1
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
2
|
Yang X, Yang Y, Gao F, Lu K, Wang C. N-Acetyl Serotonin Provides Neuroprotective Effects by Inhibiting Ferroptosis in the Neonatal Rat Hippocampus Following Hypoxic Brain Injury. Mol Neurobiol 2023; 60:6307-6315. [PMID: 37452222 DOI: 10.1007/s12035-023-03464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Hypoxic-ischemic encephalopathy is the main cause of infant brain damage, perinatal death, and chronic neonatal disability worldwide. Ferroptosis is a new form of cell death that is closely related to hypoxia-induced brain damage. N-Acetyl serotonin (NAS) exerts neuroprotective effects, but its effects and underlying mechanisms in hypoxia-induced brain damage remain unclear. In the present study, 5-day-old neonatal Sprague-Dawley rats were exposed to hypoxia for 7 days to establish a hypoxia model. Histochemical staining was used to measure the effects of hypoxia on the rat hippocampus. The hippocampal tissue in the hypoxia group showed significant atrophy. Hypoxia significantly increased the levels of prostaglandin-endoperoxide synthase 2 (PTGS2) and the iron metabolism-related protein transferrin receptor 1 (TfR1) and decreased the levels of glutathione peroxidase 4 (GPX4). These changes resulted in mitochondrial damage, causing neuronal ferroptosis in the hippocampus. More importantly, NAS may improve mitochondrial function and alleviate downstream ferroptosis and damage to the hippocampus following hypoxia. In conclusion, we found that NAS could suppress neuronal ferroptosis in the hippocampus following hypoxic brain injury. These discoveries highlight the potential use of NAS as a treatment for neuronal damage through the suppression of ferroptosis, suggesting new treatment strategies for hypoxia-induced brain damage.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yue Yang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Feng Gao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Kangping Lu
- Department of Anesthesiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shangdong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Lin Q, Hu DW, Hao XH, Zhang G, Lin L. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast 2023; 2023:4226139. [PMID: 37124874 PMCID: PMC10139812 DOI: 10.1155/2023/4226139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Hypoxic-ischemic white matter injury (WMI) pathogenesis in preterm infants is not well established, and iron-related proteins in the brain may play an important role in imbalanced iron metabolism. We aimed to investigate the iron-related protein changes in neonatal rats after hypoxia-ischemia (HI), clarify the role of iron-related proteins in hypoxic-ischemic WMI, and potentially provide a new target for the clinical treatment of hypoxic-ischemic WMI in preterm infants. We adopted a WMI animal model of bilateral common carotid artery electrocoagulation combined with hypoxia in neonatal 3-day-old Sprague-Dawley rats. We observed basic myelin protein (MBP) and iron-related protein expression in the brain (ferritin, transferrin receptor [TfR], and membrane iron transporter 1 [FPN1]) via Western blot and double immunofluorescence staining. The expression of MBP in the WMI group was significantly downregulated on postoperative days (PODs) 14, 28, and 56. Ferritin levels were significantly increased on PODs 3, 7, 14, and 28 and were most significant on POD 28, returning to the sham group level on POD 56. FPN1 levels were significantly increased on PODs 7, 28, and 56 and were still higher than those in the sham group on POD 56. TfR expression was significantly upregulated on PODs 1, 7, and 28 and returned to the sham group level on POD 56. Immunofluorescence staining showed that ferritin, TfR, and FPN1 were expressed in neurons, blood vessels, and oligodendrocytes in the cortex and corpus callosum on POD 28. Compared with the sham group, the immune-positive markers of three proteins in the WMI group were significantly increased. The expression of iron-related proteins in the brain (ferritin, FPN1, and TfR) showed spatiotemporal dynamic changes and may play an important role in hypoxic-ischemic WMI.
Collapse
Affiliation(s)
- Qing Lin
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ding-Wang Hu
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Xin-Hui Hao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Geng Zhang
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Klepper S, Jung S, Dittmann L, Geppert CI, Hartmann A, Beier N, Trollmann R. Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice. Int J Mol Sci 2022; 23:ijms23158693. [PMID: 35955834 PMCID: PMC9368903 DOI: 10.3390/ijms23158693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental in vivo data have recently shown complementary neuroprotective actions of rhEPO and growth hormone (rhGH) in a neonatal murine model of hypoxic brain injury. Here, we hypothesized that rhGH and rhEPO mediate stabilization of the blood−brain barrier (BBB) and regenerative vascular effects in hypoxic injury to the developing brain. Using an established model of neonatal hypoxia, neonatal mice (P7) were treated i.p. with rhGH (4000 µg/kg) or rhEPO (5000 IU/kg) 0/12/24 h after hypoxic exposure. After a regeneration period of 48 h or 7 d, cerebral mRNA expression of Vegf-A, its receptors and co-receptors, and selected tight junction proteins were determined using qRT-PCR and ELISA. Vessel structures were assessed by Pecam-1 and occludin (Ocln) IHC. While Vegf-A expression increased significantly with rhGH treatment (p < 0.01), expression of the Vegfr and TEK receptor tyrosine kinase (Tie-2) system remained unchanged. RhEPO increased Vegf-A (p < 0.05) and Angpt-2 (p < 0.05) expression. While hypoxia reduced the mean vessel area in the parietal cortex compared to controls (p < 0.05), rhGH and rhEPO prevented this reduction after 48 h of regeneration. Hypoxia significantly reduced the Ocln+ fraction of cortical vascular endothelial cells. Ocln signal intensity increased in the cortex in response to rhGH (p < 0.05) and in the cortex and hippocampus in response to rhEPO (p < 0.05). Our data indicate that rhGH and rhEPO have protective effects on hypoxia-induced BBB disruption and regenerative vascular effects during the post-hypoxic period in the developing brain.
Collapse
Affiliation(s)
- Simon Klepper
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Susan Jung
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Lara Dittmann
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 8, 91054 Erlangen, Germany
| | - Arnd Hartmann
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 8, 91054 Erlangen, Germany
| | - Nicole Beier
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
| | - Regina Trollmann
- Division of Pediatric Neurology, Department of Pediatrics, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestr. 15, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8533753; Fax: +49-9131-8533389
| |
Collapse
|
5
|
Shi X, Zhong X, Deng L, Wu X, Zhang P, Zhang X, Wang G. Mesenchymal stem cell-derived extracellular vesicle-enclosed miR-93 prevents hypoxic-ischemic brain damage in rats. Neuroscience 2022; 500:12-25. [PMID: 35803492 DOI: 10.1016/j.neuroscience.2022.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) usually induces chronic neurological disorder and even acute death, but effective neuroprotective strategy is still limited. Herein, we performed this study to clarify the mechanism of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) containing microRNA-93 (miR-93) in influencing this damage via regulation of the histone deacetylase 4 (HDAC4)/B-cell lymphoma-2 (Bcl-2) axis. Initially, differentially expressed Bcl-2 was identified in middle cerebral artery occlusion (MCAO), and the upstream regulatory miR-93 and its potential target HDAC4 were also predicted through bioinformatics analysis. HIBD was modeled in vitro by exposing hippocampal neurons to oxygen-glucose deprivation (OGD) and in vivo by MCAO in rats. EVs were isolated from the bone marrow MSCs of well-grown rats. Our experimental data validated that HDAC4 was highly expressed while miR-93 and Bcl-2 were poorly expressed in MCAO rats. Furthermore, HDAC4 overexpression, through inhibiting Bcl-2 via deacetylation, promoted the infarct volume and pathological changes in hippocampal tissues and neuron apoptosis, and impaired neurobehavioral ability of MCAO rats. Of note, miR-93 was found to target HDAC4. Importantly, MSC-derived EVs overexpressing miR-93 suppressed HDAC4 expression and subsequently impeded the apoptosis of OGD-exposed hippocampal neurons in vitro, and also ameliorated HIBD in vivo. Taken together, miR-93 delivered by MSC-derived EVs can ameliorate HIBD by suppressing hippocampal neuron apoptosis through targeting the HDAC4/Bcl-2 axis, a finding which may be of great significance in the treatment of HIBD.
Collapse
Affiliation(s)
- Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xuelai Zhong
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lin Deng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Xin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, P. R. China.
| |
Collapse
|
6
|
Zaazaa AM, Daoud NN, El-Gendy OA, Al-Shafei AI. Neuroprotective role of Bacopa monnieri extract in modulating depression in an experimental rat model. J Affect Disord 2022; 308:229-235. [PMID: 35413358 DOI: 10.1016/j.jad.2022.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is a common illness with no definite treatment. METHODS The study involved 2 experimental periods; 45-day (P1) followed by 30-day (P2). 40 adult albino rats were randomly divided into 4 groups. Grp 1 received saline orally while Grp 2 reserpine inraperitoneally (ip) during P1 and P2. Grps 3 and 4 received reserpine during P1, followed by reserpine plus B. monnieri, and reserpine plus citalopram ip during P2, respectively. Forced swimming test (FST) was performed at beginning and end of P1 and P2. Animals were sacrificed by end of P2 and brain taken for histopathological examination and ELISA estimation of serotonin, dopamine, norepinephrine, BDNF, MCP-1, FAS, and Bcl-2. RESULTS During P1, reserpine prolonged immobility time (IT) in FST in Grps 2, 3, and 4. IT was subsequently lowered in Grps 3 and 4 but remained elevated in Grp 2 by end of P2. Serotonin, dopamine and norepinephrine were lowered in Grps 2, 3, and 4, but in Grps 3 and 4, levels were comparable to Grp1. BDNF and Bc1-2 were reduced in Grps 2, 3, and 4, with higher levels in Grps 3 and 4 than Grp 2. MCP-1 and FAS were elevated in Grps 2, 3, and 4, but levels were lower in Grps 3 and 4 than in Grp 2. Histopathology showed congested cerebral cortex in Grp 2 and normal cortex in other groups. LIMITATIONS Only adult male rats were involved and effects of co-administration of B. monnieri and citalopram were not characterized. CONCLUSION B. monnieri improves depression comparable to citalopram in reserpine-induced depression.
Collapse
Affiliation(s)
- Asmaa M Zaazaa
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Nadia N Daoud
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ola A El-Gendy
- Basic Medical Sciences Department, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Ahmad I Al-Shafei
- Basic Medical Sciences Department, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Wu X, Wang B, Ma Q, Zhang Y, Xu J, Zhang Z, Chen G. Mechanism of erythropoietin-induced M2 microglia polarization via Akt / Mtor / P70S6k signaling pathway in the treatment of brain injury in premature mice and its effect on biofilm. Bioengineered 2022; 13:13021-13032. [PMID: 35611764 PMCID: PMC9276024 DOI: 10.1080/21655979.2022.2073000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the mechanism of erythropoietin (EPO) in brain injury in premature mice based on Akt/mTOR/p70S6K signaling pathway. The brain injury model group of premature mice was obtained by intraperitoneal injection of lipopolysaccharide during pregnancy. Normal mice were taken as the control group. The model mice were divided into low-dose EPO (1,000 IU/kg, L-EPO), medium-dose EPO (2,500 IU/kg, M-EPO), and high-dose EPO groups (5,000 IU/kg, H-EPO) by intraperitoneal injection. The levels of malondialdehyde (MDA) and total superoxide dismutase (T-SOD) were detected. TUNEL staining and Western blotting were used to detect the differences in neuronal apoptosis index (AI), microglial polarization marker protein, and Akt/mTOR/p70S6K-related protein expression levels in each group. Compared with the control group, the protein levels of AI, MDA, Bax, and iNOS in the model, L-EPO, and M-EPO groups were significantly increased, while the T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly decreased (P < 0.05). Compared with the model group, AI, MAD levels and Bax, iNOS protein expression levels in L-EPO, M-EPO, and H-EPO groups were significantly decreased, while T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly increased. The changes were dose-dependent. In summary, EPO can activate microglia transformation from M1 to M2 through Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Xiuling Wu
- Department of Pediatrics, Maternal and Child Health Hospital of Shenzhen Dapeng New District, Shenzhen, Guangdong, China
| | - Bo Wang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Qiling Ma
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yunfang Zhang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhongyuan Zhang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Guangfu Chen
- Department of Pediatric Neurological Rehabilitation, Maternal and Child Health Hospital of Shenzhen Longhua District, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Lin W, Zhang T, Zheng J, Zhou Y, Lin Z, Fu X. Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats. Neuroscience 2022; 487:131-142. [PMID: 35182697 DOI: 10.1016/j.neuroscience.2022.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death, which is driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid peroxidation. Ferroptosis is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in hypoxic-ischemic brain damage (HIBD) has not been elucidated. The objectives of this study were to evaluate whether ferroptosis is involved in hypoxic-ischemic brain damage and its mechanisms through the HIBD model. A 7-day-old male Sprague-Dawley neonatal rat HIBD model was established by blocking the left common carotid artery. Laser speckle contrast imaging, immunohistochemical staining, transmission electron microscopy were used to measure the effects of ferroptosis on HIBD. Brain tissue on the damaged side in the HIBD group showed atrophied, even liquefied, glial cells increased, and blood perfusion was significantly reduced. The HIBD group insult significantly increased reactive oxygen species levels, as well as the protein levels of iron metabolism-related proteins transferrin receptor (TFRC), ferritin heavy chain (FHC), and ferritin light chain (FLC), while reducing the levels of Solute Carrier Family 7 Member 11 (SLC7A11), glutathione (GSH), and GPX4. These changes resulted in diminished cellular antioxidant capacity and mitochondrial damage, causing neuronal ferroptosis in the cerebral cortex. We conclude that ferroptosis plays a role in HIBD in neonatal rats. Ferroptosis-related mechanisms such as abnormalities in iron metabolism, amino acid metabolism, and lipid peroxidation regulation play important roles in HIBD.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiyang Zhou
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Xiaoqin Fu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
9
|
Min W, Wu Y, Fang Y, Hong B, Dai D, Zhou Y, Liu J, Li Q. Bone marrow mesenchymal stem cells-derived exosomal microRNA-124-3p attenuates hypoxic-ischemic brain damage through depressing tumor necrosis factor receptor associated factor 6 in newborn rats. Bioengineered 2022; 13:3194-3206. [PMID: 35067167 PMCID: PMC8973938 DOI: 10.1080/21655979.2021.2016094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes (Exo) are beneficial in the use of brain damages. Restrictively, the mechanism of Exo expressing miR-124-3p in hypoxic-ischemic brain damage (HIBD) is not completely comprehended. Thereupon, this work was put forward to reveal the action of bone marrow MSCs-derived Exo (BMSCs-Exo) expressing miR-124-3p in the illness. BMSCs were isolated and transfected with miR-124-3p agomir. Then, BMSCs-Exo were extracted and identified. The newborn HIBD rats were injected with miR-124-3p-modified BMSCs-Exo or tumor necrosis factor receptor associated factor 6 (TRAF6)-related vectors. Next, neurological functions, neuron pathological and structural damages, oxidative stress and neuronal apoptosis were observed. miR-124-3p and TRAF6 expression was tested, along with their targeting relationship. miR-124-3p was down-regulated, and TRAF6 was up-regulated in newborn HIBD rats. miR-124-3p targeted TRAF6. BMSCs-Exo improved neurological functions, alleviated neuron pathological and structural damages, suppressed oxidative stress and reduced neuronal apoptosis in newborn HIBD rats, whereas BMSCs-Exo-mediated effects were enhanced by restoring miR-124-3p. Silencing TRAF6 attenuated HIBD in newborn rats, but overexpression of TRAF6 reversed the protective role of miR-124-3p-overexpressing BMSCs-Exo. This work makes it comprehensive that up-regulated exosomal miR-124-3p ameliorates HIBD in newborn rats by targeting TRAF6, which replenishes the potential agents for curing HIBD.
Collapse
Affiliation(s)
| | | | | | - Bo Hong
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Dongwei Dai
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Yu Zhou
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Jianmin Liu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Qiang Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| |
Collapse
|
10
|
Wu Z, Cheng S, Wang S, Li W, Liu J. C-MYC ameliorates ventricular remodeling of myocardial infarction rats via binding to the promoter of microRNA-29a-3p to facilitate TET2 expression. Int J Cardiol 2022; 357:105-112. [PMID: 35016888 DOI: 10.1016/j.ijcard.2022.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND There is increasing evidence identifying the role of c-MYC in myocardial infarction (MI). Thus, our aim was to discuss the impact of c-MYC/microRNA (miR)-29a-3p/ten-eleven translocation-2 (TET2) axis on MI. METHODS Sprague-Dawley rats received injections of recombinant adenoviruses at myocardial sites that interfered with c-MYC or miR-29a-3p expression. At 3 days after adenoviral injection, the rats were subjected to myocardial ischemia and reperfusion. Cardiac function, infarct size, cellular death, inflammatory response, oxidative stress, collagen deposition, c-MYC, TET2 and miR-29a-3p expression were analyzed. The interaction between c-MYC and miR-29a-3p as well as that between TET2 and miR-29a-3p was verified. RESULTS miR-29a-3p expression was enhanced while c-MYC and TET2 expression was decreased in the myocardial tissue of MI rats. Up-regulating c-MYC or down-regulating miR-29a-3p in MI rat hearts improved cardiac function and reduced infarct size and myocardial apoptotic death, restrained oxidative stress, inflammatory response, attenuated collagen deposition. c-Myc bound to the promoter of miR-29a-3p and repressed miR-29a-3p expression. TET2 was a target of miR-29a-3p. CONCLUSION Our study provides evidence that c-MYC binding to the promoter of miR-29a-3p to facilitate TET2 expression has therapeutic effect on ventricular remodeling of MI rats.
Collapse
Affiliation(s)
- Zheng Wu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shujuan Cheng
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shaoping Wang
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wenzheng Li
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jinghua Liu
- Department of 28 Division of Cardiovascular, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
11
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
12
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
13
|
Abstract
Hypoxic-ischemic brain damage (HIBD) represents one of the leading causes of neonatal mortality and permanent neurological disability worldwide. Compelling studies have identified implication of microRNAs (miRNAs) in HIBD. However, the molecular mechanism of miR-21 underlying the disease pathogenesis is unknown. The present study aims to explore the role of miR-21 in neonatal rats with HIBD. HIBD rat models were developed by carotid artery ligation and hypoxia treatment, and in vitro cell models were induced by oxygen-glucose deprivation. Through RT-qPCR and western blot analysis, high expression of CCL3 and poor expression of miR-21 were detected in brain tissues of rats with HIBD. Results of dual-luciferase reporter gene assay demonstrated that miR-21 could target and downregulate CCL3. The effect of miR-21 on the neurobehavioral ability of rats, the pathological characteristics of brain tissues, neuron apoptosis and as well as its impact on the NF-κB signaling pathway-related factors was examined by gain- and loss-of-function experiments. The obtained data suggested that upregulation of miR-21 resulted in significantly reduced cerebral infarct volume and degree of brain tissue damage, and improved neurobehavioral ability and memory ability in rats with HIBD through downregulation of CCL3. Besides, overexpression of miR-21 downregulated CCL3 to repress IKKα/β and p65 phosphorylation both in vivo and in vitro, hence disrupting the NF-κB signaling pathway. Taken together, the key findings of the current study underlie the cerebral protective effect of miR-21 against HIBD in neonatal rats through the inhibition of CCL3.
Collapse
|
14
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Pang R, Avdic-Belltheus A, Meehan C, Martinello K, Mutshiya T, Yang Q, Sokolska M, Torrealdea F, Hristova M, Bainbridge A, Golay X, Juul SE, Robertson NJ. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun 2020; 3:fcaa211. [PMID: 33604569 PMCID: PMC7876304 DOI: 10.1093/braincomms/fcaa211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
As therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-h hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (<48 h old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 h) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) tripletherapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 h after hypoxia–ischaemia. Hypoxia–ischaemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia–ischaemia for melatonin (15–30 mg/l) and within 30 min of erythropoietin administration (maximum concentration 10 000 mU/ml). Compared to hypothermia + vehicle, we observed faster amplitude-integrated EEG recovery from 25 to 30 h with hypothermia + melatonin (P = 0.02) and hypothermia + erythropoietin (P = 0.033) and from 55 to 60 h with tripletherapy (P = 0.042). Magnetic resonance spectroscopy lactate/N-acetyl aspartate peak ratio was lower at 66 h in hypothermia + melatonin (P = 0.012) and tripletherapy (P = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (P = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (P = 0.014) and periventricular white matter (P = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (P < 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude-integrated EEG recovery, amelioration of lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin doubletherapy was in association with EEG recovery and was most effective in promoting oligodendrocyte survival. Tripletherapy provided no added benefit over the double therapies in this 72-h study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer-term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia–ischaemia.
Collapse
Affiliation(s)
- Raymand Pang
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Adnan Avdic-Belltheus
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Christopher Meehan
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Kathryn Martinello
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Francisco Torrealdea
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Mariya Hristova
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, Queen's Square, University College London, London, UK
| | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA
| | - Nicola J Robertson
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| |
Collapse
|