1
|
Zöttl M, Schreier T, Taborsky M. Coercion promotes alloparental care in cooperative breeders. Behav Ecol 2023; 34:363-372. [PMID: 37192918 PMCID: PMC10183202 DOI: 10.1093/beheco/arac125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 03/06/2023] Open
Abstract
Members of social groups may negotiate among each other about the exchange of goods and services. If this involves asymmetries between interacting partners, for instance in condition, power, or expected payoffs, coercion may be involved in the bargain. Cooperative breeders are excellent models to study such interactions, because asymmetries are inherent in the relationship between dominant breeders and subordinate helpers. Currently it is unclear whether punishment is used to enforce costly cooperation in such systems. Here we investigated experimentally in the cooperatively breeding cichlid Neolamprologus pulcher whether alloparental brood care provided by subordinates is contingent on enforcement by dominant breeders. We manipulated first the brood care behavior of a subordinate group member and then the possibility of the dominant breeders to punish idle helpers. When subordinates were prevented from providing brood care, breeders increased their attacks on them, which triggered increased alloparental brood care by helpers as soon as this was again possible. In contrast, when the possibility to punish helpers was prevented, energetically costly alloparental brood care did not increase. Our results confirm predictions of the pay-to-stay mechanism causing alloparental care in this species and they suggest more generally that coercion can play an important role in the control of cooperation.
Collapse
Affiliation(s)
- Markus Zöttl
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Tanja Schreier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Michael Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Max Planck Institute of Animal Behavior, D-78467 Konstanz, Germany
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany
| |
Collapse
|
2
|
Jungwirth A, Zöttl M, Bonfils D, Josi D, Frommen JG, Taborsky M. Philopatry yields higher fitness than dispersal in a cooperative breeder with sex-specific life history trajectories. SCIENCE ADVANCES 2023; 9:eadd2146. [PMID: 36867697 PMCID: PMC9984175 DOI: 10.1126/sciadv.add2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Social evolution is tightly linked to dispersal decisions, but the ecological and social factors selecting for philopatry or dispersal often remain obscure. Elucidating selection mechanisms underlying alternative life histories requires measurement of fitness effects in the wild. We report on a long-term field study of 496 individually marked cooperatively breeding fish, showing that philopatry is beneficial as it increases breeding tenure and lifetime reproductive success in both sexes. Dispersers predominantly join established groups and end up in smaller groups when they ascend to dominance. Life history trajectories are sex specific, with males growing faster, dying earlier, and dispersing more, whereas females more likely inherit a breeding position. Increased male dispersal does not seem to reflect an adaptive preference but rather sex-specific differences in intrasexual competition. Cooperative groups may thus be maintained because of inherent benefits of philopatry, of which females seem to get the greater share in social cichlids.
Collapse
Affiliation(s)
- Arne Jungwirth
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, A-1160 Vienna, Austria
| | - Markus Zöttl
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Danielle Bonfils
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Dario Josi
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
- Eawag Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Joachim G. Frommen
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Chester Street, M1 5GD Manchester, United Kingdom
| | - Michael Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
- Max Planck Institute of Animal Behavior, D-78467 Konstanz, Germany
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany
| |
Collapse
|
3
|
Gilbert JD, Rossiter SJ, Bennett NC, Faulkes CG. The elusive role of prolactin in the sociality of the naked mole-rat. Horm Behav 2022; 143:105196. [PMID: 35597054 DOI: 10.1016/j.yhbeh.2022.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
Despite decades of research into the evolutionary drivers of sociality, we know relatively little about the underlying proximate mechanisms. Here we investigate the potential role of prolactin in the highly social naked mole-rat. Naked mole-rats live in large social groups but, only a small number of individuals reproduce. The remaining non-breeders are reproductively suppressed and contribute to burrow maintenance, foraging, and allo-parental care. Prolactin has well-documented links with reproductive timing and parental behaviour, and the discovery that non-breeding naked mole-rats have unusually high prolactin levels has led to the suggestion that prolactin may help maintain naked mole-rat sociality. To test this idea, we investigated whether urinary prolactin was correlated with cooperative behaviour and aggression. We then administered the prolactin-suppressing drug Cabergoline to eight female non-breeders for eight weeks and assessed the physiology and behaviour of the animals relative to controls. Contrary to the mammalian norm, and supporting previous findings for plasma, we found non-breeders had elevated urinary prolactin concentrations that were similar to breeding females. Further, prolactin levels were higher in heavier, socially dominant non-breeders. Urinary prolactin concentrations did not explain variation in working behaviour or patterns of aggression. Furthermore, females receiving Cabergoline did not show any behavioural or hormonal (progesterone) differences, and urinary prolactin did not appear to be suppressed in individuals receiving Cabergoline. While the results add to the relatively limited literature experimentally manipulating prolactin to investigate its role in reproduction and behaviour, they fail to explain why prolactin levels are high in non-breeding naked mole-rats, or how female non-breeding phenotypes are maintained.
Collapse
Affiliation(s)
- James D Gilbert
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland.
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
García-Ruiz I, Quiñones A, Taborsky M. The evolution of cooperative breeding by direct and indirect fitness effects. SCIENCE ADVANCES 2022; 8:eabl7853. [PMID: 35622922 PMCID: PMC9140977 DOI: 10.1126/sciadv.abl7853] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The evolution of cooperative breeding has been traditionally attributed to the effect of kin selection. While there is increasing empirical evidence that direct fitness benefits are relevant, the relative importance of alternative selection mechanisms is largely obscure. Here, we model the coevolution of the cornerstones of cooperative breeding, delayed dispersal, and alloparental care, across different ecological scenarios while allowing individuals to adjust philopatry and helping levels. Our results suggest that (i) direct fitness benefits from grouping are the main driver for the evolution of philopatry; (ii) kin selection is mainly responsible for the emergence of alloparental care, but group augmentation can be a sufficient promoter in harsh environments; (iii) the coevolution of philopatry and alloparental care is subject to positive feedback; and (iv) age-dependent dispersal is triggered by both group benefits and relatedness. Model predictions are supported by empirical data and provide good opportunities for comparative analyses and experimental tests of causality.
Collapse
Affiliation(s)
- Irene García-Ruiz
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Andrés Quiñones
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Michael Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| |
Collapse
|
6
|
Siegmann S, Feitsch R, Hart DW, Bennett NC, Penn DJ, Zöttl M. Naked mole‐rats (
Heterocephalus glaber
) do not specialise in cooperative tasks. Ethology 2021. [DOI: 10.1111/eth.13160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susanne Siegmann
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Romana Feitsch
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Daniel W. Hart
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Nigel C. Bennett
- Department of Zoology and Entomology Mammal Research Institute University of Pretoria Pretoria South Africa
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Austria
| | - Markus Zöttl
- Ecology and Evolution in Microbial Model Systems EEMiS Department of Biology and Environmental Science Linnaeus University Kalmar Sweden
| |
Collapse
|
7
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Bernier NJ, Hamilton IM, Balshine S. Glucocorticoids do not promote prosociality in a wild group-living fish. Horm Behav 2021; 127:104879. [PMID: 33121993 DOI: 10.1016/j.yhbeh.2020.104879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Individuals often respond to social disturbances by increasing prosociality, which can strengthen social bonds, buffer against stress, and promote overall group cohesion. Given their importance in mediating stress responses, glucocorticoids have received considerable attention as potential proximate regulators of prosocial behaviour during disturbances. However, previous investigations have largely focused on mammals and our understanding of the potential prosocial effects of glucocorticoids across vertebrates more broadly is still lacking. Here, we assessed whether experimentally elevated glucocorticoid levels (simulating endogenous cortisol responses mounted following disturbances) promote prosocial behaviours in wild groups of the cichlid fish, Neolamprologus pulcher. Using SCUBA in Lake Tanganyika, we observed how subordinate group members adjusted affiliation, helping, and submission (all forms of prosocial behaviour) following underwater injections of either cortisol or saline. Cortisol treatment reduced affiliative behaviours-but only in females-suggesting that glucocorticoids may reduce overall prosociality. Fish with elevated glucocorticoid levels did not increase performance of submission or helping behaviours. Taken together, our results do not support a role for glucocorticoids in promoting prosocial behaviour in this species and emphasize the complexity of the proximate mechanisms that underlie prosociality.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Vernasco BJ, Moore IT. Testosterone as a mediator of the tradeoff between cooperation and competition in the context of cooperative reproductive behaviors. Gen Comp Endocrinol 2020; 288:113369. [PMID: 31857075 DOI: 10.1016/j.ygcen.2019.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
Behavioral tradeoffs occur when the expression of one behavior detracts from the expression of another. Understanding the proximate mediators of behavioral tradeoffs is important as these tradeoffs can act as potential constraints on evolutionary responses to selection. Here, we describe the tradeoff between cooperation and competition faced by species that exhibit cooperative reproductive behaviors and propose that testosterone is a key hormonal mediator of the tradeoff. Cooperative reproductive behaviors occur when multiple individuals coordinate their efforts to gain a reproductive advantage over other individuals and/or those individuals attempting to reproduce in absence of cooperation. We propose that testosterone, a sex steroid known to mediate a number of physiological and behavioral actions associated with reproductive competition, is involved in mediating the tradeoff between cooperation and competition. To support this proposition, we first describe the importance of individual variation in behavior to the evolution of cooperative behaviors. We then describe how proximate mechanisms represent a prominent source of individual variation in social behaviors and highlight evidence suggesting testosterone mediates variation in cooperative behaviors. Two case studies in which the relationship between testosterone and cooperative behaviors have been investigated in detail are then summarized. Throughout we highlight the importance of studying individual variation to understand the mechanistic basis of behaviors, behavioral tradeoffs, and the evolution of cooperative reproductive behaviors more broadly.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Naef J, Taborsky M. Commodity-specific punishment for experimentally induced defection in cooperatively breeding fish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191808. [PMID: 32257335 PMCID: PMC7062066 DOI: 10.1098/rsos.191808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/14/2020] [Indexed: 05/02/2023]
Abstract
Coercion is an important but underrated component in the evolution of cooperative behaviour. According to the pay-to-stay hypothesis of cooperative breeding, subordinates trade alloparental care for the concession to stay in the group. Punishment of idle subordinates is a key prediction of this hypothesis, which has received some experimental scrutiny. However, previous studies neither allowed separating between punishment and effects of disruption of social dynamics, nor did they differentiate between different helping behaviours that may reflect either mutualistic or reciprocal interaction dynamics. In the cooperative breeder Neolamprologus pulcher, we experimentally engineered the ability of subordinates to contribute to alloparental care by manipulating two different helping behaviours independently from one another in a full factorial design. We recorded the treatment effects on breeder aggression, subordinate helping efforts and submissive displays. We found two divergent regulatory mechanisms of cooperation, dependent on behavioural function. Experimental impediment of territory maintenance of subordinates triggered punishment by dominants, whereas prevented defence against egg predators released a compensatory response of subordinates without any enforcement, suggesting pre-emptive appeasement. These effects occurred independently of one another. Apparently, in the complex negotiation process among members of cooperative groups, behaviours fulfilling different functions may be regulated by divergent interaction mechanisms.
Collapse
Affiliation(s)
- Jan Naef
- Department for Behavioural Ecology, University of Bern, Wohlenstrasse 50a, Hinterkappelen CH-3032, Switzerland
| | | |
Collapse
|
10
|
|
11
|
|
12
|
Dantzer B, Dubuc C, Goncalves IB, Cram DL, Bennett NC, Ganswindt A, Heistermann M, Duncan C, Gaynor D, Clutton-Brock TH. The development of individual differences in cooperative behaviour: maternal glucocorticoid hormones alter helping behaviour of offspring in wild meerkats. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180117. [PMID: 30966876 PMCID: PMC6460081 DOI: 10.1098/rstb.2018.0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 01/04/2023] Open
Abstract
The phenotype of parents can have long-lasting effects on the development of offspring as well as on their behaviour, physiology and morphology as adults. In some cases, these changes may increase offspring fitness but, in others, they can elevate parental fitness at a cost to the fitness of their offspring. We show that in Kalahari meerkats ( Suricata suricatta), the circulating glucocorticoid (GC) hormones of pregnant females affect the growth and cooperative behaviour of their offspring. We performed a 3-year experiment in wild meerkats to test the hypothesis that GC-mediated maternal effects reduce the potential for offspring to reproduce directly and therefore cause them to exhibit more cooperative behaviour. Daughters (but not sons) born to mothers treated with cortisol during pregnancy grew more slowly early in life and exhibited significantly more of two types of cooperative behaviour (pup rearing and feeding) once they were adults compared to offspring from control mothers. They also had lower measures of GCs as they aged, which could explain the observed increases in cooperative behaviour. Because early life growth is a crucial determinant of fitness in female meerkats, our results indicate that GC-mediated maternal effects may reduce the fitness of offspring, but may elevate parental fitness as a consequence of increasing the cooperative behaviour of their daughters. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Constance Dubuc
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Ines Braga Goncalves
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Dominic L. Cram
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, 0002 Pretoria, South Africa
| | - Andre Ganswindt
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, 0002 Pretoria, South Africa
- Endocrine Research Laboratory, Department of Anatomy and Physiology, University of Pretoria, Onderstepoort 0110, South Africa
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Chris Duncan
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - David Gaynor
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, 0002 Pretoria, South Africa
| | - Tim H. Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
13
|
Pike KN, Ashton BJ, Morgan KV, Ridley AR. Social and Individual Factors Influence Variation in Offspring Care in the Cooperatively Breeding Western Australian Magpie. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Jungwirth A, Balzarini V, Zöttl M, Salzmann A, Taborsky M, Frommen JG. Long-term individual marking of small freshwater fish: the utility of Visual Implant Elastomer tags. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2659-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Torrents-Ticó M, Bennett NC, Jarvis JUM, Zöttl M. Growth affects dispersal success in social mole-rats, but not the duration of philopatry. Biol Lett 2018; 14:rsbl.2018.0005. [PMID: 29467175 DOI: 10.1098/rsbl.2018.0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/26/2018] [Indexed: 11/12/2022] Open
Abstract
In naked mole-rats (Heterocephalus glaber), some non-breeding males show faster growth and are more likely to disperse than others. These differences have been suggested to be the result of a specialized developmental strategy leading to shorter philopatry and independent breeding, as opposed to extended philopatry as non-reproductive helpers. However, it is unclear whether fast-growing males disperse sooner than slow-growing males. An alternative explanation is that variation in quality between individuals causes high-quality individuals to grow quickly and maximize dispersal success without reducing philopatry. Here we show that in Damaraland mole-rats (Fukomys damarensis), males that subsequently disperse successfully grow faster than other non-reproductive males. This pattern is predicted by both hypotheses and does not discriminate between them. However, contrary to the suggestion that faster growth represents a developmental specialization for early dispersal, fast-growing and slow-growing males remained equally long in their natal groups. Our study provides no evidence for adaptive divergence in male development leading either to early dispersal or extended philopatry. Instead of representing specialized dispersers, fast-growing males of this species may be high-quality individuals.
Collapse
Affiliation(s)
- Miquel Torrents-Ticó
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nigel C Bennett
- Department of Zoology, University of Pretoria, Pretoria, Hatfield 0028, South Africa
| | | | - Markus Zöttl
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK .,Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
16
|
Zöttl M, Vullioud P, Goddard K, Torrents-Ticó M, Gaynor D, Bennett NC, Clutton-Brock T. Allo-parental care in Damaraland mole-rats is female biased and age dependent, though independent of testosterone levels. Physiol Behav 2018; 193:149-153. [DOI: 10.1016/j.physbeh.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
|
17
|
Hellmann JK, Hamilton IM. Dominant and subordinate outside options alter help and eviction in a pay-to-stay negotiation model. Behav Ecol 2018. [DOI: 10.1093/beheco/ary006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Ringler E, Szipl G, Harrigan RJ, Bartl-Binder P, Mangione R, Ringler M. Hierarchical decision-making balances current and future reproductive success. Mol Ecol 2018; 27:2289-2301. [PMID: 29633409 PMCID: PMC5969290 DOI: 10.1111/mec.14583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/28/2018] [Accepted: 02/23/2018] [Indexed: 11/27/2022]
Abstract
Parental decisions in animals are often context‐dependent and shaped by fitness trade‐offs between parents and offspring. For example, the selection of breeding habitats can considerably impact the fitness of both offspring and parents, and therefore, parents should carefully weigh the costs and benefits of available options for their current and future reproductive success. Here, we show that resource‐use preferences are shaped by a trade‐off between parental effort and offspring safety in a tadpole‐transporting frog. In a large‐scale in situ experiment, we investigated decision strategies across an entire population of poison frogs that distribute their tadpoles across multiple water bodies. Pool use followed a dynamic and sequential selection process, and transportation became more efficient over time. Our results point to a complex suite of environmental variables that are considered during offspring deposition, which necessitates a highly dynamic and flexible decision‐making process in tadpole‐transporting frogs.
Collapse
Affiliation(s)
- Eva Ringler
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California.,Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria.,Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | - Georgine Szipl
- Core Facility KLF for Behaviour and Cognition, University of Vienna, Vienna, Austria
| | - Ryan J Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California
| | - Perta Bartl-Binder
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | - Rosanna Mangione
- Department of Integrative Zoology, University of Vienna, Vienna, Austria.,Haus des Meeres Aqua Terra Zoo GmbH, Vienna, Austria
| | - Max Ringler
- Department of Integrative Zoology, University of Vienna, Vienna, Austria.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Kingma SA, Komdeur J, Hammers M, Richardson DS. The cost of prospecting for dispersal opportunities in a social bird. Biol Lett 2017; 12:rsbl.2016.0316. [PMID: 27330175 PMCID: PMC4938056 DOI: 10.1098/rsbl.2016.0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
Understanding why individuals delay dispersal and become subordinates within a group is central to studying the evolution of sociality. Hypotheses predict that dispersal decisions are influenced by costs of extra-territorial prospecting that are often required to find a breeding vacancy. Little is known about such costs, partly because it is complicated to demonstrate them empirically. For example, prospecting individuals may be of inferior quality already before prospecting and/or have been evicted. Moreover, costs of prospecting are mainly studied in species where prospectors suffer from predation risk, so how costly prospecting is when predators are absent remains unclear. Here, we determine a cost of prospecting for subordinate Seychelles warblers, Acrocephalus sechellensis, in a population where predators are absent and individuals return to their resident territory after prospecting. Prospecting individuals had 5.2% lower body mass than non-prospecting individuals. Our evidence suggests this may be owing to frequent attacks by resident conspecifics, likely leading to reduced food intake by prospectors. These results support the hypothesis that energetic costs associated with dispersal opportunities are one factor influencing dispersal decisions and shaping the evolution of delayed dispersal in social animals.
Collapse
Affiliation(s)
- Sjouke A Kingma
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK Behavioural and Physiological Ecology, GELIFES, University of Groningen, PO Box 11103, 9700CC Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural and Physiological Ecology, GELIFES, University of Groningen, PO Box 11103, 9700CC Groningen, The Netherlands
| | - Martijn Hammers
- Behavioural and Physiological Ecology, GELIFES, University of Groningen, PO Box 11103, 9700CC Groningen, The Netherlands
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK Nature Seychelles, PO Box 1310, Mahé, Seychelles
| |
Collapse
|
20
|
Kasper C, Vierbuchen M, Ernst U, Fischer S, Radersma R, Raulo A, Cunha-Saraiva F, Wu M, Mobley KB, Taborsky B. Genetics and developmental biology of cooperation. Mol Ecol 2017. [PMID: 28626971 DOI: 10.1111/mec.14208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.
Collapse
Affiliation(s)
- Claudia Kasper
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Ulrich Ernst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Fischer
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Aura Raulo
- Department of Zoology, University of Oxford, Oxford, UK
| | - Filipa Cunha-Saraiva
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, Vetmeduni Vienna, Vienna, Austria
| | - Min Wu
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
| | - Kenyon B Mobley
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Barbara Taborsky
- Institute for Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Heldstab SA, van Schaik CP, Isler K. Getting fat or getting help? How female mammals cope with energetic constraints on reproduction. Front Zool 2017; 14:29. [PMID: 28616058 PMCID: PMC5468974 DOI: 10.1186/s12983-017-0214-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fat deposits enable a female mammal to bear the energy costs of offspring production and thus greatly influence her reproductive success. However, increasing locomotor costs and reduced agility counterbalance the fitness benefits of storing body fat. In species where costs of reproduction are distributed over other individuals such as fathers or non-breeding group members, reproductive females might therefore benefit from storing less energy in the form of body fat. RESULTS Using a phylogenetic comparative approach on a sample of 87 mammalian species, and controlling for possible confounding variables, we found that reproductive females of species with allomaternal care exhibit reduced annual variation in body mass (estimated as CV body mass), which is a good proxy for the tendency to store body fat. Differential analyses of care behaviours such as allonursing or provisioning corroborated an energetic interpretation of this finding. The presumably most energy-intensive form of allomaternal care, provisioning of the young, had the strongest effect on CV body mass. In contrast, allonursing, which involves no additional influx of energy but distributes maternal help across different mothers, was not correlated with CV body mass. CONCLUSIONS Our results suggest that reproducing females in species with allomaternal care can afford to reduce reliance on fat reserves because of the helpers' energetic contribution towards offspring rearing.
Collapse
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Carel P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
22
|
Kingma SA, Bebbington K, Hammers M, Richardson DS, Komdeur J. Delayed dispersal and the costs and benefits of different routes to independent breeding in a cooperatively breeding bird. Evolution 2016; 70:2595-2610. [PMID: 27641712 PMCID: PMC5132126 DOI: 10.1111/evo.13071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 01/10/2023]
Abstract
Why sexually mature individuals stay in groups as nonreproductive subordinates is central to the evolution of sociality and cooperative breeding. To understand such delayed dispersal, its costs and benefits need to be compared with those of permanently leaving to float through the population. However, comprehensive comparisons, especially regarding differences in future breeding opportunities, are rare. Moreover, extraterritorial prospecting by philopatric individuals has generally been ignored, even though the factors underlying this route to independent breeding may differ from those of strict philopatry or floating. We use a comprehensive predictive framework to explore how various costs, benefits and intrinsic, environmental and social factors explain philopatry, prospecting, and floating in Seychelles warblers (Acrocephalus sechellensis). Not only floaters more likely obtained an independent breeding position before the next season than strictly philopatric individuals, but also suffered higher mortality. Prospecting yielded similar benefits to floating but lower mortality costs, suggesting that it is overall more beneficial than floating and strict philopatry. While prospecting is probably individual‐driven, although limited by resource availability, floating likely results from eviction by unrelated breeders. Such differences in proximate and ultimate factors underlying each route to independent breeding highlight the need for simultaneous consideration when studying the evolution of delayed dispersal.
Collapse
Affiliation(s)
- Sjouke A Kingma
- Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC, Groningen, The Netherlands. .,Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | - Kat Bebbington
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Martijn Hammers
- Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC, Groningen, The Netherlands
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.,Nature Seychelles, Mahé, Seychelles
| | - Jan Komdeur
- Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC, Groningen, The Netherlands
| |
Collapse
|
23
|
Differences in cooperative behavior among Damaraland mole rats are consequences of an age-related polyethism. Proc Natl Acad Sci U S A 2016; 113:10382-7. [PMID: 27588902 DOI: 10.1073/pnas.1607885113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many cooperative breeders, the contributions of helpers to cooperative activities change with age, resulting in age-related polyethisms. In contrast, some studies of social mole rats (including naked mole rats, Heterocephalus glaber, and Damaraland mole rats, Fukomys damarensis) suggest that individual differences in cooperative behavior are the result of divergent developmental pathways, leading to discrete and permanent functional categories of helpers that resemble the caste systems found in eusocial insects. Here we show that, in Damaraland mole rats, individual contributions to cooperative behavior increase with age and are higher in fast-growing individuals. Individual contributions to different cooperative tasks are intercorrelated and repeatability of cooperative behavior is similar to that found in other cooperatively breeding vertebrates. Our data provide no evidence that nonreproductive individuals show divergent developmental pathways or specialize in particular tasks. Instead of representing a caste system, variation in the behavior of nonreproductive individuals in Damaraland mole rats closely resembles that found in other cooperatively breeding mammals and appears to be a consequence of age-related polyethism.
Collapse
|
24
|
Kramer J, Klauke N, Bauer M, Martin Schaefer H. No Evidence for Enforced Alloparental Care in a Cooperatively Breeding Parrot. Ethology 2016. [DOI: 10.1111/eth.12486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jos Kramer
- Department of Evolutionary Biology; Institute of Zoology; Johannes Gutenberg University of Mainz; Mainz Germany
- Department of Animal Ecology and Evolution; Institute of Zoology; Albert Ludwigs University of Freiburg; Freiburg im Breisgau Germany
| | - Nadine Klauke
- Department of Animal Ecology and Evolution; Institute of Zoology; Albert Ludwigs University of Freiburg; Freiburg im Breisgau Germany
| | - Michael Bauer
- Department of Animal Ecology and Evolution; Institute of Zoology; Albert Ludwigs University of Freiburg; Freiburg im Breisgau Germany
| | - H. Martin Schaefer
- Department of Animal Ecology and Evolution; Institute of Zoology; Albert Ludwigs University of Freiburg; Freiburg im Breisgau Germany
| |
Collapse
|
25
|
Taborsky M, Frommen JG, Riehl C. Correlated pay-offs are key to cooperation. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150084. [PMID: 26729924 PMCID: PMC4760186 DOI: 10.1098/rstb.2015.0084] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
The general belief that cooperation and altruism in social groups result primarily from kin selection has recently been challenged, not least because results from cooperatively breeding insects and vertebrates have shown that groups may be composed mainly of non-relatives. This allows testing predictions of reciprocity theory without the confounding effect of relatedness. Here, we review complementary and alternative evolutionary mechanisms to kin selection theory and provide empirical examples of cooperative behaviour among unrelated individuals in a wide range of taxa. In particular, we focus on the different forms of reciprocity and on their underlying decision rules, asking about evolutionary stability, the conditions selecting for reciprocity and the factors constraining reciprocal cooperation. We find that neither the cognitive requirements of reciprocal cooperation nor the often sequential nature of interactions are insuperable stumbling blocks for the evolution of reciprocity. We argue that simple decision rules such as 'help anyone if helped by someone' should get more attention in future research, because empirical studies show that animals apply such rules, and theoretical models find that they can create stable levels of cooperation under a wide range of conditions. Owing to its simplicity, behaviour based on such a heuristic may in fact be ubiquitous. Finally, we argue that the evolution of exchange and trading of service and commodities among social partners needs greater scientific focus.
Collapse
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Joachim G Frommen
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Christina Riehl
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Koykka C, Wild G. The association between the emergence of cooperative breeding and clutch size. J Evol Biol 2015; 29:58-76. [DOI: 10.1111/jeb.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 09/05/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022]
Affiliation(s)
- C. Koykka
- Department of Applied Mathematics; The University of Western Ontario; London ON Canada
| | - G. Wild
- Department of Applied Mathematics; The University of Western Ontario; London ON Canada
| |
Collapse
|
27
|
Jungwirth A, Walker J, Taborsky M. Prospecting precedes dispersal and increases survival chances in cooperatively breeding cichlids. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
|
29
|
Ligocki IY, Reddon AR, Hellmann JK, O’Connor C, Marsh-Rollo S, Balshine S, Hamilton I. Social status influences responses to unfamiliar conspecifics in a cooperatively breeding fish. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In group living animals, individuals may visit other groups. The costs and benefits of such visits for the members of a group will depend on the attributes and intentions of the visitor, and the social status of responding group members. Using wild groups of the cooperatively breeding cichlid fish (Neolamprologus pulcher), we compared group member responses to unfamiliar ‘visiting’ conspecifics in control groups and in experimentally manipulated groups from which a subordinate the same size and sex as the visitor was removed. High-ranking fish were less aggressive towards visitors in removal groups than in control groups; low-ranking subordinates were more aggressive in the removal treatment. High-ranking females and subordinates the same size and sex as the visitor responded most aggressively toward the visitor in control groups. These results suggest that visitors are perceived as potential group joiners, and that such visits impose different costs and benefits on current group members.
Collapse
Affiliation(s)
- Isaac Y. Ligocki
- aDepartment of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Adam R. Reddon
- bDepartment of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jennifer K. Hellmann
- aDepartment of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Constance M. O’Connor
- bDepartment of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Susan Marsh-Rollo
- bDepartment of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Sigal Balshine
- bDepartment of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ian M. Hamilton
- aDepartment of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- cDepartment of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Fischer S, Zöttl M, Groenewoud F, Taborsky B. Group-size-dependent punishment of idle subordinates in a cooperative breeder where helpers pay to stay. Proc Biol Sci 2014; 281:20140184. [PMID: 24990673 PMCID: PMC4100499 DOI: 10.1098/rspb.2014.0184] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/05/2014] [Indexed: 01/04/2023] Open
Abstract
In cooperative breeding systems, dominant breeders sometimes tolerate unrelated individuals even if they inflict costs on the dominants. According to the 'pay-to-stay' hypothesis, (i) subordinates can outweigh these costs by providing help and (ii) dominants should be able to enforce help by punishing subordinates that provide insufficient help. This requires that dominants can monitor helping and can recognize group members individually. In a field experiment, we tested whether cooperatively breeding cichlid Neolamprologus pulcher subordinates increase their help after a forced 'idle' period, how other group members respond to a previously idle helper, and how helper behaviour and group responses depend on group size. Previously, idle helpers increased their submissiveness and received more aggression than control helpers, suggesting that punishment occurred to enforce help. Subordinates in small groups increased their help more than those in large groups, despite receiving less aggression. When subordinates were temporarily removed, dominants in small groups were more likely to evict returning subordinates. Our results suggest that only in small groups do helpers face a latent threat of punishment by breeders as predicted by the pay-to-stay hypothesis. In large groups, cognitive constraints may prevent breeders from tracking the behaviour of a large number of helpers.
Collapse
Affiliation(s)
- Stefan Fischer
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland
| | - Markus Zöttl
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland Department of Zoology, University of Cambridge, Cambridge, UK
| | - Frank Groenewoud
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland Behavioural Ecology and Self-Organization, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Barbara Taborsky
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland
| |
Collapse
|
31
|
Kingma SA, Santema P, Taborsky M, Komdeur J. Group augmentation and the evolution of cooperation. Trends Ecol Evol 2014; 29:476-84. [PMID: 24996259 DOI: 10.1016/j.tree.2014.05.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/02/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022]
Abstract
The group augmentation (GA) hypothesis states that if helpers in cooperatively breeding animals raise the reproductive success of the group, the benefits of living in a resulting larger group--improved survival or future reproductive success--favour the evolution of seemingly altruistic helping behaviour. The applicability of the GA hypothesis remains debatable, however, partly owing to the lack of a clear conceptual framework and a shortage of appropriate empirical studies. We conceptualise here the GA hypothesis and illustrate that benefits of GA can accrue via different evolutionary mechanisms that relate closely to well-supported general concepts of group living and cooperation. These benefits reflect several plausible explanations for the evolutionary maintenance of helping behaviour in cooperatively breeding animals.
Collapse
Affiliation(s)
- Sjouke A Kingma
- School of Biological Sciences, University of East Anglia, Norwich, UK; Behavioural Ecology and Self-Organization Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands; Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.
| | - Peter Santema
- Behavioural Ecology and Self-Organization Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands; Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michael Taborsky
- Department of Behavioral Ecology, Institute of Ecology and Evolution, University of Bern, Hinterkappelen, Switzerland
| | - Jan Komdeur
- Behavioural Ecology and Self-Organization Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Carter AJ, English S, Clutton-Brock TH. Cooperative personalities and social niche specialization in female meerkats. J Evol Biol 2014; 27:815-25. [PMID: 24666630 DOI: 10.1111/jeb.12358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
Abstract
The social niche specialization hypothesis predicts that group-living animals should specialize in particular social roles to avoid social conflict, resulting in alternative life-history strategies for different roles. Social niche specialization, coupled with role-specific life-history trade-offs, should thus generate between-individual differences in behaviour that persist through time, or distinct personalities, as individuals specialize in particular nonoverlapping social roles. We tested for support for the social niche specialization hypothesis in cooperative personality traits in wild female meerkats (Suricata suricatta) that compete for access to dominant social roles. As cooperation is costly and dominance is acquired by heavier females, we predicted that females that ultimately acquired dominant roles would show noncooperative personality types early in life and before and after role acquisition. Although we found large individual differences in repeatable cooperative behaviours, there was no indication that individuals that ultimately acquired dominance differed from unsuccessful individuals in their cooperative behaviour. Early-life behaviour did not predict social role acquisition later in life, nor was cooperative behaviour before and after role acquisition correlated in the same individuals. We suggest that female meerkats do not show social niche specialization resulting in cooperative personalities, but that they exhibit an adaptive response in personality at role acquisition.
Collapse
Affiliation(s)
- A J Carter
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
33
|
Zöttl M, Fischer S, Taborsky M. Partial brood care compensation by female breeders in response to experimental manipulation of alloparental care. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.03.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zöttl M, Frommen JG, Taborsky M. Group size adjustment to ecological demand in a cooperative breeder. Proc Biol Sci 2013; 280:20122772. [PMID: 23390105 DOI: 10.1098/rspb.2012.2772] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental factors can determine which group size will maximize the fitness of group members. This is particularly important in cooperative breeders, where group members often serve different purposes. Experimental studies are yet lacking to check whether ecologically mediated need for help will change the propensity of dominant group members to accept immigrants. Here, we manipulated the perceived risk of predation for dominant breeders of the cooperatively breeding cichlid fish Neolamprologus pulcher to test their response to unrelated and previously unknown immigrants. Potential immigrants were more readily accepted if groups were exposed to fish predators or egg predators than to herbivorous fish or control situations lacking predation risk. Our data are consistent with both risk dilution and helping effects. Egg predators were presented before spawning, which might suggest that the fish adjust acceptance rates also to a potential future threat. Dominant group members of N. pulcher apparently consider both present and future need of help based on ecological demand. This suggests that acceptance of immigrants and, more generally, tolerance of group members on demand could be a widespread response to ecological conditions in cooperatively breeding animals.
Collapse
Affiliation(s)
- Markus Zöttl
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland.
| | | | | |
Collapse
|
35
|
Zöttl M, Chapuis L, Freiburghaus M, Taborsky M. Strategic reduction of help before dispersal in a cooperative breeder. Biol Lett 2013; 9:20120878. [PMID: 23282744 DOI: 10.1098/rsbl.2012.0878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In cooperative breeders, sexually mature subordinates can either queue for chances to inherit the breeding position in their natal group, or disperse to reproduce independently. The choice of one or the other option may be flexible, as when individuals respond to attractive dispersal options, or they may reflect fixed life-history trajectories. Here, we show in a permanently marked, natural population of the cooperatively breeding cichlid fish Neolamprologus pulcher that subordinate helpers reduce investment in territory defence shortly before dispersing. Such reduction of effort is not shown by subordinates who stay and inherit the breeding position. This difference suggests that subordinates ready to leave reduce their investment in the natal territory strategically in favour of future life-history perspectives. It seems to be part of a conditional choice of the dispersal tactic, as this reduction in effort appears only shortly before dispersal, whereas philopatric and dispersing helpers do not differ in defence effort earlier in life. Hence, cooperative territory defence is state-dependent and plastic rather than a consistent part of a fixed life-history trajectory.
Collapse
Affiliation(s)
- Markus Zöttl
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Hinterkappelen, Switzerland.
| | | | | | | |
Collapse
|