1
|
Chen C, Li S, Zhou Y, Huang H, Lin JT, Wu WF, Qiu YK, Dong W, Wan J, Liu Q, Zheng H, Wu YQ, Zhou CH. Neuronal excitation-inhibition imbalance in the basolateral amygdala is involved in propofol-mediated enhancement of fear memory. Commun Biol 2024; 7:1408. [PMID: 39472670 PMCID: PMC11522401 DOI: 10.1038/s42003-024-07105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with glutamatergic neuron hyperactivation in the basolateral amygdala (BLA) brain area, while GABAergic interneurons in the BLA modulate glutamatergic neuron excitability. Studies have shown that propofol exerts its effects through potentiation of the inhibitory neurotransmitter γ-aminobutyric acid. The neuronal mechanism by which propofol anesthesia modulates fear memory is currently unknown. Here, we used optogenetics and chemogenetics to suppress glutamatergic neurons or activate GABAergic interneurons in the BLA to assess alterations in neuronal excitation-inhibition balance and investigate fear memory. The excitability of glutamatergic neurons in the BLA was significantly reduced by the suppression of glutamatergic neurons or activation of GABAergic interneurons, while propofol-mediated enhancement of fear memory was attenuated. We suggest that propofol anesthesia could reduce the excitability of GABAergic neurons through activation of GABAA receptors, subsequently increasing the excitability of glutamatergic neurons in the mice BLA; the effect of propofol on enhancing mice fear memory might be mediated by strengthening glutamatergic neuronal excitability and decreasing the excitability of GABAergic neurons in the BLA; neuronal excitation-inhibition imbalance in the BLA might be important in mediating the enhancement of fear memory induced by propofol.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Chang C, Bai W, Li J, Huo S, Wang T, Shao J. Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus. CURRENT THERAPEUTIC RESEARCH 2023; 98:100691. [PMID: 36798524 PMCID: PMC9925857 DOI: 10.1016/j.curtheres.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Background Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear. Objective This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects. Methods Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5. Results Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III+ cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group. Conclusions These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Department of anesthesiology, The first people's hospital of huaihua, huaihua, Hunan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Address correspondence to: Jian-Lin Shao, PhD, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Kunming, Yunnan 650032, P.R. China.
| |
Collapse
|
3
|
Iggena D, Maier PM, Häußler SM, Menk M, Olze H, Larkum ME, Finke C, Ploner CJ. Post-encoding modulation of spatial memory consolidation by propofol. Cortex 2022; 156:1-12. [DOI: 10.1016/j.cortex.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
|
4
|
Gross KS, Lincoln CM, Anderson MM, Geiger GE, Frick KM. Extracellular matrix metalloproteinase-9 (MMP-9) is required in female mice for 17β-estradiol enhancement of hippocampal memory consolidation. Psychoneuroendocrinology 2022; 141:105773. [PMID: 35490640 PMCID: PMC9173600 DOI: 10.1016/j.psyneuen.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Hippocampal plasticity and memory are modulated by the potent estrogen 17β-estradiol (E2). Research on the molecular mechanisms of hippocampal E2 signaling has uncovered multiple intracellular pathways that contribute to these effects, but few have questioned the role that extracellular signaling processes may play in E2 action. Modification of the extracellular matrix (ECM) by proteases like matrix metalloproteinase-9 (MMP-9) is critical for activity-dependent remodeling of synapses, and MMP-9 activity is required for hippocampal learning and memory. Yet little is known about the extent to which E2 regulates MMP-9 in the hippocampus, and the influence this interaction may have on hippocampal memory. Here, we examined the effects of hippocampal MMP-9 activity on E2-induced enhancement of spatial and object recognition memory consolidation. Post-training bilateral infusion of an MMP-9 inhibitor into the dorsal hippocampus of ovariectomized female mice blocked the enhancing effects of E2 on object placement and object recognition memory, supporting a role for MMP-9 in estrogenic regulation of memory consolidation. E2 also rapidly increased the activity of dorsal hippocampal MMP-9 without influencing its protein expression, providing further insight into hippocampal E2/MMP-9 interactions. Together, these results provide the first evidence that E2 regulates MMP-9 to modulate hippocampal memory and highlight the need to further study estrogenic regulation of extracellular modification.
Collapse
Affiliation(s)
| | | | | | | | - Karyn M. Frick
- Correspondence to: Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA. (K.M. Frick)
| |
Collapse
|
5
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Sun W, Wang J, Cai D, Pei L. Neuroprotection of the Developing Brain by Dexmedetomidine Is Mediated by Attenuating Single Propofol-induced Hippocampal Apoptosis and Synaptic Plasticity Deficits. Exp Neurobiol 2020; 29:356-375. [PMID: 33154198 PMCID: PMC7649088 DOI: 10.5607/en20032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Dexmedetomidine (DEX) has neuroprotective effects and its efficacy was determined in propofol-treated pups. Postnatal day (P) 7 rats were exposed to propofol and DEX to investigate the induced apoptosis-related gene expression. Furthermore, synaptic structural changes at the cellular level were observed by electron microscopy. Induction of hippocampal long-term potentiation (LTP) of P30 rats and long-lasting performance of spatial discrimination at P30 and P60 were evaluated. After a single propofol exposure to P7 rats, DEX pretreatment effectively rescued the profound apoptosis seen in hippocampal neurocytes, and strongly reversed the aberrant expression levels of Bcl2-like 1 (BCL2L1), matrix metallopeptidase 9 (MMP-9) and cleaved caspase 3 (CC3), and sharply enhanced synaptic plasticity. However, there were no significant differences in escape latency or crossing times in a probe test. This was accompanied by no obvious reduction in search strategies among the rat groups. No impairment of long-term learning and memory in P30 or P60 rats was detected when using a single dose propofol treatment during the most vulnerable period of brain development. DEX was shown to ameliorate the rodent developmental neurotoxicity caused by a single neonatal propofol challenge, by altering MMP-9, BCL2L1 and CC3 apoptotic signaling.
Collapse
Affiliation(s)
- Wenchong Sun
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Jian Wang
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Dasheng Cai
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Ling Pei
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Liu PF, Gao T, Li TZ, Yang YT, Xu YX, Xu ZP, Mi WD. Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome. Neurosci Lett 2020; 740:135461. [PMID: 33115643 DOI: 10.1016/j.neulet.2020.135461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Elderly patients receive propofol at regular intervals for sedation during gastrointestinal endoscopy. However, the link between cognition and intermittent propofol exposure remains unclear. Thus, we used aged rats to investigate the effect of propofol on cognition. METHODS The study included two parts. In the first part, aged (18-20 months old) male Sprague-Dawley rats underwent intermittent intraperitoneal injection of propofol (200 mg/kg) or intralipid, every 9 days or once a day. In the second part, some aged rats received intraperitoneal injection of Bay 11-7082 (1 mg/kg), a specific inhibitor of NF-κB, 30 min before propofol injection. Memory tests were performed to evaluate cognition 24 h after the entire treatment. The hippocampal neuronal damage was assessed by TUNEL staining. The hippocampal levels of p-NF-κB p65, NLRP3, caspase-1 p20, and cleaved caspase-3 were detected by western blotting. The hippocampal and serum levels of IL-1β, IL-6, and TNF-α were evaluated using ELISA. RESULTS There were no differences in the behavioral tests, hippocampal neuronal damage, and neuroinflammation between groups given intralipid and propofol treatment every 9 days. However, repeated propofol treatment once a day promoted activation of NF-κB and the NLRP3 inflammasome, inducing cognitive impairment and neuroinflammation. Interestingly, pretreatment with Bay-11-7082 not only inhibited NF-κB/NLRP3 inflammasome activation, but also attenuated neuronal damage and cognitive dysfunction in aged rats exposed to daily propofol treatment. CONCLUSIONS Intermittent propofol treatment every 9 days may be safe for aged rats. However, propofol treatment once a day could impair the cognition of aged rats, partly through the activation of the NF-κB pathway and NLRP3 inflammasome, which may be a potential targets for the treatment of cognitive impairment in elderly patients.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Yi-Tian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China
| | - Yong-Xing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, 9th AnXiangBeiLi Road, Beijing, 100101, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| | - Wei-Dong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
8
|
Propofol Modulates Early Memory Consolidation in Humans. eNeuro 2020; 7:ENEURO.0537-19.2020. [PMID: 32295771 PMCID: PMC7307630 DOI: 10.1523/eneuro.0537-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Maintenance of memory across time is crucial for adaptive behavior. Current theories posit that the underlying consolidation process depends on stabilization of synapses and reorganization of interactions between hippocampus and neocortex. However, the temporal properties of hippocampal-neocortical network reconfiguration during consolidation are still a matter of debate. Translational research on this issue is challenged by the paucity of techniques to transiently interfere with memory in the healthy human brain. Here, we report a neuro-pharmacological approach with the GABAAergic anesthetic propofol and a memory task sensitive to hippocampal dysfunction. Patients undergoing minor surgery learned word lists before injection of an anesthetic dose of propofol. Results show that administration of the drug shortly after learning (∼13 min) impairs recall after awakening but spares recognition. By contrast, later administration (∼105 min) has no effect. These findings suggest significant changes in memory networks very early after learning that are decisive for later recall. Propofol general anesthesia provides an experimental tool to modulate the first steps of hippocampus-mediated memory consolidation in humans.
Collapse
|
9
|
Zhong Y, Chen J, Li L, Qin Y, Wei Y, Pan S, Jiang Y, Chen J, Xie Y. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats. Brain Res 2018; 1691:64-74. [DOI: 10.1016/j.brainres.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
|
10
|
Conant K, Allen M, Lim ST. Activity dependent CAM cleavage and neurotransmission. Front Cell Neurosci 2015; 9:305. [PMID: 26321910 PMCID: PMC4531370 DOI: 10.3389/fncel.2015.00305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan Allen
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Seung T Lim
- Department of Neuroscience and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|