1
|
Liu Y, Jia LN, Wu H, Jiang W, Wang Q, Wang D, Xiong YB, Ren YP, Ma X, Tang YL. Adjuvant electroconvulsive therapy with antipsychotics is associated with improvement in auditory mismatch negativity in schizophrenia. Psychiatry Res 2022; 311:114484. [PMID: 35245745 DOI: 10.1016/j.psychres.2022.114484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yi Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li-Na Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Han Wu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Jiang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qian Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yan-Bing Xiong
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Ping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Yi-Lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States; Mental Health Service Line, Atlanta VA Medical Center, Decatur, GA 30033, United States
| |
Collapse
|
2
|
Vita A, Gaebel W, Mucci A, Sachs G, Barlati S, Giordano GM, Nibbio G, Nordentoft M, Wykes T, Galderisi S. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia. Eur Psychiatry 2022; 65:e57. [PMID: 36059103 PMCID: PMC9532218 DOI: 10.1192/j.eurpsy.2022.2315] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Although cognitive impairment is a core symptom of schizophrenia related to poorer outcomes in different functional domains, it still remains a major therapeutic challenge. To date, no comprehensive treatment guidelines for cognitive impairment in schizophrenia are implemented. Methods The aim of the present guidance paper is to provide a comprehensive meta-review of the current available evidence-based treatments for cognitive impairment in schizophrenia. The guidance is structured into three sections: pharmacological treatment, psychosocial interventions, and somatic treatments. Results Based on the reviewed evidence, this European Psychiatric Association guidance recommends an appropriate pharmacological management as a fundamental starting point in the treatment of cognitive impairment in schizophrenia. In particular, second-generation antipsychotics are recommended for their favorable cognitive profile compared to first-generation antipsychotics, although no clear superiority of a single second-generation antipsychotic has currently been found. Anticholinergic and benzodiazepine burdens should be kept to a minimum, considering the negative impact on cognitive functioning. Among psychosocial interventions, cognitive remediation and physical exercise are recommended for the treatment of cognitive impairment in schizophrenia. Noninvasive brain stimulation techniques could be taken into account as add-on therapy. Conclusions Overall, there is definitive progress in the field, but further research is needed to develop specific treatments for cognitive impairment in schizophrenia. The dissemination of this guidance paper may promote the development of shared guidelines concerning the treatment of cognitive functions in schizophrenia, with the purpose to improve the quality of care and to achieve recovery in this population.
Collapse
|
3
|
Hu Q, Huang H, Jiang Y, Jiao X, Zhou J, Tang Y, Zhang T, Sun J, Yao D, Luo C, Li C, Wang J. Temporoparietal Connectivity Within Default Mode Network Associates With Clinical Improvements in Schizophrenia Following Modified Electroconvulsive Therapy. Front Psychiatry 2021; 12:768279. [PMID: 35058815 PMCID: PMC8763790 DOI: 10.3389/fpsyt.2021.768279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Although modified electroconvulsive therapy (ECT) has been reported to be effective for the treatment of schizophrenia (SCZ), its action mechanism is unclear. To elucidate the underlying ECT mechanisms of SCZ, this study used a longitudinal cohort including 21 SCZ patients receiving only antipsychotics (DSZ group) and 21 SCZ patients receiving a regular course of ECT combining with antipsychotics (MSZ group) for 4 weeks. All patients underwent magnetic resonance imaging (MRI) scans at baseline (t1) and follow-up (t2) time points. A matched healthy control (HC) group included 23 individuals who were only scanned at baseline. Functional connectivity (FC) within the default mode network (DMN) was evaluated before and after ECT. Significant interaction of the group over time was found in FC between angular gyrus (AG) and middle temporal gyrus (MTG). Post-hoc analysis showed a significantly enhanced FC of left AG(AG.L) and right MTG (MTG.R) in the MSZ group relative to the DSZ group. In addition, the right AG (AG.R) showed significantly enhanced FC between MTG.R and left MTG (MTG.L) after ECT in the MSZ group, but no in the DSZ group. In particular, the FCs change in AG.L-MTG.R and AG.R-MTG.R were positively correlated with the Positive and Negative Syndrome Scale (PANSS) negative score reduction. Furthermore, the FC change in AG.L-MTG.R was also positively correlated with the PANSS general psychopathology score reduction. These findings confirmed a potential relationship between ECT inducing hyperconnectivity within DMN and improvements in symptomatology of SCZ, suggesting that ECT controls mental symptoms by regulating the temporoparietal connectivity within DMN.
Collapse
Affiliation(s)
- Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiong Jiao
- School of BIomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhou
- School of BIomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Sun
- School of BIomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|