1
|
Li W, Tang T, Yao S, Zhong S, Fan Q, Zou T. Low-dose Lipopolysaccharide Alleviates Spinal Cord Injury-induced Neuronal Inflammation by Inhibiting microRNA-429-mediated Suppression of PI3K/AKT/Nrf2 Signaling. Mol Neurobiol 2024; 61:294-307. [PMID: 37605094 DOI: 10.1007/s12035-023-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023]
Abstract
This study investigated the impact of low-dose lipopolysaccharide (LPS) on spinal cord injury (SCI) and the potential molecular mechanism. Rats were randomly assigned to four groups: Sham, SCI, SCI + LPS, and SCI + LPS + agomir. Allen's weight-drop method was used to establish an in vivo SCI model. The Basso Bcattie Bresnahan rating scale was employed to monitor locomotor function. An in vitro SCI model was constructed by subjecting PC12 cells to oxygen and glucose deprivation/ reoxygenation (OGD/R). Enzyme-linked immunosorbent assay (ELISA) was applied for the determination interleukin (IL)-1β and IL-6. The dual luciferase reporter assay was used to validate the targeting of microRNA (miR)-429 with PI3K. Immunohistochemical staining was used to assess the expression of PI3K, phosphorylated AKT and Nrf2 proteins. The Nrf2-downstream anti-oxidative stress proteins, OH-1 and NQO1, were detected by western blot assay. MiR-429 expression was detected by fluorescence in situ hybridization and real-time quantitative reverse transcription PCR. In vitro, low-dose LPS decreased miR-429 expression, activated PI3K/AKT/Nrf2, inhibited oxidative stress and inflammation, and attenuated SCI. MiR-429 was found to target and negatively regulate PI3K. Inhibition of miR-429 suppressed low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. In vivo, miR-429 was detectable in neurons. Inhibition of miR-429 blocked low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. Overall, low-dose LPS was found to alleviate SCI-induced neuronal oxidative stress and inflammatory response by down-regulating miR-429 to activate the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Tao Tang
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shaoping Yao
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tiannan Zou
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China.
| |
Collapse
|
2
|
Jimenez-Rondan FR, Ruggiero CH, McKinley KL, Koh J, Roberts JF, Triplett EW, Cousins RJ. Enterocyte-specific deletion of metal transporter Zip14 (Slc39a14) alters intestinal homeostasis through epigenetic mechanisms. Am J Physiol Gastrointest Liver Physiol 2023; 324:G159-G176. [PMID: 36537699 PMCID: PMC9925170 DOI: 10.1152/ajpgi.00244.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023]
Abstract
Zinc has anti-inflammatory properties using mechanisms that are unclear. Zip14 (Slc39a14) is a zinc transporter induced by proinflammatory stimuli and is highly expressed at the basolateral membrane of intestinal epithelial cells (IECs). Enterocyte-specific Zip14 ablation (Zip14ΔIEC) in mice was developed to study the functions of this transporter in enterocytes. This gene deletion led to increased intestinal permeability, increased IL-6 and IFNγ expression, mild endotoxemia, and intestinal dysbiosis. RNA sequencing was used for transcriptome profiling. These analyses revealed differential expression of specific intestinal proinflammatory and tight junction (TJ) genes. Binding of transcription factors, including NF-κβ, STAT3, and CDX2, to appropriate promoter sites of these genes supports the differential expression shown with chromatin immunoprecipitation assays. Total histone deacetylase (HDAC), and specifically HDAC3, activities were markedly reduced with Zip14 ablation. Intestinal organoids derived from ΔIEC mice display TJ and cytokine gene dysregulation compared with control mice. Differential expression of specific genes was reversed with zinc supplementation of the organoids. We conclude that zinc-dependent HDAC enzymes acquire zinc ions via Zip14-mediated transport and that intestinal integrity is controlled in part through epigenetic modifications.NEW & NOTEWORTHY We show that enterocyte-specific ablation of zinc transporter Zip14 (Slc39a14) results in selective dysbiosis and differential expression of tight junction proteins, claudin 1 and 2, and specific cytokines associated with intestinal inflammation. HDAC activity and zinc uptake are reduced with Zip14 ablation. Using intestinal organoids, the expression defects of claudin 1 and 2 are resolved through zinc supplementation. These novel results suggest that zinc, an essential micronutrient, influences gene expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Courtney H Ruggiero
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - John F Roberts
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J Cousins
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021; 9:e11454. [PMID: 34123589 PMCID: PMC8164840 DOI: 10.7717/peerj.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe complications such as paraplegia and paralysis. Aberrant miRNA expression is involved in the development of SCII. Differences in the experimenters, filtering conditions, control selection, and sequencing platform may lead to different miRNA expression results. This study systematically analyzes the available SCII miRNA expression data to explore the key differently expressed miRNAs (DEmiRNAs) and the underlying molecular mechanism in SCII. A systematic bioinformatics analysis was performed on 23 representative rat SCII miRNA datasets from PubMed. The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and TFactS databases were utilized for functional enrichment and transcription factor binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9 of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p, miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p, miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the target genes of the upregulated DEmiRNAs revealed that the involved pathways were mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis on the target genes of the downregulated DEmiRNAs revealed that the involved pathways were mainly the Chemokine and MAPK signaling pathways. GO enrichment analysis indicated that the target genes of the upregulated DEmiRNAs were markedly enriched in biological processes such as brain development and the positive regulation of transcription from RNA polymerase II promoter. Target genes of the downregulated DEmiRNAs were mainly enriched in biological processes such as intracellular signal transduction and negative regulation of cell proliferation. According to the transcription factor analysis, the four transcription factors, including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568 was especially interesting. While SCII causes severe neurological deficits of lower extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2 expression levels showed a opposite trend as cleaved caspase-3. The expression of GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII were identified, and the underlying molecular mechanisms were validated. The DEmiRNAs could serve as potential intervention targets for SCII. Moreover, inhibition of miR-3568 preserved hind limb function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.
Collapse
Affiliation(s)
- Fengshou Chen
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Jie Han
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| | - Dan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning province, China
| |
Collapse
|
4
|
Lu YY, Ma XJ, Yang YN. MicroRNA-18a-5p mitigates oxygen-glucose-deprivation/reoxygenation-induced injury through suppression of TLRs/NF-κB signaling by targeting TLR8 in PC12 cells. Biosci Biotechnol Biochem 2020; 84:2476-2483. [PMID: 32815784 DOI: 10.1080/09168451.2020.1806705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This work aimed to assess the role of TLR8 in cerebral I/R injury and its in-depth pathogenesis. Bioinformatics analysis indicated that TLR8 was up-regulated in patients with ischemic stroke than that in healthy control, and miR-18a-5p was the upstream regulatory of TLR8. Then, the rat pheochromocytoma PC12 cells were exposed in oxygen-glucose-deprivation/reoxygenation (OGD/R) conditions to construct a model in vitro. The functional experiments indicated that OGD/R can decline the viability and elevate the apoptosis of PC12 cells, while up-regulation of miR-18a-5p can alleviate OGD/R-induced cell injury. Notably, overexpression of TLR8 reverses the miR-18a-5p-mediated protection on OGD/R-induced cells injury. Finally, we found that up-regulation of miR-18a-5p obviously declined the protein levels of TLR4 and TLR7 as well as the phosphorylation of NF-κB, while overexpression of TLR8 canceled the decrease caused by miR-18a-5p up-regulation. In summing, our results illustrated that miR-18a-5p/TLR8 axis can mitigate OGD/R-induced cells injury through TLRs and NF-κB pathway.
Collapse
Affiliation(s)
- Ying-Yun Lu
- Department of Severe Rehabilitation, Shandong Provincial Third Hospital , Jinan, P.R. China
| | - Xiao-Jun Ma
- Department of Geriatrics, Shandong Provincial Third Hospital , Jinan, P.R. China
| | - Yan-Na Yang
- Department of Respiratory, Jinan Central Hospital Affiliated to Shandong First Medical University , Jinan, P.R. China
| |
Collapse
|
5
|
Leng J, Liu W, Li L, Wei FY, Tian M, Liu HM, Guo W. MicroRNA-429/Cxcl1 Axis Protective Against Oxygen Glucose Deprivation/Reoxygenation-Induced Injury in Brain Microvascular Endothelial Cells. Dose Response 2020; 18:1559325820913785. [PMID: 32284700 PMCID: PMC7139192 DOI: 10.1177/1559325820913785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: The objective of the present work was to study the role of Cxcl1 in cerebral
ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an
oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain
microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that
Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by
OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can
strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified
that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression.
Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the
miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in
vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a
new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic
target.
Collapse
Affiliation(s)
- Jun Leng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Wei Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Fang Yue Wei
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Meng Tian
- Competitive sports section 1 of Sports Science Research Center of Shandong Province, Jinan, Shandong Province, People's Republic of China
| | - Hui Min Liu
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Wen Guo
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Yang Q, Li J, Zhang H, Zuo H, Zhang Q, Cheng J. Down-regulation of microRNA-429 alleviates myocardial injury of rats with coronary heart disease. Cell Cycle 2019; 18:2550-2565. [PMID: 31438762 PMCID: PMC6738912 DOI: 10.1080/15384101.2019.1652037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the impact of microRNAs (miRNAs) on coronary heart disease (CHD) has been identified. This study was aimed to investigate the regulative role of microRNA (miR-429) in myocardial injury of rats with CHD. Expression of miR-429 in CHD patients and healthy people was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The CHD rat models were injected with normal saline, mimics negative control (NC), miR-429 mimics, inhibitors NC and miR-429 inhibitors twice a week, for 4 weeks. Levels of inflammatory factors, oxidative stress indices as well as apoptosis of cardiomyocytes were determined by a series of assays. Expression of miR-429 was up-regulated in CHD patients. Reduced miR-429 could decline the expression of oxidative stress-related factors and inflammation-related factors, and inhibit the apoptosis of cardiomyocytes in rats with CHD. Moreover, the down-regulation of miR-429 could promote the expression of CrkL and repress activation of the MEK/ERK signaling pathway. This study reveals that restrained miR-429 could exert a protective impact on myocardial injury of rats with CHD by suppressing oxidative stress, inflammation reaction and apoptosis of cardiomyocytes. The function mechanisms may relate to the up-regulation of CrkL and inhibition of the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Qin Yang
- Emergency Department, Attending doctor, The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Jingrong Li
- Emergency Department, The second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Hao Zhang
- Emergency Department, The second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Heping Zuo
- Emergency Department, The second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Qinglong Zhang
- Emergency Department, The second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Jinglin Cheng
- Emergency Department, Chief physician, The second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
7
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|