srivastava
- Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mary Dunbar
- Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael Shevell
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- Department of Neurology/Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Maryam Oskoui
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- Department of Neurology/Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Anna Basu
- Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michael John Rivkin
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Eilon Shany
- Department of Neonatology, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre at the Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D. Hill
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Department of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Gharooni AA, Kwon BK, Fehlings MG, Boerger TF, Rodrigues-Pinto R, Koljonen PA, Kurpad SN, Harrop JS, Aarabi B, Rahimi-Movaghar V, Wilson JR, Davies BM, Kotter MRN, Guest JD. Developing Novel Therapies for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 7]: Opportunities From Restorative Neurobiology. Global Spine J 2022; 12:109S-121S. [PMID: 35174725 PMCID: PMC8859698 DOI: 10.1177/21925682211052920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To provide an overview of contemporary therapies for the James Lind Alliance priority setting partnership for degenerative cervical myelopathy (DCM) question: 'Can novel therapies, including stem-cell, gene, pharmacological and neuroprotective therapies, be identified to improve the health and wellbeing of people living with DCM and slow down disease progression?' METHODS A review of the literature was conducted to outline the pathophysiology of DCM and present contemporary therapies that may hold therapeutic value in 3 broad categories of neuroprotection, neuroregeneration, and neuromodulation. RESULTS Chronic spinal cord compression leads to ischaemia, neuroinflammation, demyelination, and neuronal loss. Surgical intervention may halt progression and improve symptoms, though the majority do not make a full recovery leading to lifelong disability. Neuroprotective agents disrupt deleterious secondary injury pathways, and one agent, Riluzole, has undergone Phase-III investigation in DCM. Although it did not show efficacy on the primary outcome modified Japanese Orthopaedic Association scale, it showed promising results in pain reduction. Regenerative approaches are in the early stage, with one agent, Ibudilast, currently in a phase-III investigation. Neuromodulation approaches aim to therapeutically alter the state of spinal cord excitation by electrical stimulation with a variety of approaches. Case studies using electrical neuromuscular and spinal cord stimulation have shown positive therapeutic utility. CONCLUSION There is limited research into interventions in the 3 broad areas of neuroprotection, neuroregeneration, and neuromodulation for DCM. Contemporary and novel therapies for DCM are now a top 10 priority, and whilst research in these areas is limited in DCM, it is hoped that this review will encourage research into this priority.
Collapse
Affiliation(s)
- Aref-Ali Gharooni
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Benjamin M. Davies
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Mark R. N. Kotter
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Sporns PB, Fullerton HJ, Lee S, Kirton A, Wildgruber M. Current treatment for childhood arterial ischaemic stroke. THE LANCET CHILD & ADOLESCENT HEALTH 2021; 5:825-836. [PMID: 34331864 DOI: 10.1016/s2352-4642(21)00167-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
Paediatric arterial ischaemic stroke is an important cause of neurological morbidity in children, with consequences including motor disorders, intellectual impairment, and epilepsy. The causes of paediatric arterial ischaemic stroke are unique compared with those associated with stroke in adulthood. The past decade has seen substantial advances in paediatric stroke research and clinical care, but many unanswered questions and controversies remain. Shortage of prospective evidence for the use of recanalisation therapies in patients with paediatric stroke has resulted in little standardisation of disease management. Substantial time delays in diagnosis and treatment continue to challenge best possible care. In this Review, we highlight on some of the most pressing and productive aspects of research in the treatment of arterial ischaemic stroke in children, including epidemiology and cause, rehabilitation, secondary stroke prevention, and treatment updates focusing on advances in hyperacute therapies such as intravenous thrombolysis, mechanical thrombectomy, and critical care. Finally, we provide a future perspective for improving outcomes and quality of life for affected children and their families.
Collapse
Affiliation(s)
- Peter B Sporns
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heather J Fullerton
- Departments of Neurology and Pediatrics, Weill Institute of Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Adam Kirton
- Department of Pediatrics and Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Zhang SY, Jeffers MS, Lagace DC, Kirton A, Silasi G. Developmental and Interventional Plasticity of Motor Maps after Perinatal Stroke. J Neurosci 2021; 41:6157-6172. [PMID: 34083257 PMCID: PMC8276736 DOI: 10.1523/jneurosci.3185-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Within the perinatal stroke field, there is a need to establish preclinical models where putative biomarkers for motor function can be examined. In a mouse model of perinatal stroke, we evaluated motor map size and movement latency following optogenetic cortical stimulation against three factors of post-stroke biomarker utility: (1) correlation to chronic impairment on a behavioral test battery; (2) amenability to change using a skilled motor training paradigm; and (3) ability to distinguish individuals with potential to respond well to training. Thy1-ChR2-YFP mice received a photothrombotic stroke at postnatal day 7 and were evaluated on a battery of motor tests between days 59 and 70. Following a cranial window implant, mice underwent longitudinal optogenetic motor mapping both before and after 3 weeks of skilled forelimb training. Map size and movement latency of both hemispheres were positively correlated with impaired spontaneous forelimb use, whereas only ipsilesional hemisphere map size was correlated with performance in skilled reaching. Map size and movement latency did not show groupwise changes with training; however, mice with the smallest pretraining map sizes and worst impairments demonstrated the greatest expansion of map size in response to skilled forelimb training. Overall, motor map size showed utility as a potential biomarker for impairment and training-induced modulation in specific individuals. Future assessment of the predictive capacity of post-stroke motor representations for behavioral outcome in animal models opens the possibility of dissecting how plasticity mechanisms contribute to recovery following perinatal stroke.SIGNIFICANCE STATEMENT We investigated the utility of two cortical motor representation measures (motor map size and movement onset latency) as potential biomarkers for post-stroke motor recovery in a mouse model of perinatal stroke. Both motor map size and movement latency were associated with functional recovery after perinatal stroke, with map size showing an additional association between training responsiveness and severity of impairment. Overall, both motor map size and movement onset latency show potential as neurophysiological correlates of recovery. As such, future studies of perinatal stroke rehabilitation and neuromodulation should include these measures to help explain neurophysiological changes that might be occurring in response to treatment.
Collapse
Affiliation(s)
- Sarah Y Zhang
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario, Canada K1H 8L6
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Adam Kirton
- Alberta Children's Hospital, Calgary Pediatric Stroke Program, Calgary, Alberta, Canada K1H 8M5
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, Calgary, Alberta, Canada T2N 4N1
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Gergely Silasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
8
|
Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol 2021; 17:415-432. [PMID: 34127850 DOI: 10.1038/s41582-021-00503-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Most cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke. As a focal injury of defined timing in an otherwise healthy brain, perinatal stroke represents an ideal human model of developmental plasticity. Here, we provide an introduction to perinatal stroke epidemiology and outcomes, before reviewing models of developmental plasticity after perinatal stroke. We then examine existing therapeutic approaches, including constraint, bimanual and other occupational therapies, and their potential synergy with non-invasive neurostimulation. We end by discussing the promise of exciting new therapies, including novel neurostimulation, brain-computer interfaces and robotics, all focused on improving outcomes after perinatal stroke.
Collapse
|
9
|
Srivastava R, Kirton A. Perinatal Stroke: A Practical Approach to Diagnosis and Management. Neoreviews 2021; 22:e163-e176. [PMID: 33649089 DOI: 10.1542/neo.22-3-e163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal stroke is a focal vascular brain injury that occurs from the fetal period to 28 days of postnatal age. With an overall incidence of up to 1 in 1,000 live births, the most focused lifetime risk for stroke occurs near birth. Perinatal stroke can be classified by the timing of diagnosis, vessel involvement, and type of injury. Timing of diagnosis may be in the acute neonatal period or retrospectively after a period of normal development, followed by abnormal neurologic findings, with the injury presumed to have occurred around the time of birth. Strokes may be arterial or venous, ischemic, and/or hemorrhagic. Within these classifications, 6 perinatal stroke diseases are recognizable, based on clinical and radiographic features. Morbidity is high in perinatal stroke, because it accounts for most cases of hemiparetic cerebral palsy, with disability lasting a lifetime. Additional complications include disorders of sensation and vision, language delays, cognitive and learning deficits, epilepsy, and mental health consequences that affect the entire family. Advances in neonatal neurocritical care may afford opportunity to minimize brain injury and improve outcomes. In the chronic timeframe, progress made in neuroimaging and brain mapping is revealing the developmental plasticity that occurs, informing new avenues for neurorehabilitation. This review will summarize the diagnosis and management of each perinatal stroke disease, highlighting their similarities and distinctions and emphasizing a patient- and family-centered approach to management.
Collapse
Affiliation(s)
- Ratika Srivastava
- Department of Community Health Sciences.,Department of Pediatrics, Section of Neurology; and.,Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Department of Pediatrics, Section of Neurology; and.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calgary Pediatric Stroke Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Berrigan P, Hodge J, Kirton A, Moretti ME, Ungar WJ, Zwicker JD. Protocol for a cost-utility analysis of neurostimulation and intensive camp-based therapy for children with perinatal stroke and hemiparesis based on a multicentre clinical trial. BMJ Open 2021; 11:e041444. [PMID: 33468454 PMCID: PMC7817786 DOI: 10.1136/bmjopen-2020-041444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Perinatal stroke leads to cerebral palsy (CP) and lifelong disability for thousands of Canadian children. Hemiparesis, referring to impaired functionality in one side of the body, is a common complication of perinatal stroke. Standard long-term care for hemiparetic CP focuses on rehabilitation therapies. Early research suggests that patients with hemiparesis may benefit from adjunctive neuromodulation treatments such as transcranial direct current stimulation (tDCS). tDCS uses electric current to stimulate targeted areas of the brain non-invasively, potentially enhancing the effects of motor learning therapies. This protocol describes an economic evaluation to be conducted alongside a randomised controlled trial (RCT) to assess the incremental cost of tDCS added to a camp-based therapy compared with camp-based therapy alone per quality-adjusted life year (QALY) gained in children with hemiparetic CP. METHODS AND ANALYSIS The Stimulation for Perinatal Stroke Optimising Recovery Trajectories (SPORT) trial is a multicentre RCT evaluating tDCS added to a 2-week camp-based therapy for children aged 6-18 years with perinatal ischaemic stroke and disabling hemiparetic CP affecting the upper limb. Outcomes are assessed at baseline, 1 week, 2 months and 6 months following intervention. Cost and quality of life data are collected at baseline and 6 months and results will be used to conduct a cost-utility analysis (CUA). The evaluation will be conducted from the perspectives of the public healthcare system and society. The CUA will be conducted over a 6-month time horizon. ETHICS AND DISSEMINATION Ethical approval for the SPORT trial and the associated economic evaluation has been given by the research ethics boards at each of the study sites. The findings of the economic evaluation will be submitted for publication in a peer reviewed academic journal and submitted for presentation at conference. TRIAL REGISTRATION NUMBER NCT03216837; Post-results.
Collapse
Affiliation(s)
- Patrick Berrigan
- School of Public Policy, University of Calgary, Calgary, Alberta, Canada
| | - Jacquie Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Myla E Moretti
- Ontario Child Health Support Unit and the Clinical Trials Unit, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Wendy J Ungar
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Technology Assessment at SickKids, Program of Child Heath Evaluative Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer D Zwicker
- School of Public Policy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|