1
|
Liu C, Wang Y, Zhou Z, Wang S, Wei Z, Ravanbakhsh M, Shen Q, Xiong W, Kowalchuk GA, Jousset A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. THE ISME JOURNAL 2024; 18:wrae169. [PMID: 39259188 PMCID: PMC11453101 DOI: 10.1093/ismejo/wrae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Chen Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Yijin Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zeyuan Zhou
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
2
|
Guo S, Geisen S, Mo Y, Yan X, Huang R, Liu H, Gao Z, Tao C, Deng X, Xiong W, Shen Q, Kowalchuk GA, Li R. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. THE ISME JOURNAL 2024; 18:wrae180. [PMID: 39312488 PMCID: PMC11459550 DOI: 10.1093/ismejo/wrae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Yani Mo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xinyue Yan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Ruoling Huang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Zhilei Gao
- Department of Research and Innovation, EUROstyle BV, Ecomunitypark 1, Oosterwolde 8431 SM, the Netherlands
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| |
Collapse
|
3
|
Schaal KA, Manhes P, Velicer GJ. Ecological histories determine the success of social exploitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571652. [PMID: 38168390 PMCID: PMC10760085 DOI: 10.1101/2023.12.14.571652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ecological context often modifies biotic interactions, yet effects of ecological history are poorly understood. In experiments with the bacterium Myxococcus xanthus , resource-level histories of genotypes interacting during cooperative multicellular development were found to strongly regulate social fitness. Yet how developmental spore production responded to variation in resource-level histories between interactants differed greatly between cooperators and cheaters; relative-fitness advantages gained by cheating after high-resource growth were generally reduced or absent if one or both parties experienced low-resource growth. Low-resource growth also eliminated facultative exploitation in some pairwise mixes of cooperation-proficient natural isolates that occurs when both strains have grown under resource abundance. Our results contrast with previous studies in which cooperator fitness correlated positively with resource level and suggest that resource-level variation may be important in regulating whether exploitation of cooperators occurs in a natural context.
Collapse
|
4
|
Hoque MM, Espinoza-Vergara G, McDougald D. Protozoan predation as a driver of diversity and virulence in bacterial biofilms. FEMS Microbiol Rev 2023; 47:fuad040. [PMID: 37458768 DOI: 10.1093/femsre/fuad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Protozoa are eukaryotic organisms that play a crucial role in nutrient cycling and maintaining balance in the food web. Predation, symbiosis and parasitism are three types of interactions between protozoa and bacteria. However, not all bacterial species are equally susceptible to protozoan predation as many are capable of defending against predation in numerous ways and may even establish either a symbiotic or parasitic life-style. Biofilm formation is one such mechanism by which bacteria can survive predation. Structural and chemical components of biofilms enhance resistance to predation compared to their planktonic counterparts. Predation on biofilms gives rise to phenotypic and genetic heterogeneity in prey that leads to trade-offs in virulence in other eukaryotes. Recent advances, using molecular and genomics techniques, allow us to generate new information about the interactions of protozoa and biofilms of prey bacteria. This review presents the current state of the field on impacts of protozoan predation on biofilms. We provide an overview of newly gathered insights into (i) molecular mechanisms of predation resistance in biofilms, (ii) phenotypic and genetic diversification of prey bacteria, and (iii) evolution of virulence as a consequence of protozoan predation on biofilms.
Collapse
Affiliation(s)
- M Mozammel Hoque
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gustavo Espinoza-Vergara
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Diane McDougald
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Qi Q, Hu C, Lin J, Wang X, Tang C, Dai Z, Xu J. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119406. [PMID: 35561794 DOI: 10.1016/j.envpol.2022.119406] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with multiple heavy metals poses threats to human health and ecosystem functioning. Using the Nemerow pollution index, which considers the effects of multiple heavy metals, we compared the diversity and composition of bacteria, fungi and protists and their potential interactions in response to a multi-metal contamination gradient. Multi-metal contamination significantly altered the community composition of bacteria, fungi and protists, and the degree of alteration increased with increasing severity of contamination. The alpha-diversity of bacteria, fungi and protists significantly decreased with increasing contamination level. The dominant generalists, found in all soil samples, were Gammaproteobacteria, Chloroflexi and Bacillus sp, whereas the dominant specialists were Anaerolineaceae, Entoloma sp. and Sandonidae_X sp. The relative abundances of generalists were positively correlated, whereas those of specialists were negatively correlated, with the Nemerow pollution index. In addition, the complexity of the microbial co-occurrence network increased with increasing contamination level. Generalists, rather than specialists, were the keystones in the microbial co-occurrence network and played a crucial role in adaptation to multi-metal contamination through enhanced potential interactions within the entire microbiome. Our results provide insights into the ecological effects of multi-metal contamination on the soil microbiome and will help to develop bio-remediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Qian Qi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixia Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
García-Contreras R, Loarca D. The bright side of social cheaters: potential beneficial roles of "social cheaters" in microbial communities. FEMS Microbiol Ecol 2020; 97:6006265. [PMID: 33238304 DOI: 10.1093/femsec/fiaa239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cooperation in microbial communities via production of public goods is susceptible to social cheating, since selfish individuals that do not contribute to their synthesis but benefit from their production thrive in the presence of cooperators. This behavior has been observed in the laboratory using bacterial and yeast models. Moreover, growing evidence indicates that cheating is frequent in natural microbial communities. In the laboratory, social cheating can promote population collapse or "tragedy of the commons" when excessive. Nevertheless, there are diverse mechanisms that counteract cheating in microbes, as well as theoretical and experimental evidence that suggests possible beneficial roles of social cheaters for the microbial populations. In this mini review manuscript we compile and discuss such possible roles.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Daniel Loarca
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| |
Collapse
|
7
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|
8
|
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: Puppet Masters of the Rhizosphere Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:165-176. [PMID: 30446306 DOI: 10.1016/j.tplants.2018.10.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
The rhizosphere microbiome is a central determinant of plant performance. Microbiome assembly has traditionally been investigated from a bottom-up perspective, assessing how resources such as root exudates drive microbiome assembly. However, the importance of predation as a driver of microbiome structure has to date largely remained overlooked. Here we review the importance of protists, a paraphyletic group of unicellular eukaryotes, as a key regulator of microbiome assembly. Protists can promote plant-beneficial functions within the microbiome, accelerate nutrient cycling, and remove pathogens. We conclude that protists form an essential component of the rhizosphere microbiome and that accounting for predator-prey interactions would greatly improve our ability to predict and manage microbiome function at the service of plant growth and health.
Collapse
Affiliation(s)
- Zhilei Gao
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; These authors contributed equally
| | - Ida Karlsson
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Dept. of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden; These authors contributed equally
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
| | - George Kowalchuk
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Institute of Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
9
|
Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world? Environ Microbiol 2018; 20:3918-3926. [DOI: 10.1111/1462-2920.14446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yiying Liu
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University; Guangzhou China
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET); Ghent University; Ghent Belgium
| |
Collapse
|
10
|
Evolution of STEC virulence: Insights from the antipredator activities of Shiga toxin producing E. coli. Int J Med Microbiol 2018; 308:956-961. [DOI: 10.1016/j.ijmm.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
|
11
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
12
|
Lindstedt C, Miettinen A, Freitak D, Ketola T, López-Sepulcre A, Mäntylä E, Pakkanen H. Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly. Proc Biol Sci 2018; 285:rspb.2018.0466. [PMID: 30068673 DOI: 10.1098/rspb.2018.0466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/06/2018] [Indexed: 01/24/2023] Open
Abstract
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooperative defence (high attack intensity) incurred a clear cost by decreasing individual survival and potency of chemical defence. Cooperative behaviour and the magnitude of its costs were further shaped by host plant quality. The number of individuals participating in group defence, immune responses and female growth decreased on a high resin diet under high attack intensity. We also found some benefits of cheating: non-defending males had higher growth rates across treatments. Taken together, these results suggest that ecological interactions can shape the adaptive value of cooperative behaviour and maintain variation in the frequency of cooperation and cheating.
Collapse
Affiliation(s)
- Carita Lindstedt
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Miettinen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Andres López-Sepulcre
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,CNRS UMR 7618, Institute of Ecology and Environmental Sciences of Paris (iEES), Universite Pierre et Marie Curie, Paris, France
| | - Elina Mäntylä
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Hannu Pakkanen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora MÁ, Jiménez-Cortés JG, Maeda T, González Y, Tomás M, Wood TK, García-Contreras R. Pyocyanin Restricts Social Cheating in Pseudomonas aeruginosa. Front Microbiol 2018; 9:1348. [PMID: 29997585 PMCID: PMC6030374 DOI: 10.3389/fmicb.2018.01348] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/04/2018] [Indexed: 01/23/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, such as exoproteases and siderophores, that are public goods utilized by the whole population of bacteria, regardless of whether they invested or not in their production. These public goods can be used by QS defective mutants for growth, and since these mutants do not contribute to public goods production, they are considered social cheaters. Pyocyanin is a phenazine that is a toxic, QS-controlled metabolite produced by P. aeruginosa. It is a redox-active compound and promotes the generation of reactive oxygen species; it also possesses antibacterial properties and increases fitness in competition with other bacterial species. Since QS-deficient individuals are less able to tolerate oxidative stress, we hypothesized that the pyocyanin produced by the wild-type population could promote selection of functional QS systems in this bacterium. Here, we demonstrate, using competition experiments and mathematical models, that, indeed, pyocyanin increases the fitness of the cooperative QS-proficient individuals and restricts the appearance of social cheaters. In addition, we also show that pyocyanin is able to select QS in other bacteria such as Acinetobacter baumannii.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jimena Ramírez-Peris
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Zentrum Mathematik, Technische Universität München, Munich, Germany
| | | | - Ammar Jalalimanesh
- Zentrum Mathematik, Technische Universität München, Munich, Germany
- Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran
| | - Miguel Á. Saucedo-Mora
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J. Guillermo Jiménez-Cortés
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yael González
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Tomás
- Department of Microbiology, Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, SERGAS, Universidade da Coruña, A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, United States
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Majumdar S, Pal S. Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal 2018; 12:491-502. [PMID: 29476316 PMCID: PMC5910326 DOI: 10.1007/s12079-018-0462-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 01/05/2023] Open
Abstract
Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.
Collapse
Affiliation(s)
- Sarangam Majumdar
- Dipartimento di Ingegneria Scienze Informatiche e Matematica, Università degli Studi di L’ Aquila, Via Vetoio – Loc. Coppito, 67010 L’ Aquila, Italy
| | - Sukla Pal
- Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
15
|
Inglis RF, Asikhia O, Ryu E, Queller DC, Strassmann JE. Predator-by-Environment Interactions Mediate Bacterial Competition in the Dictyostelium discoideum Microbiome. Front Microbiol 2018; 9:781. [PMID: 29740414 PMCID: PMC5928206 DOI: 10.3389/fmicb.2018.00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between species and their environment play a key role in the evolution of diverse communities, and numerous studies have emphasized that interactions among microbes and among trophic levels play an important role in maintaining microbial diversity and ecosystem functioning. In this study, we investigate how two of these types of interactions, public goods cooperation through the production of iron scavenging siderophores and predation by the social amoeba Dictyostelium discoideum, mediate competition between two strains of Pseudomonas fluorescens that were co-isolated from D. discoideum. We find that although we are able to generally predict the competitive outcomes between strains based on the presence and absence of either D. discoideum or iron, predator-by-environment interactions result in unexpected competitive outcomes. This suggests that while both cooperation and predation can mediate the competitive abilities and potentially the coexistence of these strains, predicting how combinations of different environments affect even the relatively simple microbiome of D. discoideum remains challenging.
Collapse
Affiliation(s)
- R Fredrik Inglis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Odion Asikhia
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Erica Ryu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Raghupathi PK, Liu W, Sabbe K, Houf K, Burmølle M, Sørensen SJ. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan. Front Microbiol 2018; 8:2649. [PMID: 29375516 PMCID: PMC5767253 DOI: 10.3389/fmicb.2017.02649] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a "shared grazing protection" within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and enhance overall community fitness under stressful conditions such as grazing. These emerging inter- and intra-species interactions could play a vital role in biofilm dynamics in natural environments like soil or aquatic systems.
Collapse
Affiliation(s)
- Prem K. Raghupathi
- Laboratory of Microbiology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenzheng Liu
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kurt Houf
- Laboratory of Microbiology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mette Burmølle
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
18
|
Griffiths JI, Petchey OL, Pennekamp F, Childs DZ. Linking intraspecific trait variation to community abundance dynamics improves ecological predictability by revealing a growth–defence trade‐off. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason I. Griffiths
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Dylan Z. Childs
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| |
Collapse
|
19
|
Saucedo-Mora MA, Castañeda-Tamez P, Cazares A, Pérez-Velázquez J, Hense BA, Cazares D, Figueroa W, Carballo M, Guarneros G, Pérez-Eretza B, Cruz N, Nishiyama Y, Maeda T, Belmont-Díaz JA, Wood TK, García-Contreras R. Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa. Front Microbiol 2017; 8:1669. [PMID: 28912771 PMCID: PMC5583629 DOI: 10.3389/fmicb.2017.01669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.
Collapse
Affiliation(s)
- Miguel A Saucedo-Mora
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Paulina Castañeda-Tamez
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Judith Pérez-Velázquez
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany.,Mathematical Modeling of Biological Systems, Zentrum Mathematik, Technical University of MunichGarching, Germany
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany
| | - Daniel Cazares
- Centro de Ciencias Genomicas, National Autonomous University of MexicoCuernavaca, Mexico
| | - Wendy Figueroa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Marco Carballo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Berenice Pérez-Eretza
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Nelby Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | | | - Thomas K Wood
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkPA, United States
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| |
Collapse
|
20
|
Nitrogen Source Stabilization of Quorum Sensing in the Pseudomonas aeruginosa Bioaugmentation Strain SD-1. Appl Environ Microbiol 2017; 83:AEM.00870-17. [PMID: 28600314 DOI: 10.1128/aem.00870-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa, PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH4Cl, NaNO3, or NaNO2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH4Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO3 and NaNO2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species.IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we show that bioaugmentation strains of bacteria might also be susceptible to invasion by social cheaters and that the nitrogen sources available in the wastewater might influence the ability of cheaters to overtake the bioaugmentation strains. Our results imply that control over the nitrogen sources in a wastewater stream or selective addition of certain nitrogen sources could help stabilize bioaugmentation strains of bacteria.
Collapse
|
21
|
Moreau P, Diggle SP, Friman VP. Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages. Ecol Evol 2017; 7:1936-1941. [PMID: 28331600 PMCID: PMC5355186 DOI: 10.1002/ece3.2818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Pierre Moreau
- Imperial College London, Silwood Park Campus Ascot Berkshire UK
| | - Stephen P Diggle
- School of Life Sciences Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Ville-Petri Friman
- Imperial College London, Silwood Park Campus Ascot Berkshire UK; Department of Biology The University of York York UK
| |
Collapse
|
22
|
Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:546-551. [PMID: 28049833 DOI: 10.1073/pnas.1612522114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur.
Collapse
|
23
|
An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 2016; 405:104-15. [PMID: 26796220 DOI: 10.1016/j.jtbi.2015.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.
Collapse
|
24
|
Mathematical Modelling of Bacterial Quorum Sensing: A Review. Bull Math Biol 2016; 78:1585-639. [PMID: 27561265 DOI: 10.1007/s11538-016-0160-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Bacterial quorum sensing (QS) refers to the process of cell-to-cell bacterial communication enabled through the production and sensing of the local concentration of small molecules called autoinducers to regulate the production of gene products (e.g. enzymes or virulence factors). Through autoinducers, bacteria interact with individuals of the same species, other bacterial species, and with their host. Among QS-regulated processes mediated through autoinducers are aggregation, biofilm formation, bioluminescence, and sporulation. Autoinducers are therefore "master" regulators of bacterial lifestyles. For over 10 years, mathematical modelling of QS has sought, in parallel to experimental discoveries, to elucidate the mechanisms regulating this process. In this review, we present the progress in mathematical modelling of QS, highlighting the various theoretical approaches that have been used and discussing some of the insights that have emerged. Modelling of QS has benefited almost from the onset of the involvement of experimentalists, with many of the papers which we review, published in non-mathematical journals. This review therefore attempts to give a broad overview of the topic to the mathematical biology community, as well as the current modelling efforts and future challenges.
Collapse
|
25
|
McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0298. [PMID: 26150664 PMCID: PMC4528496 DOI: 10.1098/rstb.2014.0298] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbes collectively shape their environment in remarkable ways via the products of their metabolism. The diverse environmental impacts of macro-organisms have been collated and reviewed under the banner of ‘niche construction’. Here, we identify and review a series of broad and overlapping classes of bacterial niche construction, ranging from biofilm production to detoxification or release of toxins, enzymes, metabolites and viruses, and review their role in shaping microbiome composition, human health and disease. Some bacterial niche-constructing traits can be seen as extended phenotypes, where individuals actively tailor their environment to their benefit (and potentially to the benefit of others, generating social dilemmas). Other modifications can be viewed as non-adaptive by-products from a producer perspective, yet they may lead to remarkable within-host environmental changes. We illustrate how social evolution and niche construction perspectives offer complementary insights into the dynamics and consequences of these traits across distinct timescales. This review highlights that by understanding the coupled bacterial and biochemical dynamics in human health and disease we can better manage host health.
Collapse
Affiliation(s)
- Luke McNally
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sam P Brown
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
26
|
Friman VP, Guzman LM, Reuman DC, Bell T. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities. Proc Biol Sci 2016; 282:20142920. [PMID: 25833854 DOI: 10.1098/rspb.2014.2920] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics.
Collapse
Affiliation(s)
- Ville-Petri Friman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Laura Melissa Guzman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daniel C Reuman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, KS 66047, USA Laboratory of Populations, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Bell
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
27
|
Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community. ISME JOURNAL 2015; 10:1352-62. [PMID: 26684728 DOI: 10.1038/ismej.2015.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 11/09/2022]
Abstract
Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.
Collapse
|
28
|
Vasse M, Torres-Barceló C, Hochberg ME. Phage selection for bacterial cheats leads to population decline. Proc Biol Sci 2015; 282:20152207. [PMID: 26538598 PMCID: PMC4650167 DOI: 10.1098/rspb.2015.2207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022] Open
Abstract
While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies.
Collapse
Affiliation(s)
- Marie Vasse
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Clara Torres-Barceló
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
29
|
Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun 2015; 6:8235. [PMID: 26354365 PMCID: PMC4579780 DOI: 10.1038/ncomms9235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/30/2015] [Indexed: 02/08/2023] Open
Abstract
Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change. Some species of social bacteria can chemically modify their nutrient environments, which may influence community interactions. Here, McClean et al. show that changes at a single gene locus in a biofilm-forming bacteria can perturb community structure to the same extent as the loss of an apex predator.
Collapse
|
30
|
Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Virus-host arms race at the joint origin of multicellularity and programmed cell death. Cell Cycle 2015; 13:3083-8. [PMID: 25486567 PMCID: PMC4615056 DOI: 10.4161/15384101.2014.949496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Unicellular eukaryotes and most prokaryotes possess distinct mechanisms of programmed cell death (PCD). How an “altruistic” trait, such as PCD, could evolve in unicellular organisms? To address this question, we developed a mathematical model of the virus-host co-evolution that involves interaction between immunity, PCD and cellular aggregation. Analysis of the parameter space of this model shows that under high virus load and imperfect immunity, joint evolution of cell aggregation and PCD is the optimal evolutionary strategy. Given the abundance of viruses in diverse habitats and the wide spread of PCD in most organisms, these findings imply that multiple instances of the emergence of multicellularity and its essential attribute, PCD, could have been driven, at least in part, by the virus-host arms race.
Collapse
Affiliation(s)
- Jaime Iranzo
- a National Center for Biotechnology Information; National Library of Medicine; National Institutes of Health ; Bethesda , MD USA
| | | | | | | |
Collapse
|
31
|
Mokkonen M, Lindstedt C. The evolutionary ecology of deception. Biol Rev Camb Philos Soc 2015; 91:1020-1035. [PMID: 26118820 DOI: 10.1111/brv.12208] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
Through dishonest signals or actions, individuals often misinform others to their own benefit. We review recent literature to explore the evolutionary and ecological conditions for deception to be more likely to evolve and be maintained. We identify four conditions: (1) high misinformation potential through perceptual constraints of perceiver; (2) costs and benefits of responding to deception; (3) asymmetric power relationships between individuals and (4) exploitation of common goods. We discuss behavioural and physiological mechanisms that form a deception continuum from secrecy to overt signals. Deceptive tactics usually succeed by being rare and are often evolving under co-evolutionary arms races, sometimes leading to the evolution of polymorphism. The degree of deception can also vary depending on the environmental conditions. Finally, we suggest a conceptual framework for studying deception and highlight important questions for future studies.
Collapse
Affiliation(s)
- Mikael Mokkonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland. .,Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Carita Lindstedt
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland
| |
Collapse
|
32
|
Bitencourt JAP, Pereira DC, da Silva Neto ID, Crapez MAC. Evaluation of the sensitivity to zinc of ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6236-6245. [PMID: 25408072 DOI: 10.1007/s11356-014-3828-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the Zn sensitivity of Euplotes vannus, Euplotes crassus, and their naturally associated bacteria sampled from sediments in the northwest and east regions of Guanabara Bay. The unexposed ciliates and bacteria did not appear to be negatively affected by 96 h of assay. In the control group, E. vannus exhibited an increase in the biomass content from 2.3 × 10(2) to 2.3 × 10(3) μg C cm(-3) between 0 and 96 h, and E. crassus increased up to 7.07 × 10(2) μg C cm(-3) at 48 h. The maximum biomass was pointed by E. crassus (1.33 × 10(3) μg C cm(-3)) in the presence of 0.005 mg Zn L(-1) and E. vannus was naturally associated bacteria (2.40 × 10(-1) μg C cm(-3)) in the presence of 1.0 mg Zn L(-1) (96 h). The growth of E. vannus from the northwest region showed concentration-dependent manners, and it is more sensitive to zinc than E. crassus from the southeast. Naturally associated bacteria showed better adaptation to increasing concentrations of Zn, and the Dunnett test showed that previous environmental selection is important. These results show that new bioremediation tools are necessary.
Collapse
Affiliation(s)
- José Augusto Pires Bitencourt
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Centro, Niterói, Rio de Janeiro, 24020-141, Brazil,
| | | | | | | |
Collapse
|
33
|
Ross-Gillespie A, Dumas Z, Kümmerli R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J Evol Biol 2015; 28:29-39. [DOI: 10.1111/jeb.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023]
Affiliation(s)
- A. Ross-Gillespie
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
| | - Z. Dumas
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - R. Kümmerli
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
| |
Collapse
|
34
|
DiSalvo S, Brock DA, Smith J, Queller DC, Strassmann JE. In the social amoeba Dictyostelium discoideum, density, not farming status, determines predatory success on unpalatable Escherichia coli. BMC Microbiol 2014; 14:328. [PMID: 25526662 PMCID: PMC4316601 DOI: 10.1186/s12866-014-0328-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/16/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The social amoeba Dictyostelium discoideum interacts with bacteria in a variety of ways. It is a predator of bacteria, can be infected or harmed by bacteria, and can form symbiotic associations with bacteria. Some clones of D. discoideum function as primitive farmers because they carry bacteria through the normally sterile D. discoideum social stage, then release them after dispersal so the bacteria can proliferate and be harvested. Some farmer-associated bacteria produce small molecules that promote host farmer growth but inhibit the growth of non-farmer competitors. To test whether the farmers' tolerance is specific or extends to other growth inhibitory bacteria, we tested whether farmer and non-farmer amoebae are differentially affected by E. coli strains of varying pathogenicity. Because the numbers of each organism may influence the outcome of amoeba-bacteria interactions, we also examined the influence of amoeba and bacteria density on the ability of D. discoideum to grow and develop on distinct bacterial strains. RESULTS A subset of E. coli strains did not support amoeba proliferation on rich medium, independent of whether the amoebae were farmers or non-farmers. However, amoebae could proliferate on these strains if amoebae numbers are high relative to bacteria numbers, but again there was no difference in this ability between farmer and non-farmer clones of D. discoideum. CONCLUSIONS Our results show that farmer and non-farmers did not differ in their abilities to consume novel strains of E. coli, suggesting that farmer resistance to their own carried bacteria does not extend to foreign bacteria. We see that increasing the numbers of bacteria or amoebae increases their respective likelihood of competitive victory over the other, thus showing Allee effects. We hypothesize that higher bacteria numbers may result in higher concentrations of a toxic product or in a reduction of resources critical for amoeba survival, producing an environment inhospitable to amoeba predators. Greater amoeba numbers may counter this growth inhibition, possibly through reducing bacterial numbers via increased predation rates, or by producing something that neutralizes a potentially toxic bacterial product.
Collapse
Affiliation(s)
- Susanne DiSalvo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| | - Jeff Smith
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
| |
Collapse
|
35
|
Saleem M, Moe LA. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol 2014; 32:529-37. [PMID: 25192971 DOI: 10.1016/j.tibtech.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA.
| | - Luke A Moe
- Department of Plant and Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, KY 40546-0312, USA
| |
Collapse
|
36
|
García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME JOURNAL 2014; 9:115-25. [PMID: 24936763 DOI: 10.1038/ismej.2014.98] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology.
Collapse
Affiliation(s)
| | - Leslie Nuñez-López
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | | | - Brian W Kwan
- Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA
| | - Javier A Belmont
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | - Adrián Rangel-Vega
- Internal Medicine Department, Speciality Hospital, National Medical Center 'Siglo XXI', IMSS, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Thomas K Wood
- 1] Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA [2] Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME JOURNAL 2014; 8:1820-30. [PMID: 24671085 DOI: 10.1038/ismej.2014.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 11/08/2022]
Abstract
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.
Collapse
|
38
|
Friman VP, Jousset A, Buckling A. Rapid prey evolution can alter the structure of predator-prey communities. J Evol Biol 2013; 27:374-80. [DOI: 10.1111/jeb.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- V.-P. Friman
- Department of Biosciences; University of Exeter; Penryn UK
- Imperial College London; Ascot UK
| | - A. Jousset
- Division of Ecology and Biodiversity; Utrecht University; Utrecht The Netherlands
| | - A. Buckling
- Department of Biosciences; University of Exeter; Penryn UK
| |
Collapse
|