1
|
Wong PCM, Kang X, So HC, Choy KW. Contributions of common genetic variants to specific languages and to when a language is learned. Sci Rep 2022; 12:580. [PMID: 35022429 PMCID: PMC8755716 DOI: 10.1038/s41598-021-04163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Research over the past two decades has identified a group of common genetic variants explaining a portion of variance in native language ability. The present study investigates whether the same group of genetic variants are associated with different languages and languages learned at different times in life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) (L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For the variants examined, we found a general decrease of contribution of genes to language functions from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that were found to contribute to traits specific to Chinese and English respectively exerted the strongest effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic contribution to language may depend at least partly on the intricate language-specific features. Future research including a larger sample size, more languages and more genetic variants is required to further explore these hypotheses.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Research Centre for Language, Cognition and Language Application, Chongqing University, Chongqing, China. .,School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obsterics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Wong PCM, Kang X, Wong KHY, So HC, Choy KW, Geng X. ASPM-lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. SCIENCE ADVANCES 2020; 6:eaba5090. [PMID: 32537487 PMCID: PMC7253162 DOI: 10.1126/sciadv.aba5090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
How language has evolved into more than 7000 varieties today remains a question that puzzles linguists, anthropologists, and evolutionary scientists. The genetic-biasing hypothesis of language evolution postulates that genes and language features coevolve, such that a population that is genetically predisposed to perceiving a particular linguistic feature would tend to adopt that feature in their language. Statistical studies that correlated a large number of genetic variants and linguistic features not only generated this hypothesis but also specifically pinpointed a linkage between ASPM and lexical tone. However, there is currently no direct evidence for this association and, therefore, the hypothesis. In an experimental study, we provide evidence to link ASPM with lexical tone perception in a sample of over 400 speakers of a tone language. In addition to providing the first direct evidence for the genetic-biasing hypothesis, our results have implications for further studies of linguistic anthropology and language disorders.
Collapse
Affiliation(s)
- Patrick C. M. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiujuan Geng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
3
|
A truncating Aspm allele leads to a complex cognitive phenotype and region-specific reductions in parvalbuminergic neurons. Transl Psychiatry 2020; 10:66. [PMID: 32066665 PMCID: PMC7026184 DOI: 10.1038/s41398-020-0686-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders are heterogeneous and identifying shared genetic aetiologies and converging signalling pathways affected could improve disease diagnosis and treatment. Truncating mutations of the abnormal spindle-like microcephaly associated (ASPM) gene cause autosomal recessive primary microcephaly (MCPH) in humans. ASPM is a positive regulator of Wnt/β-Catenin signalling and controls symmetric to asymmetric cell division. This process balances neural progenitor proliferation with differentiation during embryogenesis, the malfunction of which could interfere with normal brain development. ASPM mutations may play a role also in other neurodevelopmental disorders, nevertheless, we lack the details of how or to what extent. We therefore assessed neurodevelopmental disease and circuit endophenotypes in mice with a truncating Aspm1-7 mutation. Aspm1-7 mice exhibited impaired short- and long-term object recognition memory and markedly enhanced place learning in the IntelliCage®. This behaviour pattern is reminiscent of a cognitive phenotype seen in mouse models and patients with a rare form of autism spectrum disorder (ASD) as well as in mouse models of altered Wnt signalling. These alterations were accompanied by ventriculomegaly, corpus callosum dysgenesis and decreased parvalbumin (PV)+ interneuron numbers in the hippocampal Cornu Ammonis (CA) region and thalamic reticular nucleus (TRN). PV+ cell number correlated to object recognition (CA and TRN) and place learning (TRN). This opens the possibility that, as well as causing MCPH, mutant ASPM potentially contributes to other neurodevelopmental disorders such as ASD through altered parvalbuminergic interneuron development affecting cognitive behaviour. These findings provide important information for understanding the genetic overlap and improved treatment of neurodevelopmental disorders associated with ASPM.
Collapse
|
4
|
Hovey D, Henningsson S, Cortes DS, Bänziger T, Zettergren A, Melke J, Fischer H, Laukka P, Westberg L. Emotion recognition associated with polymorphism in oxytocinergic pathway gene ARNT2. Soc Cogn Affect Neurosci 2018; 13:173-181. [PMID: 29194499 PMCID: PMC5827350 DOI: 10.1093/scan/nsx141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to correctly understand the emotional expression of another person is essential for social relationships and appears to be a partly inherited trait. The neuropeptides oxytocin and vasopressin have been shown to influence this ability as well as face processing in humans. Here, recognition of the emotional content of faces and voices, separately and combined, was investigated in 492 subjects, genotyped for 25 single nucleotide polymorphisms (SNPs) in eight genes encoding proteins important for oxytocin and vasopressin neurotransmission. The SNP rs4778599 in the gene encoding aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), a transcription factor that participates in the development of hypothalamic oxytocin and vasopressin neurons, showed an association that survived correction for multiple testing with emotion recognition of audio-visual stimuli in women (n = 309). This study demonstrates evidence for an association that further expands previous findings of oxytocin and vasopressin involvement in emotion recognition.
Collapse
Affiliation(s)
- Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Tanja Bänziger
- Department of Psychology, Mid Sweden University, Östersund, Sweden
| | - Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Melke
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Petri Laukka
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Eicher JD, Stein CM, Deng F, Ciesla AA, Powers NR, Boada R, Smith SD, Pennington BF, Iyengar SK, Lewis BA, Gruen JR. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. GENES BRAIN AND BEHAVIOR 2015; 14:377-85. [PMID: 25778907 PMCID: PMC4492462 DOI: 10.1111/gbb.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples - Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) - and then combined results by meta-analysis. DYX2 markers, specifically those in the 3' untranslated region of DCDC2 (P = 1.43 × 10(-4) ), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10(-2) ) and DRD2 (P = 9.22 × 10(-3) ) and nicotinic-related genes CHRNA3 (P = 2.51 × 10(-3) ) and BDNF (P = 8.14 × 10(-3) ) with case-control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated.
Collapse
Affiliation(s)
- J D Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|