1
|
Chen W, Liang C, Peng S, Bao S, Xue F, Lian X, Liu Y, Wang G. Aquaporin-4 activation facilitates glymphatic system function and hematoma clearance post-intracerebral hemorrhage. Glia 2025; 73:368-380. [PMID: 39530196 DOI: 10.1002/glia.24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Efficient clearance of hematomas is crucial for improving clinical outcomes in patients with intracerebral hemorrhage (ICH). The glymphatic system, facilitated by aquaporin-4 (AQP4), plays a crucial role in cerebrospinal fluid (CSF) entry and metabolic waste clearance. This study examined the role of the glymphatic system in ICH pathology, with a focus on AQP4. Collagenase-induced ICH models were established, with AQP4 expression regulated through mifepristone as an agonist, TGN-020 as an inhibitor, and Aqp4 gene knockout. Fluorescence tracing and multimodal magnetic resonance imaging (MRI) were employed to observe glymphatic system functionality, hematoma, and edema volumes. Neurological deficit scoring was performed using the modified Garcia Scale. AQP4 expression was quantified using RT-qPCR and Western blotting, and cellular localization was explored using immunofluorescence. The brain tissue sections were examined for neuronal morphology, degenerative changes, and iron deposition. Three days post-ICH, the AQP4 agonist group showed increased AQP4 protein expression and perivascular polarization, decreased hemoglobin levels, and reduced iron deposition. Conversely, the inhibition group exhibited contrasting trends. AQP4 activation improved glymphatic system function, leading to a wider distribution, improved neurological function, and reduced hematoma. Pharmacological inhibition and genetic knockout of AQP4 have opposing effects. The glymphatic system, facilitated by AQP4, plays a crucial role in hematoma clearance following cerebral hemorrhage. Upregulation of AQP4 improves glymphatic system function, facilitates hematoma clearance, and promotes brain tissue recovery.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuntian Liang
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan, China
| | - Shasha Peng
- Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Pharmacy, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, China
| | - Shuangjin Bao
- Department of Pathology and Pathophysiology, Basic Medical College, Shanxi Medical University, Taiyuan, China
- Department of Pathology, West China Fourth Hospital, Chengdu, China
| | - Fang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xia Lian
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yinghong Liu
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaiqing Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan, China
| |
Collapse
|
2
|
Pham C, Komaki Y, Deàs-Just A, Le Gac B, Mouffle C, Franco C, Chaperon A, Vialou V, Tsurugizawa T, Cauli B, Li D. Astrocyte aquaporin mediates a tonic water efflux maintaining brain homeostasis. eLife 2024; 13:RP95873. [PMID: 39508543 PMCID: PMC11542920 DOI: 10.7554/elife.95873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.
Collapse
Affiliation(s)
- Cuong Pham
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Yuji Komaki
- Central Institute for Experimental Medicine and Life ScienceKawasakiJapan
| | - Anna Deàs-Just
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Benjamin Le Gac
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Christine Mouffle
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Clara Franco
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Agnès Chaperon
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Vincent Vialou
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Faculty of Engineering, University of TsukubaTsukubaJapan
| | - Bruno Cauli
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| | - Dongdong Li
- Sorbonne Université - CNRS - INSERM, Institut de Biologie Paris Seine, Neuroscience Paris SeineParisFrance
| |
Collapse
|
3
|
Krishnamurthy S, Oh JY, Gautham S, Li J, Shen Y. Optimizing Drug Delivery to the Brain for Breast Metastasis: A Novel Method for Tumor Targeting. Cureus 2024; 16:e73598. [PMID: 39677180 PMCID: PMC11645177 DOI: 10.7759/cureus.73598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION Brain metastases are difficult to treat due to the blood-brain barrier limiting the delivery of therapeutic agents to the brain effectively. Intraventricular drug delivery has not been well studied for intra-axial pathologies. However, our prior work demonstrated that intraventricular drug delivery in a hyperosmolar vehicle showed preferential accumulation of drug within breast cancer tissue compared to surrounding brain parenchyma. The focus of this study was to explore the molecular parameters of intraventricular drug administration that may optimize drug delivery to intra-axial brain metastases. Our hypothesis was that a low molecular weight drug with a high osmolarity solution would increase drug delivery to tumor tissue. METHODS We used an intracerebral breast cancer tumor model in adult female nude rats divided into six experimental groups. We examined three iron-labeled dextran molecules (3 kD, 5 kD, and 10 kD) in 337 mOsm/L solution and three different osmolarities of delivery solution (307, 353, and 368 mOsm/L) with 10 kD dextran. 7T magnetic resonance imaging (MRI) was used to analyze dextran distribution at different time points. All animals were sacrificed after two hours, and the quantity of dextran particles was determined by histopathology. RESULTS Breast cancer tumor cells were successfully implanted in all rats. The MRI quantification of dextran concentration was well corroborated by histopathology. Varying the molecular size of dextran resulted in the smallest molecule reaching peak levels in tumor tissue earlier than the larger molecules, but the larger molecules remained concentrated in tumor tissue for a longer time. Varying the osmolarity of the delivery solution resulted in the preferential accumulation of 10 kD dextran in tumor tissue except for when dextran was delivered in 368 mOsm/L solution where no preferential distribution was seen. CONCLUSION Hyperosmolar intraventricular delivery of chemotherapeutic drugs could be effective in preferentially delivering drugs to abnormal tumor tissues.
Collapse
Affiliation(s)
- Satish Krishnamurthy
- Neurological Surgery, State University of New York Upstate Medical University, Syracuse, USA
| | - Justin Y Oh
- Neurological Surgery, State University of New York Upstate Medical University, Syracuse, USA
| | - Shruti Gautham
- Neurological Surgery, State University of New York Upstate Medical University, Syracuse, USA
| | - Jie Li
- Neurological Surgery, State University of New York Upstate Medical University, Syracuse, USA
| | - Yimin Shen
- Radiology, Wayne State University, Detroit, USA
| |
Collapse
|
4
|
Chan RW, Hamilton-Fletcher G, Edelman BJ, Faiq MA, Sajitha TA, Moeller S, Chan KC. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39463889 PMCID: PMC11506209 DOI: 10.1162/imag_a_00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024]
Abstract
NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis (PCA) has been shown to selectively suppress thermal noise and improve the temporal signal-to-noise ratio (tSNR) in human functional magnetic resonance imaging (fMRI). However, the feasibility to improve data quality for rodent fMRI using NORDIC PCA remains uncertain. NORDIC PCA may also be particularly beneficial for improving topological brain mapping, as conventional mapping requires precise spatiotemporal signals from large datasets (ideally ~1 hour acquisition) for individual representations. In this study, we evaluated the effects of NORDIC PCA compared with "Standard" processing in various rodent fMRI contexts that range from task-evoked optogenetic fMRI to resting-state fMRI. We also evaluated the effects of NORDIC PCA on human resting-state and retinotopic mapping fMRI via population receptive field (pRF) modeling. In rodent optogenetic fMRI, apart from doubling the tSNR, NORDIC PCA resulted in a larger number of activated voxels and a significant decrease in the variance of evoked brain responses without altering brain morphology. In rodent resting-state fMRI, we found that NORDIC PCA induced a nearly threefold increase in tSNR and preserved task-free relative cerebrovascular reactivity (rCVR) across cortical depth. NORDIC PCA further improved the detection of TGN020-induced aquaporin-4 inhibition on rCVR compared with Standard processing without NORDIC PCA. NORDIC PCA also increased the tSNR for both human resting-state and pRF fMRI, and for the latter also increased activation cluster sizes while retaining retinotopic organization. This suggests that NORDIC PCA preserves the spatiotemporal precision of fMRI signals needed for pRF analysis, and effectively captures small activity changes with high sensitivity. Taken together, these results broadly demonstrate the value of NORDIC PCA for the enhanced detection of neural dynamics across various rodent and human fMRI contexts. This can in turn play an important role in improving fMRI image quality and sensitivity for translational and preclinical neuroimaging research.
Collapse
Affiliation(s)
- Russell W. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- E-SENSE Innovation & Technology, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bradley J. Edelman
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Biological Intelligence, Planegg, Germany
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Muneeb A. Faiq
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Thajunnisa A. Sajitha
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Kevin C. Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Tech4Health Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
6
|
Bajda J, Pitla N, Gorantla VR. Bulat-Klarica-Oreskovic Hypothesis: A Comprehensive Review. Cureus 2023; 15:e45821. [PMID: 37876400 PMCID: PMC10593140 DOI: 10.7759/cureus.45821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/26/2023] Open
Abstract
Classical theories of cerebrospinal fluid (CSF) production and flow are taught throughout medical education. The idea that CSF is produced and/or filtered by the choroid plexus and flows in one direction throughout the ventricular system has been a largely accepted thesis. However, modern studies have called into question the validity of this hypothesis, suggesting that CSF does not move unidirectionally but rather is driven by microvessel contractions in a to-and-fro manner throughout the cerebrospinal system. Moreover, new insights suggest that in addition to CSF production, the exchange of fluids and proteins between the cortical vasculature and the interstitium may function as the brain's version of a lymphatic system. This comprehensive review provides evidence for a different framework of CSF flow. One that includes perivascular pulsations that push CSF back and forth, allowing exchange between the CSF and interstitium, and with CSF production occurring throughout the cerebrospinal system. These findings could be revolutionary in understanding the pathophysiology of CSF flow and in the treatment of pathologies such as intracranial hypertension, hydrocephalus, Alzheimer's disease, and many others.
Collapse
Affiliation(s)
- Joe Bajda
- Neurology, St. George's University, St. George's, GRD
| | - Neharaj Pitla
- Neurology, St. George's University, St. George's, GRD
| | - Vasavi Rakesh Gorantla
- Biomedical Sciences, West Virginia University School of Osteopathic Medicine, Lewisburg , USA
| |
Collapse
|
7
|
He X, Zhong Q, Yan K, Li G, Yang J. Oral exposure to an acceptable daily intake dose of aspartame induced a delayed proinflammatory cytokine response in the cerebrospinal fluid of rats. Food Chem Toxicol 2023; 178:113931. [PMID: 37437708 DOI: 10.1016/j.fct.2023.113931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/10/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
This study aimed to investigate the effect of exposure to aspartame (ASP) at safe levels on proinflammatory cytokines in the cerebrospinal fluid (CSF) of rats. Sprague Dawley rats were sacrificed after 1, 2, 4 or 8 week(s) of continuous exposure to ASP (40 mg/kg body weight). Serum, CSF and brain tissue samples were prepared, and the levels of the IL-1β, IL-6 and TNF-α were analyzed by ELISA. In serum, the levels of all three cytokines showed a two-phase alteration, a decrease followed by an increase in the ASP group. In the brain, their levels increased from the second or fourth week compared with the control group. In CSF, the levels of these cytokines showed a similar change to that in brain tissue, but the increase appeared at a later time point. For each cytokine, there was a significant positive correlation between its levels in serum, brain tissue and CSF. This is the first discovery that ASP exposure increased the levels of proinflammatory cytokines in CSF in rats, which emerged later than in blood and brain tissue. This study suggests the necessity of conducting related clinical studies to evaluate potential neuroinflammatory effects induced by chronic ASP exposure through CSF analysis.
Collapse
Affiliation(s)
- Xiaoyi He
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qianyi Zhong
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kai Yan
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guoying Li
- Guangdong Medical Association, Guangzhou, Guangdong, 510180, China.
| | - Junhua Yang
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Kecheliev V, Boss L, Maheshwari U, Konietzko U, Keller A, Razansky D, Nitsch RM, Klohs J, Ni R. Aquaporin 4 is differentially increased and dislocated in association with tau and amyloid-beta. Life Sci 2023; 321:121593. [PMID: 36934970 DOI: 10.1016/j.lfs.2023.121593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aβ) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aβ. MATERIALS AND METHODS Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAβ mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aβ in brain tissue slices from pR5, arcAβ and non-transgenic mice. KEY FINDINGS pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAβ mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAβ mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aβ plaques in arcAβ mice. SIGNIFICANCE We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAβ mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aβ pathologies.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leo Boss
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Abstract
Aquaporins (AQP) working as membrane channels facilitated water transport, play vital roles in various physiological progress including cell migration, energy metabolism, inflammation, etc. They are quite important drug targets, but elusive for discovery due to their undruggable properties. In this chapter, we summarized most fluently used methods for screening AQP inhibitors, including cell swelling assay, cell shrinking assay, and stopped-flow assay. And three classes of AQP inhibitors have been discussed, including metal-related inhibitors, quaternary ammonium salts, and small molecule inhibitors which further divided into four parts, sulfanilamide analogies, TGN-020, antiepileptic drugs, and others. It has been suggested that although they showed inhibition effects on AQP1, AQP3, AQP4, AQP7, or AQP9 in some researches, none of them could be asserted as AQP inhibitors to some extent. Discovering AQP inhibitors is a big challenge, but if successful, it will be a great contribution for human health.
Collapse
Affiliation(s)
- Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Soden PA, Henderson AR, Lee E. A Microfluidic Model of AQP4 Polarization Dynamics and Fluid Transport in the Healthy and Inflamed Human Brain: The First Step Towards Glymphatics-on-a-Chip. Adv Biol (Weinh) 2022; 6:e2200027. [PMID: 35922370 PMCID: PMC9771879 DOI: 10.1002/adbi.202200027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
Collapse
Affiliation(s)
- Paul A Soden
- College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
12
|
Atchley TJ, Vukic B, Vukic M, Walters BC. Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform. Neurosurgery 2022; 91:1-7. [PMID: 35522666 DOI: 10.1227/neu.0000000000002000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The flow of cerebrospinal fluid (CSF) has been described as a unidirectional system with the choroid plexus serving as the primary secretor of CSF and the arachnoid granulations as primary reabsorption site. This theory of neurosurgical forefathers has been universally adopted and taught as dogma. Many neuroscientists have found difficulty reconciling this theory with common pathologies, and recent studies have found that this "classic" hypothesis may not represent the full picture. OBJECTIVE To review modern CSF dynamic theories and to call for medical education reform. METHODS We reviewed the literature from January 1990 to December 2020. We searched the PubMed database using key terms "cerebrospinal fluid circulation," "cerebrospinal fluid dynamics," "cerebrospinal fluid physiology," "glymphatic system," and "glymphatic pathway." We selected articles with a primary aim to discuss either CSF dynamics and/or the glymphatic system. RESULTS The Bulat-Klarica-Orešković hypothesis purports that CSF is secreted and reabsorbed throughout the craniospinal axis. CSF demonstrates similar physiology to that of water elsewhere in the body. CSF "circulates" throughout the subarachnoid space in a pulsatile to-and-fro fashion. Osmolarity plays a critical role in CSF dynamics. Aquaporin-4 and the glymphatic system contribute to CSF volume and flow by establishing osmolarity gradients and facilitating CSF movement. Multiple studies demonstrate that the choroid plexus does not play any significant role in CSF circulation. CONCLUSION We have highlighted major studies to illustrate modern principles of CSF dynamics. Despite these, the medical education system has been slow to reform curricula and update learning resources.
Collapse
Affiliation(s)
- Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barbara Vukic
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Vukic
- Department of Neurosurgery, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Beverly C Walters
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Theologou M, Natsis K, Kouskouras K, Chatzinikolaou F, Varoutis P, Skoulios N, Tsitouras V, Tsonidis C. Cerebrospinal Fluid Homeostasis and Hydrodynamics: A Review of Facts and Theories. Eur Neurol 2022; 85:313-325. [PMID: 35405679 DOI: 10.1159/000523709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE According to the classical hypothesis, the cerebrospinal fluid (CSF) is actively secreted inside the brain's ventricular system, predominantly by the choroid plexuses, before flowing unidirectionally in a cranio-caudal orientation toward the arachnoid granulations (AGs), where it is reabsorbed into the dural venous sinuses. This concept has been accepted as a doctrine for more than 100 years and was subjected only to minor modifications. Its inability to provide an adequate explanation to questions arising from the everyday clinical practice, in addition to the ever growing pool of experimental data contradicting it, has led to the identification of its limitations. Literature includes an increasing number of studies suggesting a more complex mechanism than that previously described. This review article summarizes the proposed mechanisms of CSF regulation, referring to the key clinical and experimental developments supporting or defying them. METHODS A non-systematical literature search of the major databases was performed for studies on the mechanisms of CSF homeostasis. Gray literature was additionally assessed employing a hand-search technique. No restrictions were imposed regarding the time, language, or type of publication. CONCLUSION CSF secretion and absorption are expected to take place throughout the entire brain's capillaries network under the regulation of hydrostatic and osmotic gradients. The unidirectional flow is defied, highlighting the possibility of its complete absence. The importance of AGs is brought into question, potentiating the significance of the lymphatic system as the primary site of reabsorption. However, the definition of hydrocephalus and its treatment strategies remain strongly associated with the classical hypothesis.
Collapse
Affiliation(s)
- Marios Theologou
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kouskouras
- Department of Radiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotios Chatzinikolaou
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Varoutis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Nikolaos Skoulios
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| | - Christos Tsonidis
- Second Department of Neurosurgery, Aristotle University of Thessaloniki, General Hospital of Thessaloniki Hippokratio, Thessaloniki, Greece
| |
Collapse
|
14
|
Bilateral hyperplasia of choroid plexus with severe CSF production: a case report and review of the glymphatic system. Childs Nerv Syst 2021; 37:3521-3529. [PMID: 34410450 DOI: 10.1007/s00381-021-05325-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND An important feature of hydrocephalus is the alteration of the cerebral spinal fluid (CSF) homeostasis. New insights in the understanding of production, secretion, and absorption of CSF, along with the discovery of the glymphatic system (GS), can be useful for a better understanding and treatment of hydrocephalus in disorders with CSF overproduction. CASE DESCRIPTION A 1-year-old patient was diagnosed with communicating hydrocephalus; ventricle peritoneal shunt (VPS) is installed and ascites developed. VPS is exposed, yielding volumes of 1000-1200ml/day CSF per day. MRI is performed showing generalized choroidal plexus hyperplasia. Bilateral endoscopic coagulation of thechoroid plexus was performed in 2 stages (CPC) however the high rate of CSF production persisted, needing a bilateral plexectomy through septostomy, which finally decreased the CSF outflow. DISCUSSION New knowledge about the CSF physiology will help to propose better treatment depending on the cause of the hydrocephalus. The GS is becoming an additional reason to better study and develop new therapies focused of the modulation of alternative CSF reabsorption. CONCLUSION Despite the current knowledge about hydrocephalus, we remain without a complete understanding of the pathophysiology of this condition. GS could be more important than conventional concept of reabsorption of CSF in the arachnoid villi, therefore GS could be a new key point, which will guide future investigations.
Collapse
|
15
|
Caldwell HG, Carr JMJR, Minhas JS, Swenson ER, Ainslie PN. Acid-base balance and cerebrovascular regulation. J Physiol 2021; 599:5337-5359. [PMID: 34705265 DOI: 10.1113/jp281517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
The regulation and defence of intracellular pH is essential for homeostasis. Indeed, alterations in cerebrovascular acid-base balance directly affect cerebral blood flow (CBF) which has implications for human health and disease. For example, changes in CBF regulation during acid-base disturbances are evident in conditions such as chronic obstructive pulmonary disease and diabetic ketoacidosis. The classic experimental studies from the past 75+ years are utilized to describe the integrative relationships between CBF, carbon dioxide tension (PCO2 ), bicarbonate (HCO3 - ) and pH. These factors interact to influence (1) the time course of acid-base compensatory changes and the respective cerebrovascular responses (due to rapid exchange kinetics between arterial blood, extracellular fluid and intracellular brain tissue). We propose that alterations in arterial [HCO3 - ] during acute respiratory acidosis/alkalosis contribute to cerebrovascular acid-base regulation; and (2) the regulation of CBF by direct changes in arterial vs. extravascular/interstitial PCO2 and pH - the latter recognized as the proximal compartment which alters vascular smooth muscle cell regulation of CBF. Taken together, these results substantiate two key ideas: first, that the regulation of CBF is affected by the severity of metabolic/respiratory disturbances, including the extent of partial/full acid-base compensation; and second, that the regulation of CBF is independent of arterial pH and that diffusion of CO2 across the blood-brain barrier is integral to altering perivascular extracellular pH. Overall, by realizing the integrative relationships between CBF, PCO2 , HCO3 - and pH, experimental studies may provide insights to improve CBF regulation in clinical practice with treatment of systemic acid-base disorders.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Erik R Swenson
- Pulmonary, Critical Care and Sleep Medicine Division, University of Washington, and VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
16
|
Cao J, Yao D, Li R, Guo X, Hao J, Xie M, Li J, Pan D, Luo X, Yu Z, Wang M, Wang W. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci Bull 2021; 38:181-199. [PMID: 34704235 PMCID: PMC8821764 DOI: 10.1007/s12264-021-00772-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/04/2021] [Indexed: 02/03/2023] Open
Abstract
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Rong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xuequn Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Respiratory Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
17
|
Zhou J, Guo P, Guo Z, Sun X, Chen Y, Feng H. Fluid metabolic pathways after subarachnoid hemorrhage. J Neurochem 2021; 160:13-33. [PMID: 34160835 DOI: 10.1111/jnc.15458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 01/05/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients.
Collapse
Affiliation(s)
- Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
19
|
Revisiting Astrocytic Roles in Methylmercury Intoxication. Mol Neurobiol 2021; 58:4293-4308. [PMID: 33990914 DOI: 10.1007/s12035-021-02420-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Intoxication by heavy metals such as methylmercury (MeHg) is recognized as a global health problem, with strong implications in central nervous system pathologies. Most of these neuropathological conditions involve vascular, neurotransmitter recycling, and oxidative balance disruption leading to accelerated decline in fine balance, and learning, memory, and visual processes as main outcomes. Besides neurons, astrocytes are involved in virtually all the brain processes and perform important roles in neurological response following injuries. Due to astrocytes' strategic functions in brain homeostasis, these cells became the subject of several studies on MeHg intoxication. The most heterogenous glial cells, astrocytes, are composed of plenty of receptors and transporters to dialogue with neurons and other cells and to monitor extracellular environment responding tightly through fluctuation of cytosolic ions. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes. Although the role of neurons in MeHg intoxication is relatively well-established, the role of the astrocytes is only beginning to be understood. In this review, we update the information on astroglial modulation of the MeHg-induced neurotoxicity, providing remarks on their protective and deleterious roles and insights for future studies.
Collapse
|
20
|
Turner REF, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? J Appl Physiol (1985) 2021; 131:313-325. [PMID: 33856254 DOI: 10.1152/japplphysiol.00861.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-altitude cerebral edema (HACE) and acute mountain sickness (AMS) are neuropathologies associated with rapid exposure to hypoxia. However, speculation remains regarding the exact etiology of both HACE and AMS and whether they share a common mechanistic pathology. This review outlines the basic principles of HACE development, highlighting how edema could develop from 1) a progression from cytotoxic swelling to ionic edema or 2) permeation of the blood brain barrier (BBB) with or without ionic edema. Thereafter, discussion turns to the available neuroimaging literature in the context of cytotoxic, ionic, or vasogenic edema in both HACE and AMS. Although HACE is clearly caused by an increase in brain water of ionic and/or vasogenic origin, there is very little evidence that this type of edema is present when AMS develops. However, cerebral vasodilation, increased intracranial blood volume, and concomitant intracranial fluid shifts from the extracellular to the intracellular space, as interpreted from changes in diffusion indices within white matter, are observed consistently in persons acutely exposed to hypoxia and with AMS. Therefore, herein we explore the idea that intracellular swelling occurs alongside AMS, and is a critical precursor to extracellular ionic edema formation. We propose that this process produces a subtle modulation of the BBB, which either together with or independent of vasogenic edema provides a transvascular segue from the end-stage of AMS to HACE. Ultimately, this review seeks to shed light on the possible processes underlying HACE pathophysiology, and thus highlights potential avenues for future prevention and treatment.
Collapse
Affiliation(s)
- Rachel E F Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Center for Mind/Brain Sciences and Centre for Neurocognitive Rehabilitation, University of Trento, Rovereto, Italy
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK, Ottersen OP, Nagelhus EA, O’Neill MJ, Wells JA, Lythgoe MF. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain 2020; 143:2576-2593. [PMID: 32705145 PMCID: PMC7447521 DOI: 10.1093/brain/awaa179] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-β and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer's disease. Here we aim to understand the involvement of glymphatic CSF-ISF exchange in tau pathology. First, we demonstrate impaired CSF-ISF exchange and AQP4 polarization in a mouse model of tauopathy, suggesting that this clearance pathway may have the potential to exacerbate or even induce pathogenic accumulation of tau. Subsequently, we establish the central role of AQP4 in the glymphatic clearance of tau from the brain; showing marked impaired glymphatic CSF-ISF exchange and tau protein clearance using the novel AQP4 inhibitor, TGN-020. As such, we show that this system presents as a novel druggable target for the treatment of Alzheimer's disease, and possibly other neurodegenerative diseases alike.
Collapse
Affiliation(s)
- Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Ozama Ismail
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Asif Machhada
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Niall Colgan
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
- School of Physics, National University of Ireland Galway, Ireland
| | - Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Payam Nahavandi
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Zeshan Ahmed
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Alice Fisher
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Soraya Meftah
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Tracey K Murray
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Ole P Ottersen
- Office of the President, Karolinska Institutet, Stockholm, Sweden
| | - Erlend A Nagelhus
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| |
Collapse
|
22
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Komaki Y, Debacker C, Djemai B, Ciobanu L, Tsurugizawa T, Bihan DL. Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex. PLoS One 2020; 15:e0228759. [PMID: 32437449 PMCID: PMC7241787 DOI: 10.1371/journal.pone.0228759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed. Those results further confirm the implications of astrocytes in the neurovascular coupling mechanism underlying BOLD fMRI, but not in the DfMRI responses which remained unsensitive to astrocyte function perturbation.
Collapse
Affiliation(s)
- Yuji Komaki
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Boucif Djemai
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
24
|
Debaker C, Djemai B, Ciobanu L, Tsurugizawa T, Le Bihan D. Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS One 2020; 15:e0229702. [PMID: 32413082 PMCID: PMC7228049 DOI: 10.1371/journal.pone.0229702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer’s disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet. Here we investigated the potential of diffusion MRI to monitor astrocyte activity in a mouse brain model through the inhibition of AQP4 channels with TGN-020. Upon TGN-020 injection, we observed a significant decrease in the Sindex, a diffusion marker of tissue microstructure, and a significant increase of the water diffusion coefficient (sADC) in cerebral cortex and hippocampus compared to saline injection. These results indicate the suitability of diffusion MRI to monitor astrocytic activity in vivo and non-invasively.
Collapse
|
25
|
Vandebroek A, Yasui M. Regulation of AQP4 in the Central Nervous System. Int J Mol Sci 2020; 21:E1603. [PMID: 32111087 PMCID: PMC7084855 DOI: 10.3390/ijms21051603] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation.
Collapse
Affiliation(s)
- Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | | |
Collapse
|
26
|
Dickie BR, Parker GJM, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:19-39. [PMID: 32130957 DOI: 10.1016/j.pnmrs.2019.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/11/2023]
Abstract
The blood-brain barrier (BBB) regulates the transfer of solutes and essential nutrients into the brain. Growing evidence supports BBB dysfunction in a range of acute and chronic brain diseases, justifying the need for novel research and clinical tools that can non-invasively detect, characterize, and quantify BBB dysfunction in-vivo. Many approaches already exist for measuring BBB dysfunction in man using positron emission tomography and magnetic resonance imaging (e.g. dynamic contrast-enhanced MRI measurements of gadolinium leakage). This review paper focusses on MRI measurements of water exchange across the BBB, which occurs through a wide range of pathways, and is likely to be a highly sensitive marker of BBB dysfunction. Key mathematical models and acquisition methods are discussed for the two main approaches: those that utilize contrast agents to enhance relaxation rate differences between the intravascular and extravascular compartments and so enhance the sensitivity of MRI signals to BBB water exchange, and those that utilize the dynamic properties of arterial spin labelling to first isolate signal from intravascular spins and then estimate the impact of water exchange on the evolving signal. Data from studies in healthy and pathological brain tissue are discussed, in addition to validation studies in rodents.
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Geoff J M Parker
- Bioxydyn Limited, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Computer Science and Department of Neuroinflammation, University College London, London, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
27
|
Klarica M, Radoš M, Orešković D. The Movement of Cerebrospinal Fluid and Its Relationship with Substances Behavior in Cerebrospinal and Interstitial Fluid. Neuroscience 2019; 414:28-48. [PMID: 31279048 DOI: 10.1016/j.neuroscience.2019.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
The cerebrospinal fluid (CSF) movement and its influence on substance distribution and elimination from the CSF system have been thoroughly analyzed and discussed in the light of the new hypothesis of CSF physiology. As a result, CSF movement is not presented as a circulation, but a permanent rhythmic systolic-diastolic pulsation in all directions. Such movement also represents the main force of substance distribution inside the CSF system. This distribution occurs in all directions, i.e., in the direction of the imagined circulation, as well as in the opposite direction, and depends on the application site and the resident time of tested substance, where longer resident time means longer distribution distance. Transport mechanisms situated on the microvessels inside the central nervous system (CNS) parenchyma play the key role in substance elimination from the CSF and interstitial fluid (ISF) compartments, which freely communicate. If a certain transport mechanism is not available at one site, the substance will be distributed by CSF movement along the CSF system and into the CNS region where that transport mechanism is available. Pharmacological manipulation suggests that the residence time and the substance travel distance along the CSF system depend on the capacity of transport mechanisms situated on CNS blood capillaries. Physiological absorption of the CSF into the venous sinuses and/or lymphatics, due to their small surface area, should be of minor importance in comparison with the huge absorptive surface area of the microvessel network.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Milan Radoš
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Darko Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia.
| |
Collapse
|
28
|
Zhang Y, Xu K, Liu Y, Erokwu BO, Zhao P, Flask CA, Ramos-Estebanez C, Farr GW, LaManna JC, Boron WF, Yu X. Increased cerebral vascularization and decreased water exchange across the blood-brain barrier in aquaporin-4 knockout mice. PLoS One 2019; 14:e0218415. [PMID: 31220136 PMCID: PMC6586297 DOI: 10.1371/journal.pone.0218415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
Aquaporin-4 (AQP4) plays an important role in regulating water exchange across the blood-brain barrier (BBB) and brain-cerebrospinal fluid interface. Studies on AQP-4 knockout mice (AQP4-KO) have reported considerable protection from brain edema induced by acute water intoxication and ischemic stroke, identifying AQP4 as a potential target for therapeutic interventions. However, the long-term effects of chronic AQP4 suppression are yet to be elucidated. In the current study, we evaluated the physiological and structural changes in adult AQP4-KO mice using magnetic resonance imaging (MRI) and immunohistochemical analysis. Water exchange across BBB was assessed by tracking an intravenous bolus injection of oxygen-17 (17O) water (H217O) using 17O-MRI. Cerebral blood flow (CBF) was quantified using arterial spin-labeling (ASL) MRI. Capillary density was determined by immunohistochemical staining for glucose transporter-1 (GLUT1). Compared to wildtype control mice, AQP4-KO mice showed a significant reduction in peak and steady-state H217O uptake despite unaltered CBF. Interestingly, a 22% increase in cortical capillary density was observed in AQP4-KO mice. These results suggest that increased cerebral vascularization may be an adaptive response to chronic reduction in water exchange across BBB in AQP4-KO mice.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail: (YZ); (XY)
| | - Kui Xu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Yuchi Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Bernadette O. Erokwu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ciro Ramos-Estebanez
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States of America
| | - George W. Farr
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
- Aeromics, LLC, Cleveland, OH, United States of America
| | - Joseph C. LaManna
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail: (YZ); (XY)
| |
Collapse
|
29
|
Li J, Jia Z, Xu W, Guo W, Zhang M, Bi J, Cao Y, Fan Z, Li G. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222:148-157. [PMID: 30851336 DOI: 10.1016/j.lfs.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS Identifying drugs that inhibit edema and glial scar formation and increase neuronal survival is crucial to improving outcomes after spinal cord injury (SCI). Here, we used 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a potent selective inhibitor of aquaporin 4 (AQP4), to investigate the effects of TGN-020 on SCI in Sprague-Dawley rats. MAIN METHODS We compressed the spinal cord at T10 using a sterile impounder (35 g, 5 min), to induce moderate injury. TGN-020 (100 mg/kg) or an equal volume of 10% dimethyl sulfoxide was then administered via intraperitoneal injection. Neurological function was evaluated using the Basso-Beattie-Bresnahan open-field locomotor scale 1, 3, 7, 14, 21, and 28 days after SCI. The degree of edema was assessed via determination of the precise spinal cord water content 3 days after SCI. Expression levels of AQP4, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), and growth-associated protein-43 (GAP-43) were determined via western blotting and immunofluorescence staining 3 days after SCI and 4 weeks after SCI. Numbers of surviving neurons and glial scar sizes were determined using Nissl and hematoxylin-eosin staining, respectively. KEY FINDINGS Our results showed that TGN-020 promoted functional recovery at days 3, 7, 14, 21, and 28, as well as reduced the degree of edema and inhibited the expression of AQP4, GFAP, PCNA at days 3 after SCI. Furthermore, observations 4 weeks after SCI revealed that TGN-020 inhibited the glial scar formation and upregulated GAP-43 expression. SIGNIFICANCE TGN-020 can alleviate spinal cord edema, inhibit glial scar formation, and promote axonal regeneration, conferring beneficial effects on recovery in rats.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Xu
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, China
| | - Weidong Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Mingchao Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Bi
- Department of Neurobiology, Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
30
|
Orešković D, Maraković J, Varda R, Radoš M, Jurjević I, Klarica M. New Insight into the Mechanism of Mannitol Effects on Cerebrospinal Fluid Pressure Decrease and Craniospinal Fluid Redistribution. Neuroscience 2018; 392:164-171. [DOI: 10.1016/j.neuroscience.2018.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
|
31
|
Keep RF, Barrand MA, Hladky SB. Comment on "Role of Choroid Plexus in Cerebrospinal Fluid Hydrodynamics". Neuroscience 2018; 380:164. [PMID: 29496633 DOI: 10.1016/j.neuroscience.2018.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
32
|
Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist 2018; 25:155-166. [PMID: 29799313 PMCID: PMC6416706 DOI: 10.1177/1073858418775027] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The discovery of the water specific channel, aquaporin, and abundant expression
of its isoform, aquaporin-4 (AQP-4), on astrocyte endfeet brought about
significant advancements in the understanding of brain fluid dynamics. The brain
is protected by barriers preventing free access of systemic fluid. The same
barrier system, however, also isolates brain interstitial fluid from the
hydro-dynamic effect of the systemic circulation. The systolic force of the
heart, an essential factor for proper systemic interstitial fluid circulation,
cannot be propagated to the interstitial fluid compartment of the brain. Without
a proper alternative mechanism, brain interstitial fluid would stay stagnant.
Water influx into the peri-capillary Virchow-Robin space (VRS) through the
astrocyte AQP-4 system compensates for this hydrodynamic shortage essential for
interstitial flow, introducing the condition virtually identical to systemic
circulation, which by virtue of its fenestrated capillaries creates appropriate
interstitial fluid motion. Interstitial flow in peri-arterial VRS constitutes an
essential part of the clearance system for β-amyloid, whereas interstitial flow
in peri-venous VRS creates bulk interstitial fluid flow, which, together with
the choroid plexus, creates the necessary ventricular cerebrospinal fluid (CSF)
volume for proper CSF circulation.
Collapse
Affiliation(s)
- Tsutomu Nakada
- 1 Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L Kwee
- 2 Department of Neurology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
33
|
Inhibition of Aquaporin-4 Improves the Outcome of Ischaemic Stroke and Modulates Brain Paravascular Drainage Pathways. Int J Mol Sci 2017; 19:ijms19010046. [PMID: 29295526 PMCID: PMC5795996 DOI: 10.3390/ijms19010046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023] Open
Abstract
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Collapse
|
34
|
Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci 2017; 18:E1798. [PMID: 28820467 PMCID: PMC5578185 DOI: 10.3390/ijms18081798] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| |
Collapse
|
35
|
Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017; 354:69-87. [DOI: 10.1016/j.neuroscience.2017.04.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
|
36
|
Wei F, Zhang C, Xue R, Shan L, Gong S, Wang G, Tao J, Xu G, Zhang G, Wang L. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process. Life Sci 2017; 182:29-40. [PMID: 28576642 DOI: 10.1016/j.lfs.2017.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
AIMS It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. MAIN METHODS Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. KEY FINDINGS Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. SIGNIFICANCE Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur.
Collapse
Affiliation(s)
- Fang Wei
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Cui Zhang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Rong Xue
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Lidong Shan
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Shan Gong
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jin Tao
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guangyin Xu
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Linhui Wang
- Department of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| |
Collapse
|
37
|
Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke. Int J Mol Sci 2016; 17:ijms17071146. [PMID: 27438832 PMCID: PMC4964519 DOI: 10.3390/ijms17071146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
Cerebral edema often manifests after the development of cerebrovascular disease, particularly in the case of stroke, both ischemic and hemorrhagic. Without clinical intervention, the influx of water into brain tissues leads to increased intracranial pressure, cerebral herniation, and ultimately death. Strategies to manage the development of edema constitute a major unmet therapeutic need. However, despite its major clinical significance, the mechanisms underlying cerebral water transport and edema formation remain elusive. Aquaporins (AQPs) are a class of water channel proteins which have been implicated in the regulation of water homeostasis and cerebral edema formation, and thus represent a promising target for alleviating stroke-induced cerebral edema. This review examines the significance of relevant AQPs in stroke injury and subsequently explores neuroprotective strategies aimed at modulating AQP expression, with a particular focus on AQP4, the most abundant AQP in the central nervous system.
Collapse
|
38
|
MATSUMAE M, SATO O, HIRAYAMA A, HAYASHI N, TAKIZAWA K, ATSUMI H, SORIMACHI T. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurol Med Chir (Tokyo) 2016; 56:416-41. [PMID: 27245177 PMCID: PMC4945600 DOI: 10.2176/nmc.ra.2016-0020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.
Collapse
Affiliation(s)
- Mitsunori MATSUMAE
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | | | - Akihiro HIRAYAMA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Naokazu HAYASHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Ken TAKIZAWA
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Hideki ATSUMI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| | - Takatoshi SORIMACHI
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa
| |
Collapse
|
39
|
Karmacharya MB, Kim KH, Kim SY, Chung J, Min BH, Park SR, Choi BH. Low intensity ultrasound inhibits brain oedema formation in rats: potential action on AQP4 membrane localization. Neuropathol Appl Neurobiol 2016; 41:e80-94. [PMID: 25201550 DOI: 10.1111/nan.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
AIMS Brain oedema is a major contributing factor to the morbidity and mortality of a variety of brain disorders. Although there has been considerable progress in our understanding of pathophysiological and molecular mechanisms associated with brain oedema so far, more effective treatment is required and is still awaited. Here we intended to study the effects of low intensity ultrasound (LIUS) on brain oedema. METHODS We prepared the rat hippocampal slice in vitro and acute water intoxication in vivo models of brain oedema. We applied LIUS stimulation in these models and studied the molecular mechanisms of LIUS action on brain oedema. RESULTS We found that LIUS stimulation markedly inhibited the oedema formation in both of these models. LIUS stimulation significantly reduced brain water content and intracranial pressure resulting in increased survival of the rats. Here, we showed that the AQP4 localization was increased in the astrocytic foot processes in the oedematous hippocampal slices, while it was significantly reduced in the LIUS-stimulated hippocampal slices. In the in vivo model too, AQP4 expression was markedly increased in the microvessels of the cerebral cortex and hippocampus after water intoxication but was reduced in the LIUS-stimulated rats. CONCLUSIONS These data show that LIUS has an inhibitory effect on cytotoxic brain oedema and suggest its therapeutic potential to treat brain oedema. We propose that LIUS reduces the AQP4 localization around the astrocytic foot processes thereby decreasing water permeability into the brain tissue.
Collapse
Affiliation(s)
| | - Kil Hwan Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - See Yoon Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Joonho Chung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung-Hyun Min
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
40
|
Nakada T. The Molecular Mechanisms of Neural Flow Coupling: A New Concept. J Neuroimaging 2015; 25:861-5. [PMID: 25704766 PMCID: PMC5023998 DOI: 10.1111/jon.12219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
Abstract
The phenomenon known as neural flow coupling (NFC) occurs at the capillary level where there are no known pressure controlling structures. Recent developments in advanced magnetic resonance imaging technologies have made possible in vivo direct investigations of water physiology that have shed new insight on the water dynamics of the cortical pericapillary space and their complex functionality in relation to NFC. Neural activities initiate a chain of events that ultimately affect NFC. First, neural activities generate extracellular acidification. Extracellular acidosis in turn produces inhibition of aquaporin-4 (AQP-4) located at the end feet of pericapillary astrocytes, the water channel which regulates water influx into the pericapillary space and, hence, interstitial flow. Reduction of pericapillary water pressure results in a negative balance between pericapillary and intraluminal capillary pressure, allowing for capillary caliber expansion. Proton permeability through the tight junctions of the blood brain barrier is significantly high owing to the Grotthuss proton "tunneling" mechanism and, therefore, carbonic anhydrase (CA) type IV (CA-IV) anchored to the luminal surface of brain capillaries functions as scavenger of extracellular protons. CA-IV inhibition by acetazolamide or carbon dioxide results in the accumulation of extracellular protons, causing AQP-4 inhibition and a secondary increase in rCBF.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research InstituteUniversity of NiigataNiigataJapan
| |
Collapse
|
41
|
Suzuki Y, Nakamura Y, Yamada K, Igarashi H, Kasuga K, Yokoyama Y, Ikeuchi T, Nishizawa M, Kwee IL, Nakada T. Reduced CSF Water Influx in Alzheimer's Disease Supporting the β-Amyloid Clearance Hypothesis. PLoS One 2015; 10:e0123708. [PMID: 25946191 PMCID: PMC4422624 DOI: 10.1371/journal.pone.0123708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate whether water influx into cerebrospinal fluid (CSF) space is reduced in Alzheimer's patients as previously shown in the transgenic mouse model for Alzheimer's disease. METHODS Ten normal young volunteers (young control, 21-30 years old), ten normal senior volunteers (senior control, 60-78 years old, MMSE ≥ 29), and ten Alzheimer's disease (AD) patients (study group, 59-84 years old, MMSE: 13-19) participated in this study. All AD patients were diagnosed by neurologists specializing in dementia based on DSM-IV criteria. CSF dynamics were analyzed using positron emission tomography (PET) following an intravenous injection of 1,000 MBq [15O]H2O synthesized on-line. RESULTS Water influx into CSF space in AD patients, expressed as influx ratio, (0.755 ± 0.089) was significantly reduced compared to young controls (1.357 ± 0.185; p < 0.001) and also compared to normal senior controls (0.981 ± 0.253, p < 0.05). Influx ratio in normal senior controls was significantly reduced compared to young controls (p < 0.01). CONCLUSION Water influx into the CSF is significantly reduced in AD patients. β-amyloid clearance has been shown to be dependent on interstitial flow and CSF production. The current study indicates that reduction in water influx into the CSF may disturb the clearance rate of β-amyloid, and therefore be linked to the pathogenesis of AD. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000011939.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yukihiro Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yuichi Yokoyama
- Department of Psychiatry, Faculty of Medicine, University of Niigata, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L. Kwee
- Department of Neurology, University of California Davis, Davis, California, United States of America
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
- Department of Neurology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Nakada T. Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J 2014; 55:328-36. [PMID: 25165047 PMCID: PMC4157385 DOI: 10.3325/cmj.2014.55.328] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Tsutomu Nakada, Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757 Asahimachi, Niigata, 951-8585, Japan,
| |
Collapse
|
43
|
Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport 2014; 25:39-43. [PMID: 24231830 PMCID: PMC4235386 DOI: 10.1097/wnr.0000000000000042] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies on cerebrospinal fluid (CSF) homeostasis emphasize the importance of water flux through the pericapillary (Virchow-Robin) space for both CSF production and reabsorption (Oreskovic and Klarica hypothesis), and challenge the classic CSF circulation theory, which proposes that CSF is primarily produced by the choroid plexus and reabsorbed by the arachnoid villi. Active suppression of aquaporin-1 (AQP-1) expression within brain capillaries and preservation of AQP-1 within the choroid plexus together with pericapillary water regulation by AQP-4 provide a unique opportunity for testing this recent hypothesis. We investigated water flux into three representative regions of the brain, namely, the cortex, basal ganglia, and third ventricle using a newly developed water molecular MRI technique based on JJ vicinal coupling between O and adjacent protons and water molecule proton exchanges (JJVCPE imaging) in AQP-1 and AQP-4 knockout mice in vivo. The results clearly indicate that water influx into the CSF is regulated by AQP-4, and not by AQP-1, strongly supporting the Oreskovic and Klarica hypothesis.
Collapse
|
44
|
7T T₂*-weighted magnetic resonance imaging reveals cortical phase differences between early- and late-onset Alzheimer's disease. Neurobiol Aging 2014; 36:20-6. [PMID: 25113794 DOI: 10.1016/j.neurobiolaging.2014.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
Abstract
The aim of this study is to explore regional iron-related differences in the cerebral cortex, indicative of Alzheimer's disease pathology, between early- and late-onset Alzheimer's disease (EOAD, LOAD, respectively) patients using 7T magnetic resonance phase images. High-resolution T2(∗)-weighted scans were acquired in 12 EOAD patients and 17 LOAD patients with mild to moderate disease and 27 healthy elderly control subjects. Lobar peak-to-peak phase shifts and regional mean phase contrasts were computed. An increased peak-to-peak phase shift was found for all lobar regions in EOAD patients compared with LOAD patients (p < 0.05). Regional mean phase contrast in EOAD patients was higher than in LOAD patients in the superior medial and middle frontal gyrus, anterior and middle cingulate gyrus, postcentral gyrus, superior and inferior parietal gyrus, and precuneus (p ≤ 0.042). These data suggest that EOAD patients have an increased iron accumulation, possibly related to an increased amyloid deposition, in specific cortical regions as compared with LOAD patients.
Collapse
|
45
|
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014; 11:10. [PMID: 24817998 PMCID: PMC4016637 DOI: 10.1186/2045-8118-11-10] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022] Open
Abstract
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.
Collapse
Affiliation(s)
- Thomas Brinker
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Edward Stopa
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - John Morrison
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Petra Klinge
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
46
|
Abstract
Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA, USA,
| |
Collapse
|