1
|
Da Silva O, Ayata SD, Ser-Giacomi E, Leconte J, Pelletier E, Fauvelot C, Madoui MA, Guidi L, Lombard F, Bittner L. Genomic differentiation of three pico-phytoplankton species in the Mediterranean Sea. Environ Microbiol 2022; 24:6086-6099. [PMID: 36053818 PMCID: PMC10087736 DOI: 10.1111/1462-2920.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
For more than a decade, high-throughput sequencing has transformed the study of marine planktonic communities and has highlighted the extent of protist diversity in these ecosystems. Nevertheless, little is known relative to their genomic diversity at the species-scale as well as their major speciation mechanisms. An increasing number of data obtained from global scale sampling campaigns is becoming publicly available, and we postulate that metagenomic data could contribute to deciphering the processes shaping protist genomic differentiation in the marine realm. As a proof of concept, we developed a findable, accessible, interoperable and reusable (FAIR) pipeline and focused on the Mediterranean Sea to study three a priori abundant protist species: Bathycoccus prasinos, Pelagomonas calceolata and Phaeocystis cordata. We compared the genomic differentiation of each species in light of geographic, environmental and oceanographic distances. We highlighted that isolation-by-environment shapes the genomic differentiation of B. prasinos, whereas P. cordata is impacted by geographic distance (i.e. isolation-by-distance). At present time, the use of metagenomics to accurately estimate the genomic differentiation of protists remains challenging since coverages are lower compared to traditional population surveys. However, our approach sheds light on ecological and evolutionary processes occurring within natural marine populations and paves the way for future protist population metagenomic studies.
Collapse
Affiliation(s)
- Ophélie Da Silva
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France
| | - Enrico Ser-Giacomi
- Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Cécile Fauvelot
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
| | - Mohammed-Amin Madoui
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Fabien Lombard
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Sassenhagen I, Erdner DL, Lougheed BC, Richlen ML, SjÖqvist C. Estimating genotypic richness and proportion of identical multi-locus genotypes in aquatic microalgal populations. JOURNAL OF PLANKTON RESEARCH 2022; 44:559-572. [PMID: 35898815 PMCID: PMC9310265 DOI: 10.1093/plankt/fbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The majority of microalgal species reproduce asexually, yet population genetic studies rarely find identical multi-locus genotypes (MLG) in microalgal blooms. Instead, population genetic studies identify large genotypic diversity in most microalgal species. This paradox of frequent asexual reproduction but low number of identical genotypes hampers interpretations of microalgal genotypic diversity. We present a computer model for estimating, for the first time, the number of distinct MLGs by simulating microalgal population composition after defined exponential growth periods. The simulations highlighted the effects of initial genotypic diversity, sample size and intraspecific differences in growth rates on the probability of isolating identical genotypes. We estimated the genotypic richness for five natural microalgal species with available high-resolution population genetic data and monitoring-based growth rates, indicating 500 000 to 2 000 000 distinct genotypes for species with few observed clonal replicates (<5%). Furthermore, our simulations indicated high variability in genotypic richness over time and among microalgal species. Genotypic richness was also strongly impacted by intraspecific variability in growth rates. The probability of finding identical MLGs and sampling a representative fraction of genotypes decreased noticeably with smaller sample sizes, challenging the detection of differences in genotypic diversity with typical isolate numbers in the field.
Collapse
Affiliation(s)
| | - Deana L Erdner
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | - Bryan C Lougheed
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Conny SjÖqvist
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Czuppon P, Rogers DW. Evolution of mating types in finite populations: The precarious advantage of being rare. J Evol Biol 2019; 32:1290-1299. [PMID: 31479547 DOI: 10.1111/jeb.13528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Sexually reproducing populations with self-incompatibility bear the cost of limiting potential mates to individuals of a different type. Rare mating types escape this cost since they are unlikely to encounter incompatible partners, leading to the deterministic prediction of continuous invasion by new mutants and an ever-increasing number of types. However, rare types are also at an increased risk of being lost by random drift. Calculating the number of mating types that a population can maintain requires consideration of both the deterministic advantages and the stochastic risks. By comparing the relative importance of selection and drift, we show that a population of size N can maintain a maximum of approximately N1/3 mating types for intermediate population sizes, whereas for large N, we derive a formal estimate. Although the number of mating types in a population is quite stable, the rare-type advantage promotes turnover of types. We derive explicit formulas for both the invasion and turnover probabilities in finite populations.
Collapse
Affiliation(s)
- Peter Czuppon
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Centre Interdisciplinaire de Recherche en Biologie, CNRS Collège de France, PSL Research University, Paris, France.,Institut d'Ecologie et des Sciences de l'Environnement (IEES), UPEC, CNRS, IRD, INRA, Sorbonne Université, Paris, France
| | - David W Rogers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Majda S, Boenigk J, Beisser D. Intraspecific Variation in Protists: Clues for Microevolution from Poteriospumella lacustris (Chrysophyceae). Genome Biol Evol 2019; 11:2492-2504. [PMID: 31384914 PMCID: PMC6738136 DOI: 10.1093/gbe/evz171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Species delimitation in protists is still a challenge, attributable to the fact that protists are small, difficult to observe and many taxa are poor in morphological characters, whereas most current phylogenetic approaches only use few marker genes to measure genetic diversity. To address this problem, we assess genome-level divergence and microevolution in strains of the protist Poteriospumella lacustris, one of the first free-living, nonmodel organisms to study genome-wide intraspecific variation. Poteriospumella lacustris is a freshwater protist belonging to the Chrysophyceae with an assumed worldwide distribution. We examined three strains from different geographic regions (New Zealand, China, and Austria) by sequencing their genomes with the Illumina and PacBio platforms. The assembled genomes were small with 49-55 Mb but gene-rich with 16,000-19,000 genes, of which ∼8,000 genes could be assigned to functional categories. At least 68% of these genes were shared by all three species. Genetic variation occurred predominantly in genes presumably involved in ecological niche adaptation. Most surprisingly, we detected differences in genome ploidy between the strains (diploidy, triploidy, and tetraploidy). In analyzing intraspecific variation, several mechanisms of diversification were identified including SNPs, change of ploidy and genome size reduction.
Collapse
Affiliation(s)
| | - Jens Boenigk
- Department of Biodiversity, Duisburg-Essen, Germany
| | | |
Collapse
|
5
|
Southworth J, Armitage P, Fallon B, Dawson H, Bryk J, Carr M. Patterns of Ancestral Animal Codon Usage Bias Revealed through Holozoan Protists. Mol Biol Evol 2019; 35:2499-2511. [PMID: 30169693 PMCID: PMC6188563 DOI: 10.1093/molbev/msy157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Choanoflagellates and filastereans are the closest known single celled relatives of Metazoa within Holozoa and provide insight into how animals evolved from their unicellular ancestors. Codon usage bias has been extensively studied in metazoans, with both natural selection and mutation pressure playing important roles in different species. The disparate nature of metazoan codon usage patterns prevents the reconstruction of ancestral traits. However, traits conserved across holozoan protists highlight characteristics in the unicellular ancestors of Metazoa. Presented here are the patterns of codon usage in the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta, as well as the filasterean Capsaspora owczarzaki. Codon usage is shown to be remarkably conserved. Highly biased genes preferentially use GC-ending codons, however there is limited evidence this is driven by local mutation pressure. The analyses presented provide strong evidence that natural selection, for both translational accuracy and efficiency, dominates codon usage bias in holozoan protists. In particular, the signature of selection for translational accuracy can be detected even in the most weakly biased genes. Biased codon usage is shown to have coevolved with the tRNA species, with optimal codons showing complementary binding to the highest copy number tRNA genes. Furthermore, tRNA modification is shown to be a common feature for amino acids with higher levels of degeneracy and highly biased genes show a strong preference for using modified tRNAs in translation. The translationally optimal codons defined here will be of benefit to future transgenics work in holozoan protists, as their use should maximise protein yields from edited transgenes.
Collapse
Affiliation(s)
- Jade Southworth
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul Armitage
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Brandon Fallon
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Holly Dawson
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Martin Carr
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
6
|
Hinners J, Kremp A, Hense I. Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story? Proc Biol Sci 2018; 284:rspb.2017.1888. [PMID: 29021182 DOI: 10.1098/rspb.2017.1888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023] Open
Abstract
The high evolutionary potential of phytoplankton species allows them to rapidly adapt to global warming. Adaptations may occur in temperature-dependent traits, such as growth rate, cell size and life cycle processes. Using resurrection experiments with resting stages from living sediment archives, it is possible to investigate whether adaptation occurred. For this study, we revived resting cysts of the spring bloom dinoflagellate Apocalathium malmogiense from recent and 100-year-old sediment layers from the Gulf of Finland, and compared temperature-dependent traits of recent and historic strains along a temperature gradient. We detected no changes in growth rates and cell sizes but a significant difference between recent and historic strains regarding resting cyst formation. The encystment rate of recent strains was significantly lower compared with historic strains which we interpret as an indication of adaptation to higher and more rapidly increasing spring temperatures. Low encystment rates may allow for bloom formation even if the threshold temperature inducing a loss of actively growing cells through resting cyst formation is exceeded. Our findings reveal that phenotypic responses of phytoplankton to changing temperature conditions may include hidden traits such as life cycle processes and their regulation mechanisms. This study emphasizes the potential of living sediment archives to investigate plankton responses and adaptation to global warming.
Collapse
Affiliation(s)
- Jana Hinners
- Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability, University of Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
| | - Anke Kremp
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, 00560 Helsinki, Finland
| | - Inga Hense
- Institute for Hydrobiology and Fisheries Science, Center for Earth System Research and Sustainability, University of Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
| |
Collapse
|
7
|
Lundholm N, Ribeiro S, Godhe A, Rostgaard Nielsen L, Ellegaard M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol Evol 2017; 7:3132-3142. [PMID: 28480012 PMCID: PMC5415532 DOI: 10.1002/ece3.2906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 01/29/2023] Open
Abstract
Many marine protists form resting stages that can remain viable in coastal sediments for several decades. Their long‐term survival offers the possibility to explore the impact of changes in environmental conditions on population dynamics over multidecadal time scales. Resting stages of the phototrophic dinoflagellate Pentapharsodinium dalei were isolated and germinated from five layers in dated sediment cores from Koljö fjord, Sweden, spanning ca. 1910–2006. This fjord has, during the last century, experienced environmental fluctuations linked to hydrographic variability mainly driven by the North Atlantic Oscillation. Population genetic analyses based on six microsatellite markers revealed high genetic diversity and suggested that samples belonged to two clusters of subpopulations that have persisted for nearly a century. We observed subpopulation shifts coinciding with changes in hydrographic conditions. The large degree of genetic diversity and the potential for both fluctuation and recovery over longer time scales documented here, may help to explain the long‐term success of aquatic protists that form resting stages.
Collapse
Affiliation(s)
- Nina Lundholm
- The Natural History Museum of Denmark University of Copenhagen Copenhagen K Denmark
| | - Sofia Ribeiro
- Glaciology and Climate Department Geological Survey of Denmark and Greenland (GEUS) Copenhagen K Denmark
| | - Anna Godhe
- Department of Marine Sciences University of Gothenburg Göteborg Sweden
| | - Lene Rostgaard Nielsen
- Deparment of Geosciences and Natural Resource Management University of Copenhagen Frederiksberg Denmark
| | - Marianne Ellegaard
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| |
Collapse
|