1
|
Charlton AJ, Perry CJ. The Effect of Chronic Alcohol on Cognitive Decline: Do Variations in Methodology Impact Study Outcome? An Overview of Research From the Past 5 Years. Front Neurosci 2022; 16:836827. [PMID: 35360176 PMCID: PMC8960615 DOI: 10.3389/fnins.2022.836827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive alcohol use is often associated with accelerated cognitive decline, and extensive research using animal models of human alcohol consumption has been conducted into potential mechanisms for this relationship. Within this literature there is considerable variability in the types of models used. For example, alcohol administration style (voluntary/forced), length and schedule of exposure and abstinence period are often substantially different between studies. In this review, we evaluate recent research into alcohol-induced cognitive decline according to methodology of alcohol access, as well as cognitive behavioral task employed. Our aim was to query whether the nature and severity of deficits observed may be impacted by the schedule and type of alcohol administration. We furthermore examined whether there is any apparent relationship between the amount of alcohol consumed and the severity of the deficit, as well as the potential impact of abstinence length, and other factors such as age of administration, and sex of subject. Over the past five years, researchers have overwhelmingly used non-voluntary methods of intake, however deficits are still found where intake is voluntary. Magnitude of intake and type of task seem most closely related to the likelihood of producing a deficit, however even this did not follow a consistent pattern. We highlight the importance of using systematic and clear reporting styles to facilitate consistency across the literature in this regard. We hope that this analysis will provide important insights into how experimental protocols might influence findings, and how different patterns of consumption are more or less likely to produce an addiction-vulnerable cognitive phenotype in animal models.
Collapse
Affiliation(s)
- Annai J. Charlton
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christina J. Perry
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Psychological Sciences, Centre for Emotional Health, Macquarie University, North Ryde, NSW, Australia
- *Correspondence: Christina J. Perry,
| |
Collapse
|
2
|
Bian H, Wu Y, Cui Z, Zheng H, Li Y, Zou D. Study on the autophagy-related mechanism of puerarin in improving the cognitive impairment induced by alcohol in female mice. Brain Inj 2022; 36:137-145. [PMID: 35138214 DOI: 10.1080/02699052.2022.2037712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
PRIMARY OBJECTIVE This study aimed to investigate the effects of low-, medium-, and high-dose puerarin on cognitive impairment induced by 50% alcohol in mice and revealed the role of autophagy-related signaling pathways (mTOR and JNK pathways) in this process. RESEARCH DESIGN The alcohol-induced brain injury model was treated with different concentrations of puerarin. The cognitive function of mice was evaluated by the behavioral test, and the changes of target proteins in hippocampus of each experimental group were detected. METHODS AND PROCEDURES 40 female Kunming mice were randomly divided into 5 groups. The cognitive ability of mice was tested by Morris water maze, the morphological changes in the CA1 area of hippocampus were observed by HE staining, and the target proteins in hippocampus were measured by WB and IHC. MAIN OUTCOMES AND RESULTS Compared with the 50% alcohol group, the expression of p-mTOR/mTOR and p-4E-BP1/4E-BP1 in hippocampus was significantly decreased, while the expression of p-JNK/JNK, Beclin1, and LC3 was significantly increased in the medium- and high-dose puerarin groups. CONCLUSIONS Puerarin could improve the cognitive impairment induced by 50% alcohol. The mTOR and JNK pathways related to autophagy might be involved in this process.
Collapse
Affiliation(s)
- Huanhuan Bian
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Yi Wu
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Heyu Zheng
- Clinical Medicine Major Grade 2018, Shenyang Medical College, Shenyang,Liaoning, PR China
| | - Yanyi Li
- Clinical Medicine Major Grade 2018, Shenyang Medical College, Shenyang,Liaoning, PR China
| | - Dan Zou
- Department of Immunology, Shenyang Medical College, Shenyang, Liaoning, PR China
| |
Collapse
|
3
|
Qiao X, Sun M, Chen Y, Jin W, Zhao H, Zhang W, Lai J, Yan H. Ethanol-Induced Neuronal and Cognitive/Emotional Impairments are Accompanied by Down-Regulated NT3-TrkC-ERK in Hippocampus. Alcohol Alcohol 2021; 56:220-229. [PMID: 33103180 DOI: 10.1093/alcalc/agaa101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Ethanol ingestion affects cognition and emotion, which have been attributed to the dysfunction of specific brain structures. Studies of alcoholic patients and animal models consistently identify reduced hippocampal mass as a key ethanol-induced brain adaptation. This study evaluated how neuroadaptation in the hippocampus (Hip) produced by ethanol contributed to related behavioral deficits in male and female rats. METHODS Effects of acute, short-term and long-term ethanol exposure on the anxiety-like behavior and recognition memory on adult male and female Sprague-Dawley rats were assessed using elevated plus maze test and novel object recognition test, respectively. In addition, in order to investigate the direct effect of ethanol on hippocampal neurons, primary culture of hippocampal neurons was exposed to ethanol (10, 30 and 90 mM; 1, 24 and 48 h), and viability (CCK-8) and morphology (immunocytochemistry) were analyzed at structural levels. Western blot assays were used to assess protein levels of NT3-TrkC-ERK. RESULTS Acute and short-term ethanol exposure exerted anxiolytic effects, whereas long-term ethanol exposure induced anxiogenic responses in both sexes. Short-term ethanol exposure impaired spatial memory only in female rats, whereas long-term ethanol exposure impaired spatial and recognition memory in both sexes. These behavioral impairments and ethanol-induced loss of hippocampal neurons and decreased cell viability were accompanied by downregulated NT3-TrkC-ERK pathway. CONCLUSION These results indicate that NT3-TrkC-ERK signaling in the Hip may play an important role in ethanol-induced structural and behavioral impairments.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Chen
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Huan Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Weiqi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Jianghua Lai
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
4
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
5
|
Lee J, Lunde-Young R, Naik V, Ramirez J, Orzabal M, Ramadoss J. Chronic Binge Alcohol Exposure During Pregnancy Alters mTOR System in Rat Fetal Hippocampus. Alcohol Clin Exp Res 2020; 44:1329-1336. [PMID: 32333810 DOI: 10.1111/acer.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gestational alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), an array of cognitive, behavioral, and physical developmental impairments. Mammalian target of rapamycin (mTOR) plays a key role in regulating protein synthesis in response to neuronal activity, thereby modulating synaptic plasticity and long-term memory formation in the brain. Based on our previous quantitative mass spectrometry proteomic studies, we hypothesized that gestational chronic binge alcohol exposure alters mTOR signaling and downstream pathways in the fetal hippocampus. METHODS Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol (peak BAC, 216 mg/dl) from GD 5-10 and progressed to 6 g/kg alcohol (peak BAC, 289 mg/dl) from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. RESULTS In the Alcohol group, following this exposure paradigm, fetal body weight and crown-rump length were decreased. The phosphorylation level of mTOR (P-mTOR) in the fetal hippocampus was decreased in the Alcohol group compared with controls. Alcohol exposure resulted in dysregulation of fetal hippocampal mTORC1 signaling, as evidenced by an increase in total 4E-BP1 expression. Phosphorylation levels of 4E-BP1 and p70 S6K were also increased following alcohol exposure. P-mTOR and P-4E-BP1 were exclusively detected in the dentate gyrus and oriens layer of the fetal hippocampus, respectively. DEPTOR and RICTOR expression levels in the fetal hippocampus were increased; however, RAPTOR was not altered by chronic binge alcohol exposure. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy alters mTORC1 signaling pathway in the fetal hippocampus. We conjecture that this dysregulation of mTOR protein expression, its activity, and downstream proteins may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Raine Lunde-Young
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vishal Naik
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Josue Ramirez
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Marcus Orzabal
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Wu Y, Xing Y, Zou D. Study of the relationship between how ethanol affects learning and memory and the expression of p21 WAF1/CIP1 in the female mouse hippocampus. Neurosci Lett 2019; 708:134354. [PMID: 31254559 DOI: 10.1016/j.neulet.2019.134354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to investigate the effects of different concentrations of ethanol on learning and memory in female mice and the corresponding interaction with histone deacetylase 1(HDAC1), estrogen receptor α(ERα) and p21 WAF1/CIP1. Data from the Morris water maze test showed that mice in the 50% ethanol group might experience cognitive impairment, while mice in the 2% ethanol group might experience enhanced cognitive capabilities. The number of damaged neurons in the hippocampal CA1 area in the 50% ethanol group was higher than the numbers observed in other groups. The expression of HDAC1 and ERα proteins was lower in the 50% ethanol group than they were in the control group, while p21 WAF1/CIP1 expression was increased. The expression of these proteins in the 2% ethanol group was completely reversed when compared to the 50% ethanol group. p21 WAF1/CIP1 was involved in the cognitive change induced by ethanol. The f2 (-400 bp to -800 bp) and f7 (-2400 bp to -2800 bp) fragments in the p21 WAF1/CIP1 promoter region were functionally active regions that experienced binding relating to HDAC1 and ERα.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pathophysiology, Shenyang Medical College, 146 Huang He North Road, Shenyang Liaoning 110034, PR China.
| | - Yang Xing
- Zhengzhou Yihe Hospital Affiliated of Henan University, Zhengzhou, Henan, 450002, PR China.
| | - Dan Zou
- Department of Pathophysiology, Shenyang Medical College, 146 Huang He North Road, Shenyang Liaoning 110034, PR China.
| |
Collapse
|
7
|
Contreras A, Morales L, Del Olmo N. The intermittent administration of ethanol during the juvenile period produces changes in the expression of hippocampal genes and proteins and deterioration of spatial memory. Behav Brain Res 2019; 372:112033. [PMID: 31201872 DOI: 10.1016/j.bbr.2019.112033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Binge drinking is a pattern of alcohol intake characterized by excessive and intermittent alcohol consumption over a very short period of time that is more used during adolescence. We aim to compare the lasting effects of a chronic-moderate vs. this intermittent-excessive way of alcohol intake during adolescence in spatial memory and in the expression of glutamatergic receptors and GSK3β activity. METHODS Adolescent male Wistar rats were given ethanol/saline i.p. injections in four different groups: High-I (4 g/kg of a 25% (vol/vol) every 3 days), Low-I (1 g/kg of a 5% (vol/vol) every 3 days), M (0.3 g/kg of a 2.5% (vol/vol) daily) and Control (C, sterile isotonic saline daily). Rats received ethanol for up to five 3-day cycles. Spatial memory was measured by spontaneous alternation in the Y-Maze. Gene and protein expression of hippocampal proteins were also analysed. RESULTS Both high- and low-intermittent ethanol administration produced spatial memory impairment and changes in glutamatergic receptors gene expression were observed regardless of the pattern of exposure. High doses of intermittent alcohol administration produced an increase of phosphorylation of GSK3β Ser9. Moreover, moderate alcohol administration produced a down-regulation of the AMPAR 2/3 ratio despite lack of spatial memory deficits. CONCLUSIONS Excessive and intermittent ethanol exposure during adolescence impaired the spatial memory processes during adulthood regardless of the amount of alcohol administered. Moreover, chronic-moderate and intermittent pattern induced changes in the expression of glutamatergic receptors. In addition, high-intermittent ethanol exposure during adolescence inactivated GSK3β by increasing its phosphorylation in Ser9.
Collapse
Affiliation(s)
- Ana Contreras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Lidia Morales
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain.
| |
Collapse
|