1
|
White TE. Deceptive pollinator lures benefit from physical and perceptual proximity to flowers. Ecol Evol 2024; 14:e11120. [PMID: 38450320 PMCID: PMC10917580 DOI: 10.1002/ece3.11120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Predators often use deception to exploit sensory and cognitive biases in prey. In pollinating insects, these include preferences for conspicuous colours associated with flowers, which predators such as orb-web spiders display as prey lures. Theory predicts that deceptive signal efficacy should covary with both their perceptual similarity and physical proximity to the resources-here, flowers-whose cues they are imitating. Here I used the colour-polymorphic jewelled spider Gasteracantha fornicata to test this prediction. I first examined spiders' capture success in the field, and found their visual resemblance and physical proximity to flowers interacted to mediate capture rates, with colour-similarity becoming increasingly important as the distance between spiders and flowers decreased. I then replicated this interaction experimentally. Spiders adjacent to colour-matched flowers enjoyed heightened capture success relative to those with nearby but colour-mismatched flowers. While spiders with flowers placed at a distance (irrespective of colour) recorded the fewest captures. These results support 'neighbourhood' effects in aggressive deception as receivers' vulnerability to exploitation is mediated by the local signalling community. More generally, they emphasise the importance of the broader information landscape in the ecology of communication, and suggest misinformation is most effective when physically and perceptually proximate to the truth.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
3
|
Attracted to feed, not to be fed upon – on the biology of Toxomerus basalis (Walker, 1836), the kleptoparasitic ‘sundew flower fly’ (Diptera: Syrphidae). JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
The complete life history of the kleptoparasitic ‘sundew flower fly’, Toxomerus basalis, is presented and illustrated. Adults of this species are photographed alive for the first time, including video recordings of larval and adult behaviour. Adult flies of both sexes visit Drosera (sundews) and show territorial behaviour around the plants, avoiding the dangerous sticky traps and demonstrating recognition of their larval host plant. Females lay eggs directly on non-sticky parts of the Drosera host plants, such as on the lower surface of the leaves and flower stalks, but apparently also on other plants growing in close proximity with the sundews.
Collapse
|
4
|
Selective Bacterial Community Enrichment between the Pitcher Plants Sarracenia minor and Sarracenia flava. Microbiol Spectr 2021; 9:e0069621. [PMID: 34817222 PMCID: PMC8612160 DOI: 10.1128/spectrum.00696-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The interconnected and overlapping habitats present in natural ecosystems remain a challenge in determining the forces driving microbial community composition. The cuplike leaf structures of some carnivorous plants, including those of the family Sarraceniaceae, are self-contained ecological habitats that represent systems for exploring such microbial ecology questions. We investigated whether Sarracenia minor and Sarracenia flava cultivate distinct bacterial communities when sampled at the same geographic location and time. This sampling strategy eliminates many abiotic environmental variables present in other studies that compare samples harvested over time, and it could reveal biotic factors driving the selection of microbes. DNA extracted from the decomposing detritus trapped in each Sarracenia leaf pitcher was profiled using 16S rRNA amplicon sequencing. We identified a surprising amount of bacterial diversity within each pitcher, but we also discovered bacteria whose abundance was specifically enriched in one of the two Sarracenia species. These differences in bacterial community representation suggest some biotic influence of the Sarracenia plant on the bacterial composition of their pitchers. Overall, our results suggest that bacterial selection due to factors other than geographic location, weather, or prey availability is occurring within the pitchers of these two closely related plant species. This indicates that specific characteristics of S. minor and S. flava may play a role in fostering distinct bacterial communities. These confined, naturally occurring microbial ecosystems within Sarracenia pitchers may provide model systems to answer important questions about the drivers of microbial community composition, succession, and response to environmental perturbations. IMPORTANCE This study uses amplicon sequencing to compare the bacterial communities of environmental samples from the detritus of the leaf cavities of Sarracenia minor and Sarracenia flava pitcher plants. We sampled the detritus at the same time and in the same geographic location, eliminating many environmental variables present in other comparative studies. This study revealed that different species of Sarracenia contain distinct bacterial members within their pitchers, suggesting that these communities are not randomly established based on environmental factors and the prey pool but are potentially enriched for by the plants' chemical or physical environment. This study of these naturally occurring, confined microbial ecosystems will help further establish carnivorous pitcher plants as a model system for answering important questions about the development and succession of microbial communities.
Collapse
|
5
|
Dávila-Lara A, Reichelt M, Wang D, Vogel H, Mithöfer A. Proof of anthocyanins in the carnivorous plant genus Nepenthes. FEBS Open Bio 2021; 11:2576-2585. [PMID: 34289256 PMCID: PMC8409308 DOI: 10.1002/2211-5463.13255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Yellow to red colored betalains are a chemotaxonomic feature of Caryophyllales, while in most other plant taxa, anthocyanins are responsible for these colors. The carnivorous plant family Nepenthaceae belongs to Caryophyllales; here, red‐pigmented tissues seem to attract insect prey. Strikingly, the chemical nature of red color in Nepenthes has never been elucidated. Although belonging to Caryophyllales, in Nepenthes, some molecular evidence supports the presence of anthocyanins rather than betalains. However, there was previously no direct chemical proof of this. Using ultra‐high‐performance liquid chromatography‐electrospray ionization‐high‐resolution mass spectrometry, we identified cyanidin glycosides in Nepenthes species and tissues. Further, we reveal the existence of a complete set of constitutively expressed anthocyanin biosynthetic genes in Nepenthes. Thus, here we finally conclude the long‐term open question regarding red pigmentation in Nepenthaceae.
Collapse
Affiliation(s)
- Alberto Dávila-Lara
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ding Wang
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Shchennikova AV, Beletsky AV, Filyushin MA, Slugina MA, Gruzdev EV, Mardanov AV, Kochieva EZ, Ravin NV. Nepenthes × ventrata Transcriptome Profiling Reveals a Similarity Between the Evolutionary Origins of Carnivorous Traps and Floral Organs. FRONTIERS IN PLANT SCIENCE 2021; 12:643137. [PMID: 34122470 PMCID: PMC8194089 DOI: 10.3389/fpls.2021.643137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The emergence of the carnivory syndrome and traps in plants is one of the most intriguing questions in evolutionary biology. In the present study, we addressed it by comparative transcriptomics analysis of leaves and leaf-derived pitcher traps from a predatory plant Nepenthes ventricosa × Nepenthes alata. Pitchers were collected at three stages of development and a total of 12 transcriptomes were sequenced and assembled de novo. In comparison with leaves, pitchers at all developmental stages were found to be highly enriched with upregulated genes involved in stress response, specification of shoot apical meristem, biosynthesis of sucrose, wax/cutin, anthocyanins, and alkaloids, genes encoding digestive enzymes (proteases and oligosaccharide hydrolases), and flowering-related MADS-box genes. At the same time, photosynthesis-related genes in pitchers were transcriptionally downregulated. As the MADS-box genes are thought to be associated with the origin of flower organs from leaves, we suggest that Nepenthes species could have employed a similar pathway involving highly conserved MADS-domain transcription factors to develop a novel structure, pitcher-like trap, for capture and digestion of animal prey during the evolutionary transition to carnivory. The data obtained should clarify the molecular mechanisms of trap initiation and development and may contribute to solving the problem of its emergence in plants.
Collapse
|
7
|
Ojeda F, Carrera C, Paniw M, García-Moreno L, Barbero GF, Palma M. Volatile and Semi-Volatile Organic Compounds May Help Reduce Pollinator-Prey Overlap in the Carnivorous Plant Drosophyllum lusitanicum (Drosophyllaceae). J Chem Ecol 2021; 47:73-86. [PMID: 33417071 DOI: 10.1007/s10886-020-01235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Most carnivorous plants show a conspicuous separation between flowers and leaf-traps, which has been interpreted as an adaptive response to minimize pollinator-prey conflicts which will reduce fitness. Here, we used the carnivorous subshrub Drosophyllum lusitanicum (Drosophyllaceae) to explore if and how carnivorous plants with minimal physical separation of flower and trap avoid or reduce a likely conflict of pollinator and prey. We carried out an extensive field survey in the Aljibe Mountains, at the European side of the Strait of Gibraltar, of pollinating and prey insects of D. lusitanicum. We also performed a detailed analysis of flower and leaf volatile and semi-volatile organic compounds (VOCs and SVOCs, respectively) by direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) to ascertain whether this species shows different VOC/SVOC profiles in flowers and leaf-traps that might attract pollinators and prey, respectively. Our results show a low overlap between pollinator and prey groups as well as clear differences in the relative abundance of VOCs and SVOCs between flowers and leaf-traps. Coleopterans and hymenopterans were the most represented groups of floral visitors, whereas dipterans were the most diverse group of prey insects. Regarding VOCs and SVOCs, while aldehydes and carboxylic acids presented higher relative contents in leaf-traps, alkanes and plumbagin were the main VOC/SVOC compounds detected in flowers. We conclude that D. lusitanicum, despite its minimal flower-trap separation, does not seem to present a marked pollinator-prey conflict. Differences in the VOCs and SVOCs produced by flowers and leaf-traps may help explain the conspicuous differences between pollinator and prey guilds.
Collapse
Affiliation(s)
- Fernando Ojeda
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain.
| | - Ceferino Carrera
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Maria Paniw
- Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra (UAB) Edifici C, ES-08193, Cerdanyola del Vallès, Spain
| | - Luis García-Moreno
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Gerardo F Barbero
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| | - Miguel Palma
- Departamento de Química Analítica-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Spain
| |
Collapse
|
8
|
Gilbert KJ, Bittleston LS, Naive MAK, Kiszewski AE, Buenavente PAC, Lohman DJ, Pierce NE. Investigation of an Elevational Gradient Reveals Strong Differences Between Bacterial and Eukaryotic Communities Coinhabiting Nepenthes Phytotelmata. MICROBIAL ECOLOGY 2020; 80:334-349. [PMID: 32291478 PMCID: PMC7371667 DOI: 10.1007/s00248-020-01503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Elevation is an important determinant of ecological community composition. It integrates several abiotic features and leads to strong, repeatable patterns of community structure, including changes in the abundance and richness of numerous taxa. However, the influence of elevational gradients on microbes is understudied relative to plants and animals. To compare the influence of elevation on multiple taxa simultaneously, we sampled phytotelm communities within a tropical pitcher plant (Nepenthes mindanaoensis) along a gradient from 400 to 1200 m a.s.l. We use a combination of metabarcoding and physical counts to assess diversity and richness of bacteria, micro-eukaryotes, and arthropods, and compare the effect of elevation on community structure to that of regulation by a number of plant factors. Patterns of community structure differed between bacteria and eukaryotes, despite their living together in the same aquatic microhabitats. Elevation influences community composition of eukaryotes to a significantly greater degree than it does bacteria. When examining pitcher characteristics, pitcher dimorphism has an effect on eukaryotes but not bacteria, while variation in pH levels strongly influences both taxa. Consistent with previous ecological studies, arthropod abundance in phytotelmata decreases with elevation, but some patterns of abundance differ between living inquilines and prey.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA.
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA, 16802, USA.
| | - Leonora S Bittleston
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Department of Biological Sciences, Boise State University, 1910 W University Dr, Boise, ID, 83725, USA
| | - Mark Arcebal K Naive
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Ave, 9200, Iligan, Lanao del Norte, Philippines
| | - Anthony E Kiszewski
- Department of Natural and Applied Sciences, Bentley University, 175 Forest Street, Waltham, MA, 02452, USA
| | | | - David J Lohman
- Entomology Section, National Museum of Natural History, Manila, Philippines
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
|
10
|
Malmberg RL, Rogers WL, Alabady MS. A carnivorous plant genetic map: pitcher/insect-capture QTL on a genetic linkage map of Sarracenia. Life Sci Alliance 2018; 1:e201800146. [PMID: 30519677 PMCID: PMC6265660 DOI: 10.26508/lsa.201800146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022] Open
Abstract
This study presents the first genetic map for a carnivorous plant, mapping 64 QTLs in Sarracenia to provide the genetic basis for differences between the pitfall and lobster-trap insect-capture strategies. The study of carnivorous plants can afford insight into their unique evolutionary adaptations and their interactions with prokaryotic and eukaryotic species. For Sarracenia (pitcher plants), we identified 64 quantitative trait loci (QTL) for insect-capture traits of the pitchers, providing the genetic basis for differences between the pitfall and lobster-trap strategies of insect capture. The linkage map developed here is based upon the F2 of a cross between Sarracenia rosea and Sarracenia psittacina; we mapped 437 single nucleotide polymorphism and simple sequence repeat markers. We measured pitcher traits which differ between S. rosea and S. psittacina, mapping 64 QTL for 17 pitcher traits; there are hot-spot locations where multiple QTL map near each other. There are epistatic interactions in many cases where there are multiple loci for a trait. The QTL map uncovered the genetic basis for the differences between pitfall- and lobster-traps, and the changes that occurred during the divergence of these species. The longevity and clonability of Sarracenia plants make the F2 mapping population a resource for mapping more traits and for phenotype-to-genotype studies.
Collapse
Affiliation(s)
- Russell L Malmberg
- Department of Plant Biology, Miller Plant Sciences Building, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, Davison Life Sciences Building, University of Georgia, Athens, GA, USA
| | - Willie L Rogers
- Department of Plant Biology, Miller Plant Sciences Building, University of Georgia, Athens, GA, USA
| | - Magdy S Alabady
- Department of Plant Biology, Miller Plant Sciences Building, University of Georgia, Athens, GA, USA.,Georgia Genomics and Bioinformatics Core, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Milne MA, Waller DA. Carnivorous pitcher plants eat a diet of certain spiders, regardless of what's on the menu. Ecosphere 2018. [DOI: 10.1002/ecs2.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Marc A. Milne
- Department of Biology University of Indianapolis Indianapolis Indiana 46227 USA
| | - Deborah A. Waller
- Department of Biology Old Dominion University Norfolk Virginia 23529 USA
| |
Collapse
|
12
|
Annis J, Coons J, Helm C, Molano-Flores B. The Role of Red Leaf Coloration in Prey Capture forPinguicula planifolia. SOUTHEAST NAT 2018. [DOI: 10.1656/058.017.0308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jenna Annis
- Eastern Illinois University, Biological Sciences Department, 600 Lincoln Avenue, Charleston, IL 61920
| | - Janice Coons
- Eastern Illinois University, Biological Sciences Department, 600 Lincoln Avenue, Charleston, IL 61920
| | - Charles Helm
- University of Illinois, Prairie Research Institute, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820
| | - Brenda Molano-Flores
- University of Illinois, Prairie Research Institute, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL 61820
| |
Collapse
|
13
|
Gilbert KJ, Nitta JH, Talavera G, Pierce NE. Keeping an eye on coloration: ecological correlates of the evolution of pitcher traits in the genus Nepenthes (Caryophyllales). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. THE NEW PHYTOLOGIST 2017; 214:597-606. [PMID: 28042877 DOI: 10.1111/nph.14404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13 C/15 N-glutamine (Gln). The release of 13 CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13 C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.
Collapse
Affiliation(s)
- Lukas Fasbender
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Daniel Maurer
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jörg Kruse
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Saleh Alfarraj
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Christiane Werner
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
|
16
|
Pollinator-prey conflicts in carnivorous plants: When flower and trap properties mean life or death. Sci Rep 2016; 6:21065. [PMID: 26888545 PMCID: PMC4757879 DOI: 10.1038/srep21065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022] Open
Abstract
Insect-pollinated carnivorous plants are expected to have higher fitness if they resolve pollinator-prey conflicts by sparing insects pollinating their flowers while trapping prey insects. We examined whether separation between flowers and traps of the carnivorous sundew species or pollinator preferences for colours of flowers enable these plants to spare pollinators. In addition, we collected odours from flowers and traps of each carnivorous species in order to identify volatile chemicals that are attractive or repellent to pollinators and prey insects. In Drosera spatulata and D. arcturi, no volatiles were detected from either their flowers or traps that could serve as kairomone attractants for insects. However, behavioural experiments indicated white colour and spatial separation between flowers and traps aid in reducing pollinator entrapment while capturing prey. In contrast, D. auriculata have flowers that are adjacent to their traps. In this species we identified chemical signals emanating from flowers that comprised an eight-component blend, while the plant’s traps emitted a unique four-component blend. The floral odour attracted both pollinator and prey insects, while trap odour only attracted prey. This is the first scientific report to demonstrate that carnivorous plants utilize visual, spatial, and chemical signals to spare flower visitors while trapping prey insects.
Collapse
|
17
|
LoPresti EF, Pearse IS, Charles GK. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects. Ecology 2015; 96:2862-9. [DOI: 10.1890/15-0342.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
del Valle JC, Buide ML, Casimiro-Soriguer I, Whittall JB, Narbona E. On flavonoid accumulation in different plant parts: variation patterns among individuals and populations in the shore campion (Silene littorea). FRONTIERS IN PLANT SCIENCE 2015; 6:939. [PMID: 26579180 PMCID: PMC4625047 DOI: 10.3389/fpls.2015.00939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/16/2015] [Indexed: 05/23/2023]
Abstract
The presence of anthocyanins in flowers and fruits is frequently attributed to attracting pollinators and dispersers. In vegetative organs, anthocyanins and other non-pigmented flavonoids such as flavones and flavonols may serve protective functions against UV radiation, cold, heat, drought, salinity, pathogens, and herbivores; thus, these compounds are usually produced as a plastic response to such stressors. Although, the independent accumulation of anthocyanins in reproductive and vegetative tissues is commonly postulated due to differential regulation, the accumulation of flavonoids within and among populations has never been thoroughly compared. Here, we investigated the shore campion (Silene littorea, Caryophyllaceae) which exhibits variation in anthocyanin accumulation in its floral and vegetative tissues. We examined the in-situ accumulation of flavonoids in floral (petals and calyxes) and vegetative organs (leaves) from 18 populations representing the species' geographic distribution. Each organ exhibited considerable variability in the content of anthocyanins and other flavonoids both within and among populations. In all organs, anthocyanin and other flavonoids were correlated. At the plant level, the flavonoid content in petals, calyxes, and leaves was not correlated in most of the populations. However, at the population level, the mean amount of anthocyanins in all organs was positively correlated, which suggests that the variable environmental conditions of populations may play a role in anthocyanin accumulation. These results are unexpected because the anthocyanins are usually constitutive in petals, yet contingent to environmental conditions in calyxes and leaves. Anthocyanin variation in petals may influence pollinator attraction and subsequent plant reproduction, yet the amount of anthocyanins may be a direct response to environmental factors. In populations on the west coast, a general pattern of increasing accumulation of flavonoids toward southern latitudes was observed in calyxes and leaves. This pattern corresponds to a gradual increase of UV-B radiation and temperature, and a decrease of rainfall toward the south. However, populations along the southern coast exposed to similar climatic stressors showed highly variable flavonoid contents, implying that other factors may play a role in flavonoid accumulation.
Collapse
Affiliation(s)
- José C. del Valle
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de OlavideSeville, Spain
| | - Ma L. Buide
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de OlavideSeville, Spain
| | - Inés Casimiro-Soriguer
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de OlavideSeville, Spain
| | - Justen B. Whittall
- Department of Biology, College of Arts and Sciences, Santa Clara UniversitySanta Clara, CA, USA
| | - Eduardo Narbona
- Área de Botánica, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de OlavideSeville, Spain
| |
Collapse
|
19
|
|
20
|
Stephens JD, Godwin RL, Folkerts DR. Distinctions in Pitcher Morphology and Prey Capture of the Okefenokee Variety within the Carnivorous Plant SpeciesSarracenia minor. SOUTHEAST NAT 2015. [DOI: 10.1656/058.014.0208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Bertol N, Paniw M, Ojeda F. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant. AMERICAN JOURNAL OF BOTANY 2015; 102:689-94. [PMID: 26022483 DOI: 10.3732/ajb.1400544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/10/2015] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low-nutrient environments. Disparate mechanisms have been suggested as luring traits to attract prey insects into their deadly leaves, ranging from very elaborate to none at all. Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves or they act just as passive traps. METHODS We compared prey capture between live, potted plants and Drosophyllum-shaped artificial mimics coated with odorless glue. Since this species is insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by quantifying the similarity between the pollination and prey guilds in a natural population. All experiments were done in southern Spain. KEY RESULTS The sticky leaves of Drosophyllum captured significantly more prey than mimics, particularly small dipterans. Prey attraction, likely exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as inferred from the low similarity between pollinator and prey insect faunas found in this species. CONCLUSIONS Our results illustrate the effectiveness of this carnivorous species at attracting insects to their flypaper-trap leaves.
Collapse
Affiliation(s)
- Nils Bertol
- Departamento de Biología-ceiA3, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real, Cádiz, Spain
| | - Maria Paniw
- Departamento de Biología-ceiA3, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real, Cádiz, Spain
| | - Fernando Ojeda
- Departamento de Biología-ceiA3, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Fernández-Marín B, Esteban R, Míguez F, Artetxe U, Castañeda V, Pintó-Marijuan M, Becerril JM, García-Plazaola JI. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests. AOB PLANTS 2015; 7:plv042. [PMID: 25922298 PMCID: PMC4481727 DOI: 10.1093/aobpla/plv042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/02/2015] [Indexed: 05/22/2023]
Abstract
Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain Present address: Institute of Botany and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Sterwartestraße 15, A-6020 Innsbruck, Austria
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain IdAB-CSIC-UPNA-Government of Navarre, E-31192 Pamplona, Spain
| | - Fátima Míguez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Verónica Castañeda
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain UPNA, E-31192 Pamplona, Spain
| | - Marta Pintó-Marijuan
- Department of Plant Biology, University of Barcelona. Av. Diagonal 643, E-08028 Barcelona, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| |
Collapse
|
23
|
Jürgens A, Witt T, Sciligo A, El‐Sayed AM. The effect of trap colour and trap‐flower distance on prey and pollinator capture in carnivorous
Drosera
species. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Jürgens
- The New Zealand Institute for Plant & Food Research Limited PB 4704 Christchurch New Zealand
- Landcare Research Canterbury Research Centre PO Box 69 Lincoln 7640 New Zealand
- School of Life Sciences University of KwaZulu‐Natal P. Bag X01 Scottsville Pietermaritzburg 3209 South Africa
| | - Taina Witt
- The New Zealand Institute for Plant & Food Research Limited PB 4704 Christchurch New Zealand
- Landcare Research Canterbury Research Centre PO Box 69 Lincoln 7640 New Zealand
| | - Amber Sciligo
- Bio‐Protection Research Centre Lincoln University PO Box 84Canterbury New Zealand
| | - Ashraf M. El‐Sayed
- The New Zealand Institute for Plant & Food Research Limited PB 4704 Christchurch New Zealand
| |
Collapse
|
24
|
Foot G, Rice SP, Millett J. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function. Biol Lett 2014; 10:20131024. [PMID: 24740904 DOI: 10.1098/rsbl.2013.1024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia. We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia, there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia, red trap colour does not serve a prey attraction or camouflage function.
Collapse
Affiliation(s)
- G Foot
- School of Life Sciences, The University of Warwick, , Coventry CV4 7AL, UK
| | | | | |
Collapse
|
25
|
O'Hanlon JC. The Roles of Colour and Shape in Pollinator Deception in the Orchid MantisHymenopus coronatus. Ethology 2014. [DOI: 10.1111/eth.12238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- James C. O'Hanlon
- Department of Biological Sciences; Macquarie University; North Ryde NSW Australia
| |
Collapse
|
26
|
Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler JP, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H. The Venus flytrap attracts insects by the release of volatile organic compounds. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:755-66. [PMID: 24420576 PMCID: PMC3904726 DOI: 10.1093/jxb/ert455] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Ursel Scheerer
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Jörg Kruse
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Tim Burzlaff
- Professur für Forstzoologie und Entomologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Tennenbacher Strasse 4, 79085 Freiburg, Germany
| | - Anne Honsel
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Plamen Georgiev
- Fly Facility, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Ines Kreuzer
- Lehrstuhl für Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Lehrstuhl für Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Professur für Baumphysiologie, Institut für Forstwissenschaften, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, 79110 Freiburg, Germany
| |
Collapse
|
27
|
Pavlovič A, Krausko M, Libiaková M, Adamec L. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. ANNALS OF BOTANY 2014; 113:69-78. [PMID: 24201141 PMCID: PMC3864725 DOI: 10.1093/aob/mct254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/11/2013] [Indexed: 05/24/2023]
Abstract
UNLABELLED BACKROUND AND AIMS: It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. METHODS Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). KEY RESULTS Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). CONCLUSIONS According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Lubomír Adamec
- Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| |
Collapse
|
28
|
Horner JD. Phenology and Pollinator-Prey Conflict in the Carnivorous Plant, Sarracenica alata. AMERICAN MIDLAND NATURALIST 2014. [DOI: 10.1674/0003-0031-171.1.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Crowley PH, Hopper KR, Krupa JJ. An Insect-Feeding Guild of Carnivorous Plants and Spiders: Does Optimal Foraging Lead to Competition or Facilitation? Am Nat 2013; 182:801-19. [DOI: 10.1086/673477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Egan PA, van der Kooy F. Coproduction and ecological significance of naphthoquinones in carnivorous sundews (Drosera). Chem Biodivers 2012; 9:1033-44. [PMID: 22700223 DOI: 10.1002/cbdv.201100274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While the 1,4-naphthoquinone derivatives 7-methyljuglone (1) and plumbagin (2) possess a diverse and well documented array of biological activities, relatively little remains known about the functional significance of these compounds in planta and, in particular, their possible relation to carnivorous syndromes. In addition, the chemotaxonomic distribution of naphthoquinones (NQs) amongst species of Drosera L. is of phytopharmaceutical interest. Following the quantitative assessment of interspecific variation of 1 and 2 in 13 species and cultivars of Drosera, our findings demonstrate that these NQs are ubiquitously coproduced in, generally, species-specific ratios, and that 1 appears negatively associated with the occurrence of pigmentation in sundews. The prospective antifeedant function of 1 was evaluated in relation to allocation in various organs and ontogenetic phases of D. capensis L., revealing that significantly higher levels were accumulated in young and reproductive organs, most likely for defensive purposes. Investigation into the relationship between the biosynthesis of NQs and carnivory showed that production of 1 is optimally induced and localized in leaves in response to capture of insect prey. As a whole, these findings reveal the clear importance of this secondary metabolite in ecological interactions as well as holding implication for future bioactivity studies on the genus.
Collapse
Affiliation(s)
- Paul A Egan
- Natural Products Laboratory, Institute of Biology, Leiden University, NL-2300 RA Leiden
| | | |
Collapse
|
31
|
Król E, Płachno BJ, Adamec L, Stolarz M, Dziubińska H, Trebacz K. Quite a few reasons for calling carnivores 'the most wonderful plants in the world'. ANNALS OF BOTANY 2012; 109:47-64. [PMID: 21937485 PMCID: PMC3241575 DOI: 10.1093/aob/mcr249] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/08/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as 'the most wonderful plants in the world'. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features. SCOPE This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory. CONCLUSIONS Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory.
Collapse
Affiliation(s)
- Elzbieta Król
- Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
32
|
Age-Related Changes in Characteristics and Prey Capture of Seasonal Cohorts of Sarracenia alata Pitchers. AMERICAN MIDLAND NATURALIST 2012. [DOI: 10.1674/0003-0031-167.1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Jürgens A, Sciligo A, Witt T, El-Sayed AM, Suckling DM. Pollinator-prey conflict in carnivorous plants. Biol Rev Camb Philos Soc 2011; 87:602-15. [DOI: 10.1111/j.1469-185x.2011.00213.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Cross-habitat predation in Nepenthes gracilis: the red crab spider Misumenops nepenthicola influences abundance of pitcher dipteran larvae. JOURNAL OF TROPICAL ECOLOGY 2011. [DOI: 10.1017/s0266467411000629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract:Phytotelmata (plant-held waters) are useful ecological models for studying predator–prey interactions. However, the ability of terrestrial predators to influence organism abundance within phytotelmata remains poorly studied. We investigated the predation of two pitcher-dwelling spiders, the red crab spider Misumenops nepenthicola and the yellow crab spider Thomisus nepenthiphilus (Araneae: Thomisidae) on dipteran larval abundance by manipulating their presence in the pitcher Nepenthes gracilis. Lower abundance in the larvae of the mosquito Tripteriodes spp. and increased spider mass were recorded after M. nepenthicola was introduced into laboratory-maintained pitchers (n = 10); T. nepenthiphilus did not affect larval abundance and a decrease in spider mass was recorded. Further investigations on two other dipteran larval species, the scuttle fly Endonepenthia schuitemakeri and gall midges Lestodiplosis spp., reported reduced numbers with the introduction of M. nepenthicola. We further tested this predation on dipteran larval abundance by its introduction, removal, and re-introduction to pitchers in the field (n = 42) over 1 mo. The spider's absence and presence significantly influenced larval numbers: all four dipteran species reported a significant decrease in numbers after M. nepenthicola was introduced. These results are one of the first to demonstrate the influence of a terrestrial phytotelm forager on the abundance of pitcher organisms via direct predation, reiterating the ecological importance of terrestrial phytotelm predators on phytotelm community structure and dynamics.
Collapse
|
35
|
Reeves JL. Vision should not be overlooked as an important sensory modality for finding host plants. ENVIRONMENTAL ENTOMOLOGY 2011; 40:855-863. [PMID: 22251686 DOI: 10.1603/en10212] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the last 50 yr, the role of vision in insect interactions with host plants has received relatively little attention. This lack of research is associated with a number of assumptions about chemical cues being the ultimate sensory determinants of host finding. This article presents arguments and detailed evidence to refute these assumptions. Insects from essentially all phytophagous orders use vision for locating host plants, and some recent examples have shown that vision can be even more important than olfaction. Moreover, a number of insects have the ability to visually differentiate host species. This ability means that the visual capabilities of phytophagous insects should not be underestimated. Visual cues always should be considered and integrated into studies of host finding.
Collapse
Affiliation(s)
- Justin L Reeves
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
36
|
Pitchers of Nepenthes rajah collect faecal droppings from both diurnal and nocturnal small mammals and emit fruity odour. JOURNAL OF TROPICAL ECOLOGY 2011. [DOI: 10.1017/s0266467411000162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:The pitchers of Nepenthes rajah, a montane carnivorous plant species from Borneo, are large enough to capture small vertebrates such as rats or lizards, which occasionally drown therein. The interactions of N. rajah with vertebrates, however, are poorly understood, and the potential mechanisms that lure vertebrates to the pitchers are largely unknown. We observed frequent visits (average: one visit per 4.2 h) of both the diurnal tree shrew Tupaia montana and the nocturnal rat Rattus baluensis to pitchers by infrared sensor camera and video recording. Both mammalian species often licked the inner surface of the pitcher lid, which harbours numerous exudate-producing glands. Analysis of volatiles extracted from the secretions of the pitcher lids by gas chromatography coupled to mass spectrometry (GC/MS) revealed 44 volatile compounds, including hydrocarbons, alcohols, esters, ketones and sulphur-containing compounds, which are commonly present in sweet fruit and flower odours. The faeces of small mammals were repeatedly observed inside the pitcher, whereas we found the body of only one Tupaia montana drowned in the 42, vital and reasonably large, surveyed pitchers. Our findings suggest that the N. rajah pitcher makes use of the perceptual biases of rats and tree shrews by emitting volatiles known from fruits. The profits that the plant obtains from the repeated visits of two small mammals, together with the provision of exudates for the mammals, comprise an exceptional case of plant–vertebrate interaction.
Collapse
|
37
|
Jennings DE, Krupa JJ, Raffel TR, Rohr JR. Evidence for competition between carnivorous plants and spiders. Proc Biol Sci 2010; 277:3001-8. [PMID: 20462904 PMCID: PMC2982022 DOI: 10.1098/rspb.2010.0465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/22/2010] [Indexed: 11/12/2022] Open
Abstract
Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap between pink sundews (Drosera capillaris) and wolf spiders (Lycosidae) in the field, and conducted a laboratory experiment examining the effects of wolf spiders on sundew fitness. In the field, we found that sundews and spiders had a high dietary overlap with each other and with the available arthropod prey. Associations between sundews and spiders depended on spatial scale: both sundews and spiders were found more frequently in quadrats with more abundant prey, but within quadrats, spiders constructed larger webs and located them further away from sundews as the total sundew trapping area increased, presumably to reduce competition. Spiders also constructed larger webs when fewer prey were available. In the laboratory, our experiment revealed that spiders can significantly reduce sundew fitness. Our findings suggest that members of the plant and animal kingdoms can and do compete.
Collapse
Affiliation(s)
- David E Jennings
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
We experimentally demonstrate in the field that prey of the carnivorous plant Sarracenia purpurea are attracted to sugar, not to colour. Prey capture (either all taxa summed or individual common taxa considered separately) was not associated with total red area or patterning on pitchers of living pitcher plants. We separated effects of nectar availability and coloration using painted 'pseudopitchers', half of which were coated with sugar solution. Unsugared pseudopitchers captured virtually no prey, whereas pseudopitchers with sugar solution captured the same amount of prey as living pitchers. In contrast to a recent study that associated red coloration with prey capture but that lacked controls for nectar availability, we infer that nectar, not colour, is the primary means by which pitcher plants attract prey.
Collapse
|
39
|
The Importance of Pitcher Size in Prey Capture in the Carnivorous Plant, Sarracenia alata Wood (Sarraceniaceae). AMERICAN MIDLAND NATURALIST 2009. [DOI: 10.1674/0003-0031-161.2.264] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Ellison AM, Gotelli NJ. Energetics and the evolution of carnivorous plants--Darwin's 'most wonderful plants in the world'. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:19-42. [PMID: 19213724 DOI: 10.1093/jxb/ern179] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carnivory has evolved independently at least six times in five angiosperm orders. In spite of these independent origins, there is a remarkable morphological convergence of carnivorous plant traps and physiological convergence of mechanisms for digesting and assimilating prey. These convergent traits have made carnivorous plants model systems for addressing questions in plant molecular genetics, physiology, and evolutionary ecology. New data show that carnivorous plant genera with morphologically complex traps have higher relative rates of gene substitutions than do those with simple sticky traps. This observation suggests two alternative mechanisms for the evolution and diversification of carnivorous plant lineages. The 'energetics hypothesis' posits rapid morphological evolution resulting from a few changes in regulatory genes responsible for meeting the high energetic demands of active traps. The 'predictable prey capture hypothesis' further posits that complex traps yield more predictable and frequent prey captures. To evaluate these hypotheses, available data on the tempo and mode of carnivorous plant evolution were reviewed; patterns of prey capture by carnivorous plants were analysed; and the energetic costs and benefits of botanical carnivory were re-evaluated. Collectively, the data are more supportive of the energetics hypothesis than the predictable prey capture hypothesis. The energetics hypothesis is consistent with a phenomenological cost-benefit model for the evolution of botanical carnivory, and also accounts for data suggesting that carnivorous plants have leaf construction costs and scaling relationships among leaf traits that are substantially different from those of non-carnivorous plants.
Collapse
Affiliation(s)
- Aaron M Ellison
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366, USA.
| | | |
Collapse
|