1
|
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med 2020; 9:jcm9030741. [PMID: 32182904 PMCID: PMC7141192 DOI: 10.3390/jcm9030741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Guglielmo Torre
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
- Correspondence: ; Tel.: +6-225-418-825
| | - Stefano Campi
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Erika Albo
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Marco Bravi
- Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| |
Collapse
|
2
|
Liu LM, Zhao LP, Wu LJ, Guo L, Li WY, Chen Y. Characterization of the transcriptomes of Atoh1-induced hair cells in the mouse cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:1-15. [PMID: 32211215 PMCID: PMC7076321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of Atoh1 overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs. As expected, we found Atoh1-induced new HCs had obvious HC characteristics as demonstrated by the expression of HC markers such as Pou4f3 and Myosin VIIA (Myo7a). However, Atoh1-induced new HCs had significantly lower expression of genes that are related to HC function such as Slc26a5 (Prestin), Slc17a8 and Otof. We found that genes related to HC cell differentiation and maturation (Kcnma1, Myo6, Myo7a, Grxcr1, Gfi1, Wnt5a, Fgfr1, Gfi1, Fgf8 etc.) had significantly lower expression levels in new HCs compared to native HCs. In conclusion, we found a set of genes that might regulate the differentiation and maturation of new HCs, and these genes might serve as potential new therapeutic targets for functional HC regeneration and hearing recovery.
Collapse
Affiliation(s)
- Li-Man Liu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
| | - Li-Ping Zhao
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Ling-Jie Wu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Wen-Yan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan UniversityShanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University)Shanghai 200031, China
| |
Collapse
|
3
|
Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing LRP4. J Neurosci 2018; 38:8860-8873. [PMID: 30171091 DOI: 10.1523/jneurosci.0860-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Underpinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NMJ formation and maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, suggesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan α (SGα) interacted with LRP4 and delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGα in muscles mitigated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-LRP4-MuSK signaling serves as a pathological mechanism of age-related NMJ decline and identify a novel function of SGα in stabilizing LRP4 for NMJ stability in aged mice.SIGNIFICANCE STATEMENT This study provides evidence that LRP4, a receptor of agrin that is critical for NMJ formation and maintenance, is reduced at protein level in aged muscles. Transgenic expression of LRP4 in muscles ameliorates AChR fragmentation and denervation and improves neuromuscular transmission in aged mice, demonstrating a critical role of the agrin-LRP4-MuSK signaling. Our study also reveals a novel function of SGα to prevent LRP4 degradation in aged muscles. Finally, we show that NMJ decline in aged mice can be mitigated by AAV9-mediated expression of SGα in muscles. These observations provide insight into pathological mechanisms of age-related NMJ decline and suggest that improved agrin-LRP4-MuSK signaling may be a target for potential therapeutic intervention.
Collapse
|
4
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 484] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Yuasa K, Aoki N, Hijikata T. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4-Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes. Exp Cell Res 2015; 336:287-97. [PMID: 26101156 DOI: 10.1016/j.yexcr.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis.
Collapse
Affiliation(s)
- Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Natsumi Aoki
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Takao Hijikata
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
6
|
Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014; 6:208. [PMID: 25157231 PMCID: PMC4127816 DOI: 10.3389/fnagi.2014.00208] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA
| | - Stephanie A Studenski
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| |
Collapse
|
7
|
Yu SY, Yoon BR, Lee YJ, Lee JS, Hong HD, Lee YC, Kim YC, Cho CW, Kim KT, Lee OH. Inhibitory effect of high temperature- and high pressure-treated red ginseng on exercise-induced oxidative stress in ICR mouse. Nutrients 2014; 6:1003-15. [PMID: 24609134 PMCID: PMC3967174 DOI: 10.3390/nu6031003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
As previously reported, high temperature- and high pressure-treated red ginseng (HRG) contain higher contents of phenolic compounds and protect C2C12 muscle cells and 3T3-L1 adipocytes against oxidative stress. This study investigated the effect of HRG on oxidative stress using a mouse model. Our results show that the levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, hepatic malondialdehyde in the HRG group were significantly lower than those of the exercise groups supplemented with commercial red ginseng (CRG) or not supplemented. The muscular glycogen level, glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities of the HGR group were higher than that of the CGR group. Furthermore, the HRG treatment group displayed upregulated mRNA expression of Cu/Zn-SOD and muscle regulatory factor 4. These results indicate that HRG may protect oxidative stress induced by exercise as well as improve exercise performance capacity.
Collapse
Affiliation(s)
- Seok-Yeong Yu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Bo-Ra Yoon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Young-Jun Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Jong Seok Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Hee-Do Hong
- Korea Food Research Institute, Gyeonggi 463-746, Korea.
| | | | | | - Chang-Won Cho
- Korea Food Research Institute, Gyeonggi 463-746, Korea.
| | | | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| |
Collapse
|