1
|
Egger JIM, Verhoeven WMA. Forensically relevant challenging behaviors and the genetics domain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:65-73. [PMID: 37633719 DOI: 10.1016/b978-0-12-821375-9.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Impulsive and aggressive behaviors along with intellectual disabilities often manifest in the context of genetic disorders and are a persisting challenge to professionals in the forensic psychiatric and psychological setting. The following chapter comprises an overview of relevant factors in the gene-context-behavior interaction such as monoamine oxidase A activity and specific epileptic phenomena. It presents several examples of monogenetic disorders with behaviors from the aggression spectrum and summarizes emerging strategies for treatment and clinical management thereof. The final part focuses on challenges and future developments in this field with relevance for the judicial and forensic systems. It is concluded that the relationship between a genetic syndrome and forensically relevant and/or violent behaviors should typically be addressed within a multidisciplinary framework that also includes the application of modern genetic techniques.
Collapse
Affiliation(s)
- Jos I M Egger
- Donders Institute for Brain, Cognition and Behaviour and Radboudumc Center of Expertise on Rare Congenital Developmental Disorders, Radboud University, Nijmegen, The Netherlands; Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.
| | - Willem M A Verhoeven
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands; Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
3
|
Prediction of functional regulatory elements of bipolar disorder via data integration analysis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Association Analysis of Monoamine Oxidase-A Gene Promoter Polymorphism (MAOA uVNTR) for Antisocial Behavior: Absence of the Counting Number Repeats in Central Iran. ARCHIVES OF NEUROSCIENCE 2020. [DOI: 10.5812/ans.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The MAOA gene is located on the X chromosome (Xp11.23). Several studies have established a VNTR (Variable Number Tandem Repeat) polymorphism in the upstream of the MAOA gene transcriptional initiation region named uVNTR which is correlated with the risk of antisocial behavior. Objectives: This study aimed to investigate the association between MAOA genotypes and the risk of violent behavior in a cohort of violent and age-matched non-violent individuals. Methods: In the current case-control study, MAOA uVNTR was genotyped in a cohort of 88 violent and 95 age-matched non-violent individuals. Individuals were genotyped for the MAOA uVNTR by performing PCR, gel electrophoresis, and sequencing. Furthermore, a chi-square test was performed using SPSS, and a p-value of less than 0.05 was considered statistically significant. Results: We identified three MAOA uVNTR allelic variants: They were harboring 3.5, 4.5, and 5.5 repeated sequences. Alleles with 2, 3, 4, 5, and 6 repeats were not observed in any of the two examined groups. Conclusions: We did not detect a statistically appreciable association between antisocial behavior and allele frequencies in the studied population in central Iran.
Collapse
|
5
|
Talarowska ME, Szemraj J, Kuan-Pin S. Expression of ESR1 and ESR2 oestrogen receptor encoding gene and personality traits - preliminary study. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2019; 18:133-140. [PMID: 31975979 PMCID: PMC6970415 DOI: 10.5114/pm.2019.90804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The main objective of the study is to examine the hypothesis claiming a correlation between personality traits measured with the use of the Minnesota Multiphasic Personality Inventory (MMPI-2) personality questionnaire and the expression of the ERα (ESR1) and ERβ (ESR2) encoding gene in patients suffering from depression. MATERIAL AND METHODS The experiment was carried out on a group of 44 individuals with depression. The Polish variant of the MMPI-2 was applied with the aim of assessing personality traits. Furthermore, the authors evaluated the expression of the genes encoding the oestrogen receptors (ERα and ERβ) at the mRNA level and protein level in the studied population. RESULTS No significant differences in the expression of ERα and ERβ encoding genes were found and confirmed in the patients with the first episode of depression and those suffering from subsequent episodes of the disease. No differences were found between women and men, either. In women a positive relationship was found between the scale of psychopathy (p = 0.04), paranoia (p = 0.01), and mania (p = 0.03) and expression for the ERα encoding gene at the mRNA level. A negative relationship was found between the mania scale and ERβ encoding gene expression at mRNA (p = 0.03) and protein (p = 0.04) levels. In males a positive relationship between anxiety as a personality trait and expression of the ERβ receptor encoding gene at mRNA level (p = 0.03) and protein level (p = 0.03) was found. CONCLUSIONS Personality traits may be linked with the expression of genes encoding oestrogen receptors (ERα and ERβ) among patients with depressive disorders.
Collapse
Affiliation(s)
- Monika E. Talarowska
- Department of Personality and Individual Differences, Institute of Psychology, University of Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Poland
| | - Su Kuan-Pin
- Department of General Psychiatry, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
6
|
van Donkelaar MMJ, Hoogman M, Pappa I, Tiemeier H, Buitelaar JK, Franke B, Bralten J. Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes. Front Behav Neurosci 2018; 12:61. [PMID: 29666571 PMCID: PMC5891600 DOI: 10.3389/fnbeh.2018.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 11/16/2022] Open
Abstract
Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively.
Collapse
Affiliation(s)
- Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Irene Pappa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.,Karakter Child and Adolescent Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
7
|
Maney DL. Polymorphisms in sex steroid receptors: From gene sequence to behavior. Front Neuroendocrinol 2017; 47:47-65. [PMID: 28705582 PMCID: PMC6312198 DOI: 10.1016/j.yfrne.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/09/2023]
Abstract
Sex steroid receptors have received much interest as potential mediators of human behaviors and mental disorders. Candidate gene association studies have identified about 50 genetic variants of androgen and estrogen receptors that correlate with human behavioral phenotypes. Because most of these polymorphisms lie outside coding regions, discerning their effect on receptor function is not straightforward. Thus, although discoveries of associations improve our ability to predict risk, they have not greatly advanced our understanding of underlying mechanisms. This article is intended to serve as a starting point for psychologists and other behavioral biologists to consider potential mechanisms. Here, I review associations between polymorphisms in sex steroid receptors and human behavioral phenotypes. I then consider ways in which genetic variation can affect processes such as mRNA transcription, splicing, and stability. Finally, I suggest ways that hypotheses about mechanism can be tested, for example using in vitro assays and/or animal models.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Gamero-Villarroel C, González LM, Rodríguez-López R, Albuquerque D, Carrillo JA, García-Herráiz A, Flores I, Gervasini G. Influence of TFAP2B and KCTD15 genetic variability on personality dimensions in anorexia and bulimia nervosa. Brain Behav 2017; 7:e00784. [PMID: 28948079 PMCID: PMC5607548 DOI: 10.1002/brb3.784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/10/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION TFAP2B and KCTD15 are obesity-related genes that interact to regulate feeding behavior. We hypothesize that variability in these loci, isolated or in combination, could also be related to the risk of eating disorders (ED) and/or associated psychological traits. METHODS We screened 425 participants (169 ED patients, 75 obese subjects, and 181 controls) for 10 clinically relevant and tag single-nucleotide polymorphisms (SNPs) in KCTD15 and TFAP2B by the Sequenom MassARRAY platform and direct sequencing. Psychometric evaluation was performed with EDI-2 and SCL-90R inventories. RESULTS The KCTD15 rs287103 T variant allele was associated with increased risk of bulimia nervosa (BN) (OR = 4.34 [1.47-29.52]; p = .003) and with scores of psychopathological scales of these patients. Haplotype *6 in KCTD15 was more frequent in controls (OR = 0.40 [0.20-0.80], p = .009 for anorexia nervosa), while haplotype *4 in TFAP2B affected all three scales of the SCL-90R inventory in BN patients (p ≤ .01). Epistasis analyses revealed relevant interactions with body mass index of BN patients (p < .001). Genetic profiles in obese patients did not significantly differ from those found in ED patients. CONCLUSIONS This is the first study that evaluates the combined role of TFAP2B and KCTD15 genes in ED. Our preliminary findings suggest that the interaction of genetic variability in these loci could influence the risk for ED and/or anthropometric and psychological parameters.
Collapse
Affiliation(s)
- Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | - Luz M González
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | | | - David Albuquerque
- Service of Clinical Analyses General University Hospital Valencia Spain.,Research Center for Anthropology and Health (CIAS) University of Coimbra Coimbra Portugal
| | - Juan A Carrillo
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| | | | - Isalud Flores
- Eating Disorders UnitInstitute of Mental Disorders Health Service of Extremadura Badajoz Spain
| | - Guillermo Gervasini
- Department of Medical & Surgical Therapeutics Division of Pharmacology Medical School University of Extremadura Badajoz Spain
| |
Collapse
|
9
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Fernàndez-Castillo N, Cormand B. Aggressive behavior in humans: Genes and pathways identified through association studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171:676-96. [PMID: 26773414 DOI: 10.1002/ajmg.b.32419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
11
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Gervasini G, Gamero-Villarroel C. Discussing the putative role of obesity-associated genes in the etiopathogenesis of eating disorders. Pharmacogenomics 2015; 16:1287-1305. [DOI: 10.2217/pgs.15.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In addition to the identification of mutations clearly related to Mendelian forms of obesity; genome-wide association studies and follow-up studies have in the last years pinpointed several loci associated with BMI. These genetic alterations are located in or near genes expressed in the hypothalamus that are involved in the regulation of eating behavior. Accordingly, it seems plausible that these SNPs, or others located in related genes, could also help develop aberrant conduct patterns that favor the establishment of eating disorders should other susceptibility factors or personality dimensions be present. However, and somewhat surprisingly, with few exceptions such as BDNF, the great majority of the genes governing these pathways remain untested in patients with anorexia nervosa, bulimia nervosa or binge-eating disorder. In the present work, we review the few existing studies, but also indications and biological concepts that point to these genes in the CNS as good candidates for association studies with eating disorder patients.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| | - Carmen Gamero-Villarroel
- Department of Medical & Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, Av. Elvas s/n, E-06005, Badajoz, Spain
| |
Collapse
|
13
|
Yang C, Ba H, Gao Z, Zhao H, Yu H, Guo W. Case-control study of allele frequencies of 15 short tandem repeat loci in males with impulsive violent behavior. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 25:354-63. [PMID: 24991178 PMCID: PMC4054583 DOI: 10.3969/j.issn.1002-0829.2013.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/12/2013] [Indexed: 11/23/2022]
Abstract
Background Analysis of genetic polymorphisms in short tandem repeats (STRs) is an accepted method for detecting associations between genotype and phenotype but it has not previously been used in the study of the genetics of impulsive violent behavior. Objective Compare the prevalence of different polymorphisms in 15 STR loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA) between men with a history of impulsive violence and male control subjects without a history of impulsive violence. Methods The distributions of the alleles of the 15 STR loci were compared between 407 cases with impulsive violent behavior and 415 controls using AmpFlSTR® Identifiler™ kits. Results Compared to controls, the average frequencies of the following alleles were significantly lower in individuals with a history of violent behavior: allele 10 of TH01 (OR=0.29, 95%CI=0.16-0.52, p<0.0001,), allele 8 of TPOX (OR=0.71, 95%CI=0.58-0.86, p=0.0005), allele 9 of TPOX (OR=0.65, 95%CI=0.47-0.89, p=0.0072) and allele 14 of CSF1PO (OR=0.27, 95%CI=0.11-0.68, p=0.0035). One allele was significantly higher in cases than controls: allele 11 of TPOX (OR=1.79, 95%CI=1.45-2.22, p<0.0001). Conclusions To the best of our knowledge, this is the first behavioral genetic study that clearly demonstrates a close relationship between specific genetic markers and impulsive aggression in non-psychiatric offenders. Further prospective work will be needed to determine whether or not the alleles identified can be considered risk factors for impulsive aggression and, if so, the underlying mechanisms that result in this relationship.
Collapse
Affiliation(s)
- Chun Yang
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Huajie Ba
- Public Security Bureau of Changzhou, Jiangsu Province, China
| | - Zhiqin Gao
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Hanqing Zhao
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Haiying Yu
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| | - Wei Guo
- Psychiatry Center of Chinese People's Liberation Army, the PLA 102nd Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Ficks CA, Waldman ID. Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behav Genet 2014; 44:427-44. [PMID: 24902785 DOI: 10.1007/s10519-014-9661-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
Variation in central serotonin levels due to genetic mutations or experimental modifications has been associated with the manifestation of aggression in humans and animals. Many studies have examined whether common variants in serotonergic genes are implicated in aggressive or antisocial behaviors (ASB) in human samples. The two most commonly studied polymorphisms have been the serotonin transporter linked polymorphic region of the serotonin transporter gene (5HTTLPR) and the 30 base pair variable number of tandem repeats of the monoamine oxidase A gene (MAOA-uVNTR). Despite the aforementioned theoretical justification for these polymorphisms, findings across studies have been mixed and are thus difficult to interpret. A meta-analysis of associations of the 5HTTLPR and MAOA-uVNTR with ASB was conducted to determine: (1) the overall magnitude of effects for each polymorphism, (2) the extent of heterogeneity in effect sizes across studies and the likelihood of publication bias, and (3) whether sample-level or study-level characteristics could explain observed heterogeneity across studies. Both the 5HTTLPR and the MAOA-uVNTR were significantly associated with ASB across studies. There was also significant and substantial heterogeneity in the effect sizes for both markers, but this heterogeneity was not explained by any sample-level or study-level characteristics examined. We did not find any evidence for publication bias across studies for the MAOA-uVNTR, but there was evidence for an oversampling of statistically significant effect sizes for the 5HTTLPR. These findings provide support for the modest role of common serotonergic variants in ASB. Implications regarding the role of serotonin in antisocial behavior and the conceptualization of antisocial and aggressive phenotypes are discussed.
Collapse
Affiliation(s)
- Courtney A Ficks
- Psychology Department, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
15
|
Skakkebaek A, Bojesen A, Kristensen MK, Cohen A, Hougaard DM, Hertz JM, Fedder J, Laurberg P, Wallentin M, Østergaard JR, Pedersen AD, Gravholt CH. Neuropsychology and brain morphology in Klinefelter syndrome - the impact of genetics. Andrology 2014; 2:632-40. [DOI: 10.1111/j.2047-2927.2014.00229.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/24/2014] [Accepted: 05/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. Skakkebaek
- Department of Endocrinology and Internal Medicine (MEA); Aarhus University Hospital; Aarhus Denmark
| | - A. Bojesen
- Department of Clinical Genetics; Vejle Hospital; Sygehus Lillebaelt; Vejle Denmark
| | - M. K. Kristensen
- Department of Mental Health; Odense University Clinic; Odense Denmark
| | - A. Cohen
- Section of Neonatal Screening and Hormones; Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
| | - D. M. Hougaard
- Section of Neonatal Screening and Hormones; Department of Clinical Biochemistry, Immunology and Genetics; Statens Serum Institute; Copenhagen Denmark
| | - J. M. Hertz
- Department of Clinical Genetics; Odense University Hospital; Odense Denmark
| | - J. Fedder
- Fertility Clinic; Department of Gynecology and Obstetrics; Odense University Hospital; Odense Denmark
| | - P. Laurberg
- Department of Endocrinology; Aalborg University Hospital; Aalborg Denmark
| | - M. Wallentin
- Center of Functionally Integrative Neuroscience; Aarhus University Hospital; Aarhus Denmark
- Center for Semiotics; Aarhus University; Aarhus Denmark
| | - J. R. Østergaard
- Centre for Rare Diseases; Department of Pediatrics; Aarhus University Hospital; Aarhus Denmark
| | - A. D. Pedersen
- Vejleford Rehabilitation Center; Stouby Denmark
- Department of Psychology and Behavioral Sciences; Aarhus University; Aarhus Denmark
| | - C. H. Gravholt
- Department of Endocrinology and Internal Medicine (MEA); Aarhus University Hospital; Aarhus Denmark
- Department of Molecular Medicine; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
16
|
Tatarelli R, Del Casale A, Tatarelli C, Serata D, Rapinesi C, Sani G, Kotzalidis GD, Girardi P. Behavioral genetics and criminal responsibility at the courtroom. Forensic Sci Int 2014; 237:40-5. [PMID: 24561558 DOI: 10.1016/j.forsciint.2014.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/21/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Several questions arise from the recent use of behavioral genetic research data in the courtroom. Ethical issues concerning the influence of biological factors on human free will, must be considered when specific gene patterns are advocated to constrain court's judgment, especially regarding violent crimes. Aggression genetics studies are both difficult to interpret and inconsistent, hence, in the absence of a psychiatric diagnosis, genetic data are currently difficult to prioritize in the courtroom. The judge's probabilistic considerations in formulating a sentence must take into account causality, and the latter cannot be currently ensured by genetic data.
Collapse
Affiliation(s)
- Roberto Tatarelli
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy.
| | - Antonio Del Casale
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; Department of Psychiatric Rehabilitation, Fondazione "P. Alberto Mileno Onlus", Vasto, CH, Italy
| | - Caterina Tatarelli
- Unit of Hematology, School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Daniele Serata
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; Department of Neuropsychiatry, Villa Rosa, Suore Ospedaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Chiara Rapinesi
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; Department of Neuropsychiatry, Villa Rosa, Suore Ospedaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Gabriele Sani
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Girardi
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Sant'Andrea Hospital, Rome, Italy; Department of Neuropsychiatry, Villa Rosa, Suore Ospedaliere of the Sacred Heart of Jesus, Viterbo, Italy
| |
Collapse
|
17
|
Vaillancourt KL, Dinsdale NL, Hurd PL. Estrogen receptor 1 promoter polymorphism and digit ratio in men. Am J Hum Biol 2012; 24:682-9. [DOI: 10.1002/ajhb.22297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Natalie L. Dinsdale
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Current Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Peter L. Hurd
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
18
|
Lenz B, Müller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, Bleich S, Kornhuber J. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Prog Neurobiol 2011; 96:136-63. [PMID: 22115850 DOI: 10.1016/j.pneurobio.2011.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023]
Abstract
There are well-known sex differences in the epidemiology and etiopathology of alcohol dependence. Male gender is a crucial risk factor for the onset of alcohol addiction. A directly modifying role of testosterone in alcohol addiction-related behavior is well established. Sex hormones exert both permanent (organizational) and transient (activational) effects on the human brain. The sensitive period for these effects lasts throughout life. In this article, we present a novel early sex hormone activity model of alcohol addiction. We propose that early exposure to sex hormones triggers structural (organizational) neuroadaptations. These neuroadaptations affect cellular and behavioral responses to adult sex hormones, sensitize the brain's reward system to the reinforcing properties of alcohol and modulate alcohol addictive behavior later in life. This review outlines clinical findings related to the early sex hormone activity model of alcohol addiction (handedness, the second-to-fourth-finger length ratio, and the androgen receptor and aromatase) and includes clinical and preclinical literature regarding the activational effects of sex hormones in alcohol drinking behavior. Furthermore, we discuss the role of the hypothalamic-pituitary-adrenal and -gonadal axes and the opioid system in mediating the relationship between sex hormone activity and alcohol dependence. We conclude that a combination of exposure to sex hormones in utero and during early development contributes to the risk of alcohol addiction later in life. The early sex hormone activity model of alcohol addiction may prove to be a valuable tool in the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pavlov KA, Chistiakov DA, Chekhonin VP. Genetic determinants of aggression and impulsivity in humans. J Appl Genet 2011; 53:61-82. [PMID: 21994088 DOI: 10.1007/s13353-011-0069-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022]
Abstract
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.
Collapse
Affiliation(s)
- Konstantin A Pavlov
- Department of Fundamental and Applied Neurobiology, Serbsky State Research Center of Forensic and Social Psychiatry, Kropotkinsky Pereulok 23, Moscow, Russia
| | | | | |
Collapse
|
20
|
Anstey KJ, Christensen H, Butterworth P, Easteal S, Mackinnon A, Jacomb T, Maxwell K, Rodgers B, Windsor T, Cherbuin N, Jorm AF. Cohort profile: the PATH through life project. Int J Epidemiol 2011; 41:951-60. [PMID: 21349904 DOI: 10.1093/ije/dyr025] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kaarin J Anstey
- Centre for Mental Health Research, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE There are significant individual differences in the extent to which mood and cognition change as a function of reproductive stage, menstrual phase, postpartum, and hormone therapy use. This review explores the extent to which variations or polymorphisms in the estrogen receptor alpha gene (ESR1) predict cognitive and mood outcomes. METHODS A literature search was conducted from 1995 to November 2009 through PubMed, Embase, and PsychINFO. Twenty-five manuscripts that summarize investigations of ESR1 in mental health were reviewed. RESULTS Among studies investigating ESR1 in relation to cognition, 11 of 14 case-control studies reported an association between ESR1 polymorphisms and risk for developing dementia. Three of four prospective cohort studies reported an association between ESR1 polymorphisms and significant cognitive decline. There are inconsistencies between case-control and cohort studies regarding whether specific ESR1 alleles increase or decrease the risk for cognitive dysfunction. The relationships between ESR1 and cognitive impairment tend to be specific to or driven by women and restricted to risk for Alzheimer disease rather than other dementia causes. Three of five studies examining ESR1 polymorphisms in relation to anxiety or depressive symptoms found significant associations. Significant associations have also been reported between ESR1 polymorphisms and childhood-onset mood disorder and premenstrual dysphoric disorder. CONCLUSIONS A strong relationship between ESR1 variants and cognitive outcomes is evident, and preliminary evidence suggests a role of the ESR1 gene in certain mood outcomes. Insights into the discordant results will come from future studies that include haplotype analyses, analyses within specific ethnic/racial populations, and sex-stratified analyses.
Collapse
|
22
|
Gunter TD, Vaughn MG, Philibert RA. Behavioral genetics in antisocial spectrum disorders and psychopathy: a review of the recent literature. BEHAVIORAL SCIENCES & THE LAW 2010; 28:148-173. [PMID: 20422643 DOI: 10.1002/bsl.923] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Behavioral geneticists are increasingly using the tools of molecular genetics to extend upon discoveries from twin, family, and adoption studies concerning the heritability of antisocial spectrum disorders and psychopathy. While there is a substantial body of research concerning antisocial spectrum disorders in the behavioral genetics literature, only a few studies could be located using the phenotype of psychopathy. In this report we summarize some of the recent molecular genetics work concerning antisocial spectrum disorders and psychopathy, with a focus on genes involved in the serotonergic and dopaminergic pathways, while also mentioning some of the novel genetic factors being considered. Monoamine oxidase (MAOA) and the serotonin transporter (5HTT) are reviewed at length, as these genes have received significant scientific attention in recent years and are sites of high biological plausibility in antisocial spectrum disorders and psychopathy.
Collapse
Affiliation(s)
- Tracy D Gunter
- Associate Professor, Saint Louis University Department of Neurology and Psychiatry, 1438 S Grand Blvd, St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
23
|
Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet 2010; 26:59-65. [PMID: 20036436 DOI: 10.1016/j.tig.2009.11.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/26/2023]
|
24
|
Gade-Andavolu R, Macmurray J, Comings DE, Calati R, Chiesa A, Serretti A. Association between the estrogen receptor TA polymorphism and Harm avoidance. Neurosci Lett 2009; 467:155-8. [PMID: 19822194 DOI: 10.1016/j.neulet.2009.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 11/16/2022]
Abstract
In the last decade a large number of studies focused on the recognition of gene variants modulating temperamental traits. The gene coding for the estrogen receptor alpha (ESR1) appears to be an interesting candidate and it has been found to be linked to Harm avoidance (HA). The aim of the present study was to investigate whether the ESR1 TA dinucleotide repeat polymorphism is associated with HA temperamental trait in a sample of Caucasian University students. One hundred ninety healthy subjects were genotyped for ESR1 TA dinucleotide repeat polymorphism and were administered the Temperament and Character Inventory (TCI). ESR1 TA repeat lengths were dichotomized into short and long categories. ANOVA was used to examine the influence of ESR1 variants (short/long) on the means of the TCI HA scores. HA was significantly associated with age and gender in our sample, being higher in older and female subjects. In the global sample as well as in men and women separately, individuals carrying the S/S variant showed significantly higher HA scores. Further analysis on the HA subscales revealed that specific differences could exist between men and women. Our results further suggest a possible role of ESR1 variants on HA. Further research is needed to replicate our findings as well as to better explore the neuro-biological mechanisms of the modulation of ESR1 on HA.
Collapse
Affiliation(s)
- R Gade-Andavolu
- Genetic Research Institute of the Desert, Rancho Mirage, California, United States
| | | | | | | | | | | |
Collapse
|
25
|
Aluja A, Garcia LF, Blanch A, De Lorenzo D, Fibla J. Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate's sample. J Psychiatr Res 2009; 43:906-14. [PMID: 19121834 DOI: 10.1016/j.jpsychires.2008.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The association between different impulsive-disinhibited personality traits with 5-HTTLPR and 5-HTTVNTR genetic polymorphisms was examined in an imprisoned male sample. Higher scores of the impulsive-disinhibited personality traits tended to be associated with carrying one or two copies of the 5-HTTPLR S allele (S/S homozygous and S/L heterozygous), and carrying two copies of the 5-HTTVNTR 12 allele (12/12 homozygous). Genotype, allele, haplotype and extended genotype distribution between low and high impulsive-disinhibited groups confirmed this association. Allele S and genotypes S/S+S/L at the 5-HTTLPR locus and allele 12 and genotype 12/12 at the 5-HTTVNTR locus were overrepresented in the high scoring group. Accordingly, allele S and allele 12 conferred a trend for risk to be in the high scoring group with an odds ratio (OR) of 1.8 (p < 0.035) and 1.7 (p < 0.014), respectively. In addition, extended genotype distribution shows that those S allele carriers (S/S homozygote and S/L heterozygote) that were also 12/12 homozygote, were overrepresented in the high scoring group (OR = 3.2; p < 0.004). The main risk of being in the high scoring group was assigned to those carrying two copies of the S-12 haplotype (OR = 5.7; p < 0.0007). We discuss the possible relationship between the two genetic serotonin polymorphisms and the personality impulsive-disinhibited traits investigated.
Collapse
Affiliation(s)
- Anton Aluja
- Department of Pedagogy and Psychology, University of Lleida, Avada Estudi General 4, Campus de Cappont, 25100 Lleida, Catalonia, Spain.
| | | | | | | | | |
Collapse
|
26
|
Newbury DF, Warburton PC, Wilson N, Bacchelli E, Carone S, Lamb JA, Maestrini E, Volpi EV, Mohammed S, Baird G, Monaco AP. Mapping of partially overlapping de novo deletions across an autism susceptibility region (AUTS5) in two unrelated individuals affected by developmental delays with communication impairment. Am J Med Genet A 2009; 149A:588-97. [PMID: 19267418 PMCID: PMC2680219 DOI: 10.1002/ajmg.a.32704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in reciprocal social interaction and communication, and repetitive and stereotyped behaviors and interests. Previous genetic studies of autism have shown evidence of linkage to chromosomes 2q, 3q, 7q, 11p, 16p, and 17q. However, the complexity and heterogeneity of the disorder have limited the success of candidate gene studies. It is estimated that 5% of the autistic population carry structural chromosome abnormalities. This article describes the molecular cytogenetic characterization of two chromosome 2q deletions in unrelated individuals, one of whom lies in the autistic spectrum. Both patients are affected by developmental disorders with language delay and communication difficulties. Previous karyotype analyses described the deletions as [46,XX,del(2)(q24.1q24.2)dn]. Breakpoint refinement by FISH mapping revealed the two deletions to overlap by approximately 1.1Mb of chromosome 2q24.1, a region which contains just one gene—potassium inwardly rectifying channel, subfamily J, member 3 (KCNJ3). However, a mutation screen of this gene in 47 autistic probands indicated that coding variants in this gene are unlikely to underlie the linkage between autism and chromosome 2q. Nevertheless, it remains possible that variants in the flanking genes may underlie evidence of linkage at this locus.
Collapse
Affiliation(s)
- Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Genetic evidence that Darwin was right about criminality: nature, not nurture. Med Hypotheses 2008; 70:1092-102. [PMID: 18434037 DOI: 10.1016/j.mehy.2008.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 01/02/2008] [Accepted: 01/04/2008] [Indexed: 11/22/2022]
Abstract
Darwin maintained that man's behaviours, just as the ones of the lower animals, are not cultural products of learning, but constitute evolutionarily selected innate traits that can be transmitted through biological inheritance. Coherently, Darwin wrote that "some elimination of the worst dispositions is always in progress... Malefactors are executed...so that they cannot freely transmit their bad qualities". Darwin's evolutionary deterministic views about the innateness of human behaviours and the heritability of criminal tendencies proved genially farsighted. Indeed, the scientific evidence that they are genetically determined became indisputable just in this century, about 120 years after Darwin's death. This article, besides discussing human genetic variation and the genetic basis of pro-social traits, focuses on the recent and mounting evidence that points to genes for antisocial behaviours, genes for criminality, and genes for violence. All of them contribute to discredit further the scientifically untenable cultural dogma claiming that human behaviours reflect nurture, represented by social environments, not nature, in the form of biological factors. Genes for criminality and violence also concur to demolish the ideological dogma espoused by those who assert that criminality is a result of poverty and unemployment. The falsity of that politically biased dogma, as argued in this article, is also demonstrated by the fact that Brazil, despite significant reductions of poverty, socioeconomic disparities, and unemployment during the last five years, is facing a spiralling increase in criminal misdeeds, including homicides, which have reached an alarming rate that is nearly fivefold higher than the already worrying one of the USA.
Collapse
|