1
|
Amirpour M, Mirshekar MA, Sedaghat G, Montazerifar F, Shourestani S, Arabmoazzen S, Naghizadeh M. The effects of green tea on cognitive impairments in the rat model of Alzheimer's disease: protection against inflammatory and oxidative damage. Nutr Neurosci 2021; 25:2659-2667. [PMID: 34802394 DOI: 10.1080/1028415x.2021.2003946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a decrement in the number of synapses, an increment in the production of oxygen free radicals and inflammatory cytokines. Green tea (GT) plays a defensive performance in different neurodegenerative conditions, such as cognition deficit. This study investigated the neuroprotective effect of green tea (GT) on cognitive disorder, inflammation, and oxidative stress in the streptozotocin (STZ)- induced AD model. MATERIALS AND METHODS The rats were divided into four groups: (1) Control, (2) GT, (3) Alz, and (4) GT + Alz. AD was induced by the injection of STZ (3 mg/kg, bilaterally, ICV). Morris water maze and passive avoidance tests were done to evaluate the memory and learning of rats. Biochemical parameters were measured with specialized ELISA kits. RESULTS Briefly, data analysis revealed that GT administration for 21 days improved memory impairment induced by the injection of STZ. Pretreatment with GT enhanced time spent in the goal quarter and reduced latency time and path length. Furthermore, pretreatment with GT prevented the increment of malondialdehyde (MDA) concentration in STZ-treated rats. As a pro-inflammatory cytokine, tumor necrosis factor- α (TNF-α) concentration was suppressed with the GT pretreatment. Total antioxidant capacity was increased after GT administration in rats treated compared with AD rats. CONCLUSIONS GT pretreatment attenuated STZ-induced learning and memory impairment through the suppression of TNF-α and MDA concentrations. The beneficial effects of GT on memory could be attributed to its protective effects on oxidative defenses.
Collapse
Affiliation(s)
- Mahsa Amirpour
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gohar Sedaghat
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Montazerifar
- Department of Food Sciences and Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Shourestani
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saiedeh Arabmoazzen
- Deputy of Research and Technology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrdad Naghizadeh
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
2
|
Forouzanfar F, Gholami J, Foroughnia M, Payvar B, Nemati S, Khodadadegan MA, Saheb M, Hajali V. The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense. Heliyon 2021; 7:e08336. [PMID: 34820541 PMCID: PMC8601997 DOI: 10.1016/j.heliyon.2021.e08336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/15/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The weight of evidence suggests that sleep is essential for the processes of memory consolidation and sleep deprivation (SD) impairs the retention of long-term memory in both humans and experimental animals, which is associated with oxidative stress damage within the brain. Green tea polyphenols have revealed carcinogenic, antioxidant, anti-, and anti-mutagenic properties. We aimed to investigate the possible protective effect of green tea extract (GTE) and its main active catechin, epigallocatechin-3-gallate (EGCG), on post-training total sleep deprivation (TSD) -induced spatial memory deficits and oxidative stress profile in the hippocampus of the rat. METHODS Male rats were treated with saline, GTE (100 and 200 mg/kg/day), and EGCG (50 mg/kg/day) intraperitoneally for 21 days and then trained in Morris water maze (MWM) in a single day protocol. Immediately after the end of MWM training, animals were sleep deprived for 6 h by the gentle handling method, and then evaluated for spatial memory. Hippocampal levels of malondialdehyde, (MDA), and thiol was assessed as oxidant and antioxidant markers. RESULTS Spatial memory was impaired in the TSD group and GTE at the dose of 200 mg/kg/day as well as EGCG at the dose of 50 mg/kg/day could reverse the impairment to the saline-treated levels. Despite the unchanged MDA levels, hippocampal total thiol was significantly decreased after TSD and EGCG increased it to the basal levels. CONCLUSION In conclusion, green tea and its main catechin, EGCG, could prevent memory impairments during 6 h of TSD; probably through normalizing the antioxidant thiol defense system which was impaired during TSD.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamileh Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Foroughnia
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payvar
- Quchan School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahsa Saheb
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Hajali
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Quchan School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Nan S, Wang P, Zhang Y, Fan J. Epigallocatechin-3-Gallate Provides Protection Against Alzheimer's Disease-Induced Learning and Memory Impairments in Rats. Drug Des Devel Ther 2021; 15:2013-2024. [PMID: 34012254 PMCID: PMC8128347 DOI: 10.2147/dddt.s289473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Recent evidence has highlighted the anti-inflammatory properties of the constituent of Green Tea Polyphenols (GTP), epigallocatechin-3-gallate (EGCG) which has been suggested to exert a neuroprotective effect on Alzheimer’s disease (AD). The current study aimed to elucidate the effect of EGCG on memory function in rats with AD. Methods AD rat models were initially established through an injection with Aβ 25–35 solution, followed by gavage with EGCG at varying doses to determine the effect of EGCG on learning and cognitive deficits in AD. Morris water maze test was conducted to evaluate the spatial memory function of the rats. Immunohistochemistry and Western blot analysis were performed to identify Tau phosphorylation. The expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA and protein in rat hippocampus was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Acetylcholinesterase (AchE) activity, Aβ1-42 expression and Ach content were all detected using enzyme-linked immunosorbent assay (ELISA). Results EGCG intervention brought about a decrease in the escape latency period while increasing the time at the target quadrant among the AD rats. EGCG decreased the hyperphosphorylation of Tau in hippocampus. BACE1 expression and activity as well as the expression of Aβ1-42 were suppressed by EGCG. Moreover, EGCG promoted Ach content by diminishing the activity of AchE. Conclusion The current study demonstrates that EGCG may diminish the hyperphosphorylation of the Tau protein, downregulate BACE1 and Aβ1-42 expression to improve the antioxidant system and learning and memory function of rats with AD.
Collapse
Affiliation(s)
- Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| |
Collapse
|
4
|
Drissi I, Deschamps C, Alary R, Robert A, Dubreuil V, Le Mouël A, Mohammed M, Sabéran‐Djoneidi D, Mezger V, Naassila M, Pierrefiche O. Role of heat shock transcription factor 2 in the NMDA-dependent neuroplasticity induced by chronic ethanol intake in mouse hippocampus. Addict Biol 2021; 26:e12939. [PMID: 32720424 DOI: 10.1111/adb.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Ethanol consumption impairs learning and memory through disturbances of NMDA-type glutamate receptor-dependent synaptic plasticity (long-term depression [LTD] and long-term potentiation [LTP]) in the hippocampus. Recently, we demonstrated that two ethanol binge-like episodes in young adult rats selectively blocked NMDA-LTD in hippocampal slices, increased NMDA receptor sensitivity to a GluN2B subunit antagonist, and induced cognitive deficits. Here, using knockout adult mice, we show that a stress-responsive transcription factor of the heat shock factor family, HSF2, which is involved in the perturbation of brain development induced by ethanol, participates in these processes. In the absence of ethanol, hsf2-/- mice show a selective loss of LTD in the hippocampus, which is associated with an increased sensitivity of NMDA-field excitatory postsynaptic potentials (fEPSPs) to a GluN2B antagonist, compared with wild-type (WT) mice. These results suggest that HSF2 is required for proper glutamatergic synaptic transmission and LTD plasticity. After 1 month of chronic ethanol consumption in a two-bottle choice paradigm, WT mice showed an increase in hippocampal synaptic transmission, an enhanced sensitivity to GluN2B antagonist, and a blockade of LTD. In contrast, such modulation of synaptic transmission and plasticity were absent in hsf2-/- mice. We conclude that HSF2 is an important mediator of both glutamatergic neurotransmission and synaptic plasticity in basal conditions and also mediates ethanol-induced neuroadaptations of the hippocampus network after chronic ethanol intake.
Collapse
Affiliation(s)
- Ichrak Drissi
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
- Cambridge Institute for Medical Research University of Cambridge, Cambridge Biomedical Campus Cambridge UK
| | - Chloé Deschamps
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Rachel Alary
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Alexandre Robert
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Véronique Dubreuil
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Anne Le Mouël
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Myriame Mohammed
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Délara Sabéran‐Djoneidi
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Valérie Mezger
- Université de Paris, UMR 7216 Epigenetics and Cell Fate, CNRS Paris France
- Département Hospitalo‐Universitaire DHU PROTECT Paris France
| | - Mickael Naassila
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Olivier Pierrefiche
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| |
Collapse
|
5
|
Rebas E, Rzajew J, Radzik T, Zylinska L. Neuroprotective Polyphenols: A Modulatory Action on Neurotransmitter Pathways. Curr Neuropharmacol 2020; 18:431-445. [PMID: 31903883 PMCID: PMC7457434 DOI: 10.2174/1570159x18666200106155127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/03/2019] [Accepted: 01/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Balance in neurotransmission is essential for the proper functioning of the nervous system and even a small, but prolonged disturbance, can induce the negative feedback mechanisms leading to various neuropathologies. Neurodegenerative and mood disorders such as Alzheimer's, Parkinson's or affective disorders are increasing medical and social problems. Among the wide spectrum of potentially destructive events, oxidative stress and disrupted metabolism of some neurotransmitters such as acetylcholine, GABA, glutamate, serotonin or dopamine appear to play a decisive role. Biologically active plant polyphenols have been shown to exert a positive impact on the function of the central nervous system by modulation of metabolism and the action of some neurotransmitters. METHODS Based on published research, the pharmacological activities of some naturally occurring polyphenols have been reviewed, with a focus on their potential therapeutic importance in the regulation of neurotransmitter systems. RESULTS Phytochemicals can be classified into several groups and most of them possess anticancer, antioxidative, anti-inflammatory and neuroprotective properties. They can also modulate the metabolism or action of some neurotransmitters and/or their receptors. Based on these properties, phytochemicals have been used in traditional medicine for ages, although it was focused mainly on treating symptoms. However, growing evidence indicates that polyphenols may also prevent or slow neurological diseases. CONCLUSION Phytochemicals seem to be less toxic than synthetic drugs and they can be a safer alternative for currently used preparations, which exert adverse side effects. The neuroprotective actions of some plant polyphenols in the regulation of neurotransmitters metabolism, functioning of neurotransmitters receptors and antioxidative defense have potential therapeutic applications in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Elzbieta Rebas
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jowita Rzajew
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|