1
|
Isaksson C, Ziegler AK, Powell D, Gudmundsson A, Andersson MN, Rissler J. Transcriptome analysis of avian livers reveals different molecular changes to three urban pollutants: Soot, artificial light at night and noise. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124461. [PMID: 38964643 DOI: 10.1016/j.envpol.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.
Collapse
Affiliation(s)
- C Isaksson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden.
| | - A-K Ziegler
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - D Powell
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - A Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| | - M N Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - J Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, SE-223 62, Lund, Sweden
| |
Collapse
|
2
|
Watson H, Nilsson JÅ, Smith E, Ottosson F, Melander O, Hegemann A, Urhan U, Isaksson C. Urbanisation-associated shifts in the avian metabolome within the annual cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173624. [PMID: 38821291 DOI: 10.1016/j.scitotenv.2024.173624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
While organisms have evolved to cope with predictable changes in the environment, the rapid rate of current global change presents numerous novel and unpredictable stressors to which organisms have had less time to adapt. To persist in the urban environment, organisms must modify their physiology, morphology and behaviour accordingly. Metabolomics offers great potential for characterising organismal responses to natural and anthropogenic stressors at the systems level and can be applied to any species, even without genomic knowledge. Using metabolomic profiling of blood, we investigated how two closely related species of passerine bird respond to the urban environment. Great tits Parus major and blue tits Cyanistes caeruleus residing in urban and forest habitats were sampled during the breeding (spring) and non-breeding (winter) seasons across replicated sites in southern Sweden. During breeding, differences in the plasma metabolome between urban and forest birds were characterised by higher levels of amino acids in urban-dwelling tits and higher levels of fatty acyls in forest-dwelling tits. The suggested higher rates of fatty acid oxidation in forest tits could be driven by habitat-associated differences in diet and could explain the higher reproductive investment and success of forest tits. High levels of amino acids in breeding urban tits could reflect the lack of lipid-rich caterpillars in the urban environment and a dietary switch to protein-rich spiders, which could be of benefit for tackling inflammation and oxidative stress associated with pollution. In winter, metabolomic profiles indicated lower overall levels of amino acids and fatty acyls in urban tits, which could reflect relaxed energetic demands in the urban environment. Our metabolomic profiling of two urban-adapted species suggests that their metabolism is modified by urban living, though whether these changes represent adaptative or non-adaptive mechanisms to cope with anthropogenic challenges remains to be determined.
Collapse
Affiliation(s)
- Hannah Watson
- Department of Biology, Lund University, 223 62 Lund, Sweden.
| | | | - Einar Smith
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Filip Ottosson
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Utku Urhan
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | |
Collapse
|
3
|
Connelly F, Johnsson RD, Mulder RA, Hall ML, Lesku JA. Experimental playback of urban noise does not affect cognitive performance in captive Australian magpies. Biol Open 2024; 13:bio060535. [PMID: 39069816 PMCID: PMC11340814 DOI: 10.1242/bio.060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.
Collapse
Affiliation(s)
- Farley Connelly
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Alameda County Resource Conservation District, Livermore, California 94550, USA
| | - Robin D. Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA
| | - Raoul A. Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michelle L. Hall
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bush Heritage Australia, Melbourne, Victoria 3000, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - John A. Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
4
|
Reid R, Capilla-Lasheras P, Haddou Y, Boonekamp J, Dominoni DM. The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proc Biol Sci 2024; 291:20240617. [PMID: 39016598 PMCID: PMC11253839 DOI: 10.1098/rspb.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Stressors associated with urban habitats have been linked to poor wildlife health but whether a general negative relationship between urbanization and animal health can be affirmed is unclear. We conducted a meta-analysis of avian literature to test whether health biomarkers differed on average between urban and non-urban environments, and whether there are systematic differences across species, biomarkers, life stages and species traits. Our dataset included 644 effect sizes derived from 112 articles published between 1989 and 2022, on 51 bird species. First, we showed that there was no clear impact of urbanization on health when we categorized the sampling locations as urban or non-urban. However, we did find a small negative effect of urbanization on health when this dichotomous variable was replaced by a quantitative variable representing the degree of urbanization at each location. Second, we showed that the effect of urbanization on avian health was dependent on the type of health biomarker measured as well as the individual life stage, with young individuals being more negatively affected. Our comprehensive analysis calls for future studies to disentangle specific urban-related drivers of health that might be obscured in categorical urban versus non-urban comparisons.
Collapse
Affiliation(s)
- Rachel Reid
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Yacob Haddou
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Jelle Boonekamp
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| | - Davide M. Dominoni
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, 82 Hillhead Street, GlasgowG12 8QQ, UK
| |
Collapse
|
5
|
Rodseth E, Sumasgutner P, Tate G, Nilsson JF, Watson H, Maritz MF, Ingle RA, Amar A. Pleiotropic effects of melanin pigmentation: haemoparasite infection intensity but not telomere length is associated with plumage morph in black sparrowhawks. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230370. [PMID: 38577209 PMCID: PMC10987988 DOI: 10.1098/rsos.230370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/21/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
There is increasing recognition of the potential pleiotropic effects of melanin pigmentation, particularly on immunity, with reports of variation in haemoparasite infection intensity and immune responses between the morphs of colour-polymorphic bird species. In a population of the black sparrowhawk (Accipiter melanoleucus) in western South Africa, light morphs have a higher haemoparasite infection intensity, but no physiological effects of this are apparent. Here, we investigate the possible effects of haemoparasite infection on telomere length in this species and explore whether relative telomere length is associated with either plumage morph or sex. Using quantitative polymerase chain reaction analysis, we confirmed that dark morphs had a lower haemoparasite infection intensity than light morphs. However, we found no differences in telomere length associated with either the haemoparasite infection status or morph in adults, although males have longer telomeres than females. While differences in haemoparasite intensity between morphs are consistent with pleiotropic effects of melanin pigmentation in the black sparrowhawk, we found no evidence that telomere length was associated with haemoparasite infection. Further work is needed to investigate the implications of possible pleiotropic effects of plumage morph and their potential role in the maintenance of colour polymorphism in this species.
Collapse
Affiliation(s)
- Edmund Rodseth
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
- Konrad Lorenz Research Centre, Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Gareth Tate
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
- Birds of Prey Programme, Endangered Wildlife Trust, Midrand, South Africa
| | - Johan F. Nilsson
- Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Hannah Watson
- Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Michelle F. Maritz
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Jones TM, Llamas AP, Phillips JN. Phenotypic signatures of urbanization? Resident, but not migratory, songbird eye size varies with urban-associated light pollution levels. GLOBAL CHANGE BIOLOGY 2023; 29:6635-6646. [PMID: 37728032 DOI: 10.1111/gcb.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Urbanization now exposes large portions of the earth to sources of anthropogenic disturbance, driving rapid environmental change and producing novel environments. Changes in selective pressures as a result of urbanization are often associated with phenotypic divergence; however, the generality of phenotypic change remains unclear. In this study, we examined whether morphological phenotypes in two residential species (Carolina Wren [Thryothorus ludovicianus] and Northern Cardinal [Cardinalis cardinalis]) and two migratory species (Painted Bunting [Passerina ciris], and White-eyed Vireo [Vireo griseus]), differed between urban core and edge habitats in San Antonio, Texas, USA. More specifically, we examined whether urbanization, associated sensory pollution (light and noise) and brightness (open, bright areas cause by anthropogenic land use) influenced measures of avian body (mass and frame size) and lateral eye size. We found no differences in body size between urban core and edge habitats for all species except the Painted Bunting, in which core-urban individuals were smaller. Rather than a direct effect of urbanization, this was due to differences in age structure between habitats, with urban-core areas consisting of higher proportions of younger buntings which are, on average, smaller than older birds. Residential birds inhabiting urban-core areas had smaller eyes compared to their urban-edge counterparts, resulting from a negative association between eye size and light pollution and brightness across study sites; notably, we found no such association in the two migratory species. Our findings demonstrate how urbanization may indirectly influence phenotypes by altering population demographics and highlight the importance of accounting for age when assessing factors driving phenotypic change. We also provide some of the first evidence that birds may adapt to urban environments through changes in their eye morphology, demonstrating the need for future research into relationships among eye size, ambient light microenvironment use, and disassembly of avian communities as a result of urbanization.
Collapse
Affiliation(s)
- Todd M Jones
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alfredo P Llamas
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
| | - Jennifer N Phillips
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, USA
- School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
8
|
Salmón P, López-Idiáquez D, Capilla-Lasheras P, Pérez-Tris J, Isaksson C, Watson H. Urbanisation impacts plumage colouration in a songbird across Europe: Evidence from a correlational, experimental and meta-analytical approach. J Anim Ecol 2023; 92:1924-1936. [PMID: 37574652 DOI: 10.1111/1365-2656.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023]
Abstract
Urbanisation is accelerating across the globe, transforming landscapes, presenting organisms with novel challenges, shaping phenotypes and impacting fitness. Urban individuals are claimed to have duller carotenoid-based colouration, compared to their non-urban counterparts, the so-called 'urban dullness' phenomenon. However, at the intraspecific level, this generalisation is surprisingly inconsistent and often based on comparisons of single urban/non-urban populations or studies from a limited geographical area. Here, we combine correlational, experimental and meta-analytical data on a common songbird, the great tit Parus major, to investigate carotenoid-based plumage colouration in urban and forest populations across Europe. We find that, as predicted, urban individuals are paler than forest individuals, although there are large population-specific differences in the magnitude of the urban-forest contrast in colouration. Using one focal region (Malmö, Sweden), we reveal population-specific processes behind plumage colouration differences, which are unlikely to be the result of genetic or early-life conditions, but instead a consequence of environmental factors acting after fledging. Finally, our meta-analysis indicates that the urban dullness phenomenon is well established in the literature, for great tits, with consistent changes in carotenoid-based plumage traits, particularly carotenoid chroma, in response to anthropogenic disturbances. Overall, our results provide evidence for uniformity in the 'urban dullness' phenomenon but also highlight that the magnitude of the effect on colouration depends on local urban characteristics. Future long-term replicated studies, covering a wider range of species and feeding guilds, will be essential to further our understanding of the eco-evolutionary implications of this phenomenon.
Collapse
Affiliation(s)
- Pablo Salmón
- Department of Biology, Lund University, Lund, Sweden
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - David López-Idiáquez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Javier Pérez-Tris
- Evolution and Conservation Biology Research Group, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Hannah Watson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Barton MG, Henderson I, Border JA, Siriwardena G. A review of the impacts of air pollution on terrestrial birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162136. [PMID: 36775168 DOI: 10.1016/j.scitotenv.2023.162136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Air pollution has a ubiquitous impact on ecosystem functioning through myriad processes, including the acidification and eutrophication of soil and water, deposition of heavy metals and direct (and indirect) effects on flora and fauna. Describing the impacts of air pollution on organisms in the field is difficult because levels of exposure do not occur in a uniform manner across space and time, and species responses tend to be nuanced and difficult to isolate from other environmental stressors. However, given its far-reaching effects on human and ecosystem health, the impacts of air pollution on species are expected to be substantial, and could be direct or indirect, acting via a range of mechanisms. Here, we expand on previous reviews, to evaluate the existing evidence for the impacts of air pollution on avian species in the field, and to identify knowledge gaps to guide future research. We identified 203 studies that have investigated the impacts of air pollution (including nitrogen and heavy metal deposition) on wild populations of birds, considering 231 species from ten feeding guilds. The majority of studies (82 %) document at least one species trait leading to an overall fitness value that is negatively correlated with pollution concentrations, including deleterious effects on reproductive output, molecular (DNA) damage and overall survival, and effects on foraging behaviour, plumage colouration and body size that may show adaptation. Despite this broad range of trait effects, biases in the literature towards certain species (Parus major and Ficeluda hypoleuca), geographical regions (Western Europe) and pollutants (heavy metal deposition), mean that many unknowns remain in our current understanding of the impacts of air pollution on avian species. We discuss these findings in context of future work, and propose research approaches that could help to provide a more holistic understanding of how avian species are impacted by air pollution.
Collapse
Affiliation(s)
- Madeleine G Barton
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, United Kingdom.
| | - Ian Henderson
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, United Kingdom
| | - Jennifer A Border
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, United Kingdom
| | - Gavin Siriwardena
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, United Kingdom
| |
Collapse
|
10
|
Saulnier A, Bleu J, Boos A, Millet M, Zahn S, Ronot P, El Masoudi I, Rojas ER, Uhlrich P, Del Nero M, Massemin S. Inter-annual variation of physiological traits between urban and forest great tits. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111385. [PMID: 36740170 DOI: 10.1016/j.cbpa.2023.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Urbanization is characterized by rapid environmental changes such as an increase in building surface, in pollution, or a decrease in invertebrate abundance. For many bird species, morphological and physiological differences have been observed between urban and rural individuals that seem to reflect a negative impact of urban life on the health and fitness of individuals. Studies on passerine birds also showed important differences between populations and species in their responses to the urban environment. We propose to test physiological differences between urban and forest individuals over 3 years to understand whether the observed patterns are constant or subject to variations across years. For this purpose, we assessed the health parameters of adults and fledgling of great tits, Parus major, living in an urban and in a forest site in the Eurometropole of Strasbourg, for three years. Bird health was estimated with morphological parameters (body condition and size) and also with physiological parameters (oxidative status and telomere length). Our results showed lower body condition of urban fledglings regardless of the year, but no site effects on telomere length. On the contrary, for adult breeders, urban individuals had longer telomeres than forest ones except for one year which coincide with bad weather conditions during reproduction where no difference was detected. Urban birds also had higher antioxidant capacity whatever the years. These results suggest that cities act as a filter in which only good quality individuals survive and achieve successful reproduction regardless of year, whereas in the forest the selection occurs only during harsh weather years.
Collapse
Affiliation(s)
- Agnès Saulnier
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France.
| | - Josefa Bleu
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Anne Boos
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Maurice Millet
- ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France; Université de Strasbourg, CNRS, ICPEES 7515, F-67087 Strasbourg Cedex 3, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Pascale Ronot
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Islah El Masoudi
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France
| | - Emilio R Rojas
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; Wildstat, 43 rue de la Hoube, 67280 Urmatt, France
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mirella Del Nero
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Sylvie Massemin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| |
Collapse
|
11
|
Ramos-Elvira E, Banda E, Arizaga J, Martín D, Aguirre JI. Long-Term Population Trends of House Sparrow and Eurasian Tree Sparrow in Spain. BIRDS 2023. [DOI: 10.3390/birds4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Urban areas are constantly increasing, which can cause an effect in bird populations since human activities lead to nature alterations. Populations of House Sparrow (Passer domesticus) and Eurasian Tree Sparrow (Passer montanus) have been decreasing in Spain according to the latest national censuses in Spain. In this study, we tried to assess the population trend over more than two decades using ringing data from Spanish constant effort sites, as well as to determine the population and breeding success proxy in relation to habitat composition at landscape level. We analysed the data and confirmed the decreasing trend in the two species. However, Eurasian Tree Sparrow showed signs of increasing presence in urban areas. Furthermore, the productivity remained stable over sampling sites and years, meaning that the causes of the decreasing populations are affecting both adult and juvenile individuals.
Collapse
|
12
|
Longitudinal telomere dynamics within natural lifespans of a wild bird. Sci Rep 2023; 13:4272. [PMID: 36922555 PMCID: PMC10017829 DOI: 10.1038/s41598-023-31435-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h2 = 0.21), which was higher than the heritabilities of early-life TL (h2 = 0.14) and later-life TL measurements (h2 = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.
Collapse
|
13
|
Salaberria C, Chávez-Zichinelli CA, López-Rull I, Romano MC, Schondube JE. Physiological status of House Sparrows (Passer domesticus) along an ozone pollution gradient. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:261-272. [PMID: 36810751 PMCID: PMC10008774 DOI: 10.1007/s10646-023-02632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Mexico City is one of the most polluted cities in the world, and one in which air contamination is considered a public health threat. Numerous studies have related high concentrations of particulate matter and ozone to several respiratory and cardiovascular diseases and a higher human mortality risk. However, almost all of those studies have focused on human health outcomes, and the effects of anthropogenic air pollution on wildlife species is still poorly understood. In this study, we investigated the impacts of air pollution in the Mexico City Metropolitan Area (MCMA) on house sparrows (Passer domesticus). We assessed two physiological responses commonly used as biomarkers: stress response (the corticosterone concentration in feathers), and constitutive innate immune response (the concentration of both natural antibodies and lytic complement proteins), which are non-invasive techniques. We found a negative relationship between the ozone concentration and the natural antibodies response (p = 0.003). However, no relationship was found between the ozone concentration and the stress response or the complement system activity (p > 0.05). These results suggest that ozone concentrations in air pollution within MCMA may constrain the natural antibody response in the immune system of house sparrows. Our study shows, for the first time, the potential impact of ozone pollution on a wild species in the MCMA presenting the Nabs activity and the house sparrow as suitable indicators to assess the effect of air contamination on the songbirds.
Collapse
Affiliation(s)
- Concepción Salaberria
- Área de Biodiversidad, Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, España
| | | | - Isabel López-Rull
- Área de Biodiversidad, Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, España
| | - Marta C Romano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Ciudad de México, México
| | - Jorge E Schondube
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Colonia Ex Hacienda de San José de la Huerta, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
14
|
Jensen JK, Ziegler AK, Isaxon C, Jiménez-Gallardo L, Garcia Domínguez S, Nilsson JÅ, Rissler J, Isaksson C. Quantifying the influence of urban biotic and abiotic environmental factors on great tit nestling physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160225. [PMID: 36400300 DOI: 10.1016/j.scitotenv.2022.160225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
There is a long history of avian studies investigating the impacts of urbanization. While differences in several life-history traits have been documented, either between urban and rural populations or across generalized urbanization gradients, a detailed understanding of which specific environmental variables cause these phenotypic differences is still lacking. Here, we quantified several local environmental variables coupled to urbanization (air pollution, tree composition, ambient temperature, and artificial light at night [ALAN]) within territories of breeding great tits (Parus major). We linked the environmental variables to physiological measures of the nestlings (circulating fatty acid composition [FA], antioxidant capacity and an oxidative damage marker [malondialdehyde; MDA]), to garner a mechanistic understanding of the impact of urbanization. We found that the antioxidant capacity of nestlings decreased with higher numbers of oak trees and levels of PM2.5 (airborne particulate matter with a diameter < 2.5 μm). Furthermore, the ratio of ω6:ω3 polyunsaturated FAs, important for immune function, was positively correlated with PM2.5 concentration, while being negatively associated with ambient temperature and number of non-native trees in the territory. Body mass and wing length both increased with the number of local oak trees. We also show, through a principal component analysis, that while the environmental variables fall into an urbanization gradient, this gradient is insufficient to explain the observed physiological responses. Therefore, accounting for individual environmental variables in parallel, and thus allowing for interactions between these, is crucial to fully understand the urban ecosystem.
Collapse
Affiliation(s)
- Johan Kjellberg Jensen
- Department of Biology, Lund University, Lund, Sweden; Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden.
| | | | - Christina Isaxon
- NanoLund, Lund University, Lund, Sweden; Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Lucía Jiménez-Gallardo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | | | | | - Jenny Rissler
- NanoLund, Lund University, Lund, Sweden; Ergonomics and Aerosol Technology, Lund University, Lund, Sweden; Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | | |
Collapse
|
15
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
16
|
Nwaogu CJ, Amar A, Nebel C, Isaksson C, Hegemann A, Sumasgutner P. Innate immune function and antioxidant capacity of nestlings of an African raptor covary with the level of urbanisation around breeding territories. J Anim Ecol 2023; 92:124-141. [PMID: 36353782 PMCID: PMC10107107 DOI: 10.1111/1365-2656.13837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Urban areas provide breeding habitats for many species. However, animals raised in urban environments face challenges such as altered food availability and quality, pollution and pathogen assemblages. These challenges can affect physiological processes such as immune function and antioxidant defences which are important for fitness. Here, we explore how levels of urbanisation influence innate immune function, immune response to a mimicked bacterial infection and antioxidant capacity of nestling Black Sparrowhawks Accipiter melanoleucus in South Africa. We also explore the effect of timing of breeding and rainfall on physiology since both can influence the environmental condition under which nestlings are raised. Finally, because urbanisation can influence immune function indirectly, we use path analyses to explore direct and indirect associations between urbanisation, immune function and oxidative stress. We obtained measures of innate immunity (haptoglobin, lysis, agglutination, bactericidal capacity), indices of antioxidant capacity (total non-enzymatic antioxidant capacity (tAOX) and total glutathione from nestlings from 2015 to 2019. In addition, in 2018 and 2019, we mimicked a bacterial infection by injecting nestlings with lipopolysaccharide and quantified their immune response. Increased urban cover was associated with an increase in lysis and a decrease in tAOX, but not with any of the other physiological parameters. Furthermore, except for agglutination, no physiological parameters were associated with the timing of breeding. Lysis and bactericidal capacity, however, varied consistently with the annual rainfall pattern. Immune response to a mimicked a bacterial infection decreased with urban cover but not with the timing of breeding nor rainfall. Our path analyses suggested indirect associations between urban cover and some immune indices via tAOX but not via the timing of breeding. Our results show that early-life development in an urban environment is associated with variation in immune and antioxidant functions. The direct association between urbanisation and antioxidant capacity and their impact on immune function is likely an important factor mediating the impact of urbanisation on urban-dwelling animals. Future studies should explore how these results are linked to fitness and whether the responses are adaptive for urban-dwelling species.
Collapse
Affiliation(s)
- Chima Josiah Nwaogu
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Carina Nebel
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Department of Biology, University of Turku, Turku, Finland
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Konrad Lorenz Research Centre, Core Facility for Behaviour and Cognition, University of Vienna, Grünau/Almtal, Austria.,Department of Behavioural & Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Effects of anthropogenic noise on cognition, bill color, and growth in the zebra finch (Taeniopygia guttata). Acta Ethol 2022. [DOI: 10.1007/s10211-022-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
19
|
Sheldon EL, Eastwood JR, Teunissen N, Roast MJ, Aranzamendi NH, Fan M, Louise Hall M, Kingma SA, Verhulst S, Peters A. Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird. Mol Ecol 2022; 31:6008-6017. [PMID: 34850488 DOI: 10.1111/mec.16296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are protective, nucleoprotein structures at the end of chromosomes that have been associated with lifespan across taxa. However, the extent to which these associations can be attributed to absolute length vs. the rate of telomere shortening prior to sampling remains unresolved. In a longitudinal study, we examined the relationship between lifespan, telomere length and the rate of telomere shortening in wild, purple-crowned fairy-wrens (Malurus coronatus coronatus). To this end, we measured telomere length using quantitative polymerase chain reaction in the blood of 59 individuals sampled as nestlings and 4-14 months thereafter, and in 141 known-age individuals sampled on average three times across adulthood. We applied within-subject centring analyses to simultaneously test for associations between lifespan and average telomere length and telomere shortening. We reveal that the rate of telomere shortening and to a lesser extent telomere length in the first year of life independently predicted lifespan, with individuals with faster shortening rates and/or shorter telomeres living less long. In contrast, in adulthood neither telomere shortening nor telomere length predicted lifespan, despite a considerably larger data set. Our results suggest that telomere length measured very early in life (during development) and longitudinal assessments of telomere shortening during the first year of life constitute more useful biomarkers of total life expectancy than either telomere length measured after development, or telomere shortening later in adulthood.
Collapse
Affiliation(s)
| | | | - Niki Teunissen
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | | | | | - Marie Fan
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - Michelle Louise Hall
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.,Bush Heritage Australia, Melbourne, Vic, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Sjouke Anne Kingma
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Vic, Australia.,Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
20
|
Remot F, Ronget V, Froy H, Rey B, Gaillard JM, Nussey DH, Lemaitre JF. Decline in telomere length with increasing age across nonhuman vertebrates: A meta-analysis. Mol Ecol 2022; 31:5917-5932. [PMID: 34437736 DOI: 10.1111/mec.16145] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The prediction that telomere length (TL) shortens with increasing age is a major element in considering the role of telomeres as a key player in evolution. While telomere attrition is found in humans both in vitro and in vivo, the increasing number of studies reporting diverse age-specific patterns of TL challenges the hypothesis of a universal decline of TL with increasing age. Here, we performed a meta-analysis to estimate the relationship between TL and age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, TL does decline with increasing age during adulthood. However, this decline was weak and variable across vertebrate classes, and we also found evidence for a publication bias that might weaken our current evidence of decreasing TL with increasing age. We found no evidence for a faster decline in TL with increasing age when considering the juvenile stage (from birth to age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was explained by the method used to measure telomeres: detectable TL declines with increasing age were found only among studies using TRF with in-gel hybridisation and qFISH methods, but not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL declines with increasing age in most adult vertebrates, our results identify an influence of telomere measurement methodology, which highlights the need to examine more thoroughly the effect of the method of measurement on TL estimates.
Collapse
Affiliation(s)
- Florentin Remot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jean-François Lemaitre
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
21
|
McLennan D, Auer SK, McKelvey S, McKelvey L, Anderson G, Boner W, Duprez JS, Metcalfe NB. Habitat restoration weakens negative environmental effects on telomere dynamics. Mol Ecol 2022; 31:6100-6113. [PMID: 33973299 DOI: 10.1111/mec.15980] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023]
Abstract
Habitat quality can have far-reaching effects on organismal fitness, an issue of concern given the current scale of habitat degradation. Many temperate upland streams have reduced nutrient levels due to human activity. Nutrient restoration confers benefits in terms of invertebrate food availability and subsequent fish growth rates. Here we test whether these mitigation measures also affect the rate of cellular ageing of the fish, measured in terms of the telomeres that cap the ends of eukaryotic chromosomes. We equally distributed Atlantic salmon eggs from the same 30 focal families into 10 human-impacted oligotrophic streams in northern Scotland. Nutrient levels in five of the streams were restored by simulating the deposition of a small number of adult Atlantic salmon Salmo salar carcasses at the end of the spawning period, while five reference streams were left as controls. Telomere lengths and expression of the telomerase reverse transcriptase (TERT) gene that may act to lengthen telomeres were then measured in the young fish when 15 months old. While TERT expression was unrelated to any of the measured variables, telomere lengths were shorter in salmon living at higher densities and in areas with a lower availability of the preferred substrate (cobbles and boulders). However, the adverse effects of these habitat features were much reduced in the streams receiving nutrients. These results suggest that adverse environmental pressures are weakened when nutrients are restored, presumably because the resulting increase in food supply reduces levels of both competition and stress.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Biology, Williams College, Williamstown, MA, USA
| | | | | | - Graeme Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jessica S Duprez
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Li R, Chen G, Pan M, Hou X, Kang N, Chen R, Yuchi Y, Liao W, Liu X, Mao Z, Huo W, Guo Y, Li S, Wang C, Hou J. Adverse associations of long-term exposure to ambient ozone with molecular biomarkers of aging alleviated by residential greenness in rural Chinese adults. ENVIRONMENT INTERNATIONAL 2022; 169:107496. [PMID: 36084404 DOI: 10.1016/j.envint.2022.107496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both ambient ozone exposure and residential greenness are linked to the aging process. However, their interactive effect on molecular biomarkers of aging (telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN)) remains unclear. METHODS This study was conducted among 6418 rural Chinese adults. The concentration of ambient ozone was assessed using a random forest model. Residential greenness was represented by the normalized difference vegetation index (NDVI). Molecular biomarkers of aging (relative TL and relative mtDNA-CN) were determined by quantitative real-time polymerase chain reaction. Generalized linear regression models were applied to investigate the independent and combined effects of ambient ozone and residential greenness on relative TL and relative mtDNA-CN. RESULTS The estimated percent changes and 95 % confidence intervals (CIs) of relative TL in response to per-unit increase in ambient ozone were -22.43 % (-23.74 %, -21.18 %), -14.19 % (-15.63 %, -12.72 %) and -4.50 % (-6.57 %, -2.27 %) for participants with low (NDVI ≤ 0.53), moderate (0.54-0.55) and high (≥0.56) residential greenness exposure, respectively, while the corresponding figures of relative mtDNA-CN were -12.63 % (-13.84 %, -11.31 %), -9.52 % (-10.60 %, -8.33 %) and 2.12 % (0.20 %, 4.19 %). Furthermore, negative interactive effects between ambient ozone and residential greenness exposure on molecular biomarkers of aging were observed (Pfor interaction < 0.001 for relative TL, and 0.098 for relative mtDNA-CN). CONCLUSIONS Long-term exposure to high concentrations of ambient ozone and low residential greenness was associated with decreased mtDNA-CN and shortened TL. The adverse effect of ambient ozone exposure on molecular biomarkers of aging may be attenuated by increased residential greenness.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
23
|
Kazantseva AV, Davydova YD, Enikeeva RF, Mustafin RN, Lobaskova MM, Malykh SB, Khusnutdinova EK. Individual Differences in Relative Telomere Length in Mentally Healthy Subjects: The Effect of TERT Gene Polymorphism and Urban Residency. RUSS J GENET+ 2022; 58:1135-1144. [PMID: 36119151 PMCID: PMC9470233 DOI: 10.1134/s1022795422090101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
The changes in the telomere length caused by the terminal underreplication in the existing literature are related to depressive disorders. However, the use of the telomere length as a biomarker of depressive states is ambiguous, which is due to the effect of various environmental factors on both the psychoemotional state and cellular aging of an organism. In order to identify the possible use of the relative telomere length (RTL) measured in peripheral blood leukocytes as a biomarker of enhanced liability to depression prior to the clinical symptoms, as well as to determine the link between telomere length, sociodemographic factors, allelic variants of the genes involved in the regulation of telomere elongation, and depression level, the association analysis of reverse transcriptase (TERT rs7726159), telomerase RNA component (TERC rs1317082), and the CST complex encoding protein (OBFC1 rs2487999) gene polymorphisms was performed with RTL and depression level in mentally healthy individuals (N = 1065) aged 18-25 years. Together with genetic variants, the examined regression models included various sociodemographic parameters as predictors. As a result of statistical analysis, we failed to observe the association between RTL and individual differences in depression level in the studied sample. Nevertheless, multiple regression analysis allowed us to construct a statistically significant model of individual variance in RTL (P = 4.3е-4; r 2 = 0.018), which included rs7726159 in the TERT gene (P = 0.020; β = 0.078) and such environmental predictors as age (P = 0.001; β = -0.027) and place of residence in childhood (urban/rural area) (P = 0.048; β = 0.063). The data obtained confirm the involvement of TERT gene variants and age in telomere length in mentally healthy individuals aged 18-25 years and indicate a negative effect of urban residency on telomere length shortening, which reflects the cellular aging of an organism.
Collapse
Affiliation(s)
- A V Kazantseva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia.,Ufa State Petroleum Technical University, 450064 Ufa, Russia
| | - Yu D Davydova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia
| | - R N Mustafin
- Bashkir State Medical University, 450008 Ufa, Russia
| | - M M Lobaskova
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
| | - S B Malykh
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia.,Moscow State University, 119991 Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia.,Bashkir State University, 450076 Ufa, Russia.,Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Hot and dry conditions predict shorter nestling telomeres in an endangered songbird: Implications for population persistence. Proc Natl Acad Sci U S A 2022; 119:e2122944119. [PMID: 35696588 PMCID: PMC9231487 DOI: 10.1073/pnas.2122944119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Climate warming is increasingly exposing wildlife to sublethal high temperatures, which may lead to chronic impacts and reduced fitness. Telomere length (TL) may link heat exposure to fitness, particularly at early-life stages, because developing organisms are especially vulnerable to adverse conditions, adversity can shorten telomeres, and TL predicts fitness. Here, we quantify how climatic and environmental conditions during early life are associated with TL in nestlings of wild purple-crowned fairy-wrens (Malurus coronatus), endangered songbirds of the monsoonal tropics. We found that higher average maximum air temperature (range 31 to 45 °C) during the nestling period was associated with shorter early-life TL. This effect was mitigated by water availability (i.e., during the wet season, with rainfall), but independent of other pertinent environmental conditions, implicating a direct effect of heat exposure. Models incorporating existing information that shorter early-life TL predicts shorter lifespan and reduced fitness showed that shorter TL under projected warming scenarios could lead to population decline across plausible future water availability scenarios. However, if TL is assumed to be an adaptive trait, population viability could be maintained through evolution. These results are concerning because the capacity to change breeding phenology to coincide with increased water availability appears limited, and the evolutionary potential of TL is unknown. Thus, sublethal climate warming effects early in life may have repercussions beyond individual fitness, extending to population persistence. Incorporating the delayed reproductive costs associated with sublethal heat exposure early in life is necessary for understanding future population dynamics with climate change.
Collapse
|
25
|
Jiménez-Peñuela J, Ferraguti M, la Puente JMD, Soriguer RC, Figuerola J, Isaksson C. Differences in fatty acids composition between Plasmodium infected and uninfected house sparrows along an urbanization gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152664. [PMID: 34998746 DOI: 10.1016/j.scitotenv.2021.152664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities such as intensification of agriculture, animal husbandry and expansion of cities can negatively impact wildlife through its influence on the availability of high-quality food resources and pathogen transmission. The house sparrow (Passer domesticus), an urban exploiter, is undergoing a population decline. Nutritional constrains and infectious diseases has been highlighted as potential causes. Fatty acids (FAs) play an important role in modulating certain immune responses needed to combat parasite infections. FAs are highly influenced by dietary availability and have been shown to vary between urban and rural birds. Habitat anthropization also affects avian malaria epidemiology but little attention has been given to the relationship between blood parasite infection, host FAs composition and anthropization. Here, we analysed 165 juvenile birds either infected by Plasmodium or uninfected, captured at 15 localities grouped in triplets containing urban, rural and natural habitats. The total level of FAs was higher in birds from urban than from rural habitats, suggesting a greater availability of fat-rich foods sources. Furthermore, Plasmodium infected birds had higher relative levels of ω-3 polyunsaturated fatty acids (PUFAs) but lower of ω-6 PUFAs than uninfected birds. In concordance, the ω-6/ω-3 ratio was also lower in infected than in uninfected birds, but only from natural habitats, likely driven by the slightly higher ω-3 PUFAs in infected birds from natural habitats. Birds from anthropized environments may metabolize the ω-3 PUFAs to promote anti-inflammatory responses against stressors, which would result in lower ω-3 affecting their response against Plasmodium. Alternatively, lower ω-6 PUFAs may influence birds susceptibility to infection due to a weaker pro-inflammatory response. These descriptive results do not allow us to identify the causality of these associations but highlight the need to further investigate the relevance of FAs for birds to fight infectious diseases in habitats with different degree of urbanization.
Collapse
Affiliation(s)
| | - Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098XH, the Netherlands.
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, Granada E-18071, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Seville E-41092, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Seville E-41092, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | | |
Collapse
|
26
|
Tablado Z, Bötsch Y, Powolny T, Massemin S, Zahn S, Jenni-Eiermann S, Jenni L. Effect of Human Disturbance on Bird Telomere Length: An Experimental Approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.792492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human recreational activities increase worldwide in space and frequency leading to higher rates of encounter between humans and wild animals. Because wildlife often perceive humans as predators, this increase in human disturbance may have negative consequences for the individuals and also for the viability of populations. Up to now, experiments on the effects of human disturbance on wildlife have mainly focused on individual behavioral and stress-physiological reactions, on breeding success, and on survival. However, the effects on other physiological parameters and trans-generational effects remain poorly understood. We used a low-intensity experimental disturbance in the field to explore the impacts of human disturbance on telomere length in great tit (Parus major) populations and found a clear effect of disturbance on telomere length. Adult males, but not females, in disturbed plots showed shorter telomere lengths when compared to control plot. Moreover, variation in telomere length of adult great tits was reflected in the next generation, as we found a positive correlation between telomere length of the chicks and of their fathers. Given that telomere length has been linked to animal lifespan, our study highlights that activities considered to be of little concern (i.e., low levels of disturbance) can have a long-lasting impact on the physiology and survival of wild animals and their next generation.
Collapse
|
27
|
Richard FJ, Southern I, Gigauri M, Bellini G, Rojas O, Runde A. Warning on nine pollutants and their effects on avian communities. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
28
|
Sex Associated Effects of Noise Pollution in Stone Sculpin ( Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change. BIOLOGY 2021; 10:biology10101063. [PMID: 34681163 PMCID: PMC8533501 DOI: 10.3390/biology10101063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary In this comprehensive multidisciplinary study, we applied a novel multilevel approach to stone sculpins Paracottus knerii Dybowski, 1874, as model organisms and test for the first time the hypothesis of sex-dependent differences in response to long-term noise exposure in fish. The results testify that the stone sculpin females appeared to experience excessive stress, while the males showed adaptive recalibrations. These effects may be explained by a unique adaptive strategy of offspring care in the stone sculpin males and their biological role in reproductive behavior within the species. The findings obtained may help to elucidate the links between noise exposure in the context of human-induced rapid environmental change (HIREC), long-term sex-related changes in fishes, and the possible further evolutionary success of a species. Such HIREC modeling not only provides information about the potential consequences under anthropogenic pressure but also can help identify the natural mechanisms of stress resistance in different species, including those related to sex, and also contribute to the development of effective environmental management practices. Abstract This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160–179 dB re 1 μPa (SPLpk–pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.
Collapse
|
29
|
Gómez J, Morrissey CA, Cabezas S, Marchant TA, Clark RG. Phenotypic differences among wild passerine nestlings in relation to early-life rearing environment. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Subtle changes in stress physiology during critical developmental stages have been linked to long-term fitness; however, the biological processes and phenotypic responses to early-life rearing environments, such as anthropogenic land use conditions, have not been fully evaluated in insectivorous birds. We manipulated Tree Swallow (Tachycineta bicolor (Vieillot, 1808)) brood sizes at sites with contrasting agricultural land use to assess phenotypic changes in body condition and genetic and physiological biomarkers of stress during the sensitive nestling growth phase. We predicted that nestling swallows raised on cropland-dominated sites, especially those in enlarged broods, would have lower body condition, shorter telomeres, and higher feather corticosterone than nestlings raised in smaller broods at grassland sites. Body condition was highest among nestlings raised in reduced broods but was unrelated to land use. Telomere lengths tended to be shorter in nestlings from enlarged broods and at cropland sites. Corticosterone was not related to any factor. Locally abundant insect populations associated with wetlands may have dampened the effects and (or) parent swallows assumed higher costs of reproduction rather than passing these costs to nestlings. Results suggest that food or other environmental stressors could reduce fledgling survival via telomere shortening; a hypothesis that requires further investigation due to its potential importance to population viability in multiple declining aerial insectivore species.
Collapse
Affiliation(s)
| | - Christy A. Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
| | - Sonia Cabezas
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
| | - Tracy A. Marchant
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
| | - Robert G. Clark
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
- Environment and Climate Change Canada, Prairie and Northern Wildlife Research Centre, Saskatoon, SK S7N 0X4, Canada
| |
Collapse
|
30
|
Parolini M, De Felice B, Mondellini S, Caprioli M, Possenti CD, Rubolini D. Prenatal exposure to triclosan induced brain telomere shortening in a wild bird species. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103718. [PMID: 34329803 DOI: 10.1016/j.etap.2021.103718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Exposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis). Prenatal TCS exposure caused a significant overproduction of reactive oxygen species (ROS) in the brain, but no oxidative damage occurred. Telomeres of TCS-exposed embryos had brain telomeres 30 % shorter compared to controls, probably because the relatively modest antioxidant defenses of this organ during prenatal development cannot counteract the impact of the TCS-induced ROS. No telomere shortening was observed in the liver. Our results demonstrated that prenatal exposure to TCS in wild bird species can modulate the oxidative status and induce telomere shortening in the brain of the yellow-legged gull embryos.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy; Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
31
|
Catto S, Sumasgutner P, Amar A, Thomson RL, Cunningham SJ. Pulses of anthropogenic food availability appear to benefit parents, but compromise nestling growth in urban red-winged starlings. Oecologia 2021; 197:565-576. [PMID: 34536140 PMCID: PMC8585795 DOI: 10.1007/s00442-021-05033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
The provision of anthropogenic food undoubtedly influences urban bird fitness. However, the nature of the impact is unclear, with both benefits and costs of urban diets documented. Moreover, the influence of short-term fluctuations in food availability, linked to urban weekday/weekend cycles of human presence, is largely unknown. We explored whether breeding red-winged starlings Onychognathus morio in Cape Town, South Africa, altered foraging and provisioning behaviour between days with high human presence (HHP) and days with low human presence (LHP)—i.e. weekdays versus weekends and vacation days. We investigated the relationship between starling diet, adult body mass and nestling development. Breeding adults consumed and provisioned the same quantity of food, but a significantly greater proportion of anthropogenic food on HHP compared to LHP days. Adults apparently benefited from the anthropogenic diet, experiencing significantly greater mass gain on HHP days. However, nestlings experienced a cost, with the number of HHP days during the nestling period associated negatively with nestling size. Adults may, therefore, benefit from the high calorie content of anthropogenic food, while nestlings may be negatively affected by nutrient limitation. The quantity of food available in urban environments may, therefore, benefit adult survival, while its quality imposes a cost to nestling growth.
Collapse
Affiliation(s)
- Sarah Catto
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa. .,Konrad Lorenz Research Center, Core Facility for Behaviour and Cognition, Department of Behavioral and Cognitive Biology, University of Vienna, Grünau/Almtal, 4645, Austria.
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
32
|
Grunst ML, Grunst AS, Pinxten R, Eens M. Little parental response to anthropogenic noise in an urban songbird, but evidence for individual differences in sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144554. [PMID: 33477051 DOI: 10.1016/j.scitotenv.2020.144554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic noise exposure has well-documented behavioral, physiological and fitness effects on organisms. However, whether different noise regimes evoke distinct responses has rarely been investigated, despite implications for tailoring noise mitigation policies. Urban animals might display low responsiveness to certain anthropogenic noise regimes, especially consistent noise (e.g. freeway noise), but might remain more sensitive to more diverse noise regimes. Additionally, whether individuals differ in noise sensitivity is a rarely explored issue, which is important to fully understand organismal responses to noise. To address these knowledge gaps, we used a field experiment to measure how urban great tits (Parus major) altered parental behaviors in response to two noise regimes: consistent freeway noise, and a diverse anthropogenic noise regime that incorporated variability in noise type and temporal occurrence. We also evaluated whether sex, age, or a well-described personality trait, novel environment exploration behavior, were associated with responses to noise, although our power to assess individual differences in responses was somewhat limited. We found no evidence for mean population-level changes in nestling provisioning behaviors during either noise treatment. However, despite this overall canalization of behavior, there was evidence for individual differences in noise sensitivity, particularly during the diverse noise treatment. Females and birds that explored a novel environment more rapidly (fast explorers) reduced nestling provisioning rate more relative to baseline levels than males and slow explorers during the diverse urban noise, but not during the consistent freeway noise. Furthermore, first year breeders and fast explorers displayed larger increases in latency to return to the nest box relative to baseline conditions during the diverse noise only. Results suggest that urban animal populations might become overall tolerant to anthropogenic noise, but that certain individuals within these populations nonetheless remain sensitive to certain types of noise exposure. CAPSULE: In an urban songbird, we found no population-level changes in nestling provisioning behavior during noise exposure, but did find evidence for individual differences in noise sensitivity.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research group, University of Antwerp, 2000 Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
33
|
Pandit MM, Eapen J, Pineda-Sabillon G, Caulfield ME, Moreno A, Wilhelm J, Ruyle JE, Bridge ES, Proppe DS. Anthropogenic noise alters parental behavior and nestling developmental patterns, but not fledging condition. Behav Ecol 2021. [DOI: 10.1093/beheco/arab015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Anthropogenic noise is a ubiquitous feature of the American landscape, and is a known stressor for many bird species, leading to negative effects in behavior, physiology, reproduction, and ultimately fitness. While a number of studies have examined how anthropogenic noise affects avian fitness, there are few that simultaneously examine how anthropogenic noise impacts the relationship between parental care behavior and nestling fitness. We conducted Brownian noise playbacks for 6 h a day during the nesting cycle on Eastern Bluebird (Sialia sialis) nest boxes to investigate if experimentally elevated noise affected parental care behavior, nestling body conditions, and nestling stress indices. We documented nest attendance by adult females using radio frequency identification (RFID), and we assessed nestling stress by measuring baseline corticosterone levels and telomere lengths. Based on the RFID data collected during individual brood cycles, adult bluebirds exposed to noise had significantly higher feeding rates earlier in the brood cycle than adults in the control group, but reduced feeding rates later in the cycle. Nestlings exposed to noise had higher body conditions than the control nestlings at 11 days of age, but conditions equalized between treatments by day 14. We found no differences in nestling baseline corticosterone levels or nestling telomere lengths between the two treatment groups. Our results revealed that noise altered adult behavior, which corresponded with altered nestling body condition. However, the absence of indicators of longer-term effects of noise on offspring suggests adult behavior may have been a short-term response.
Collapse
Affiliation(s)
- Meelyn Mayank Pandit
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA
| | - James Eapen
- Biology Department, Calvin University, SE, Grand Rapids, MI, USA
| | | | - Margaret E Caulfield
- Biology Department, Calvin University, SE, Grand Rapids, MI, USA
- MSU College of Human Medicine, Grand Rapids Research Center, The Department of Translational Neuroscience, NW, Grand Rapids, MI, USA
| | - Alexander Moreno
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
- Advanced Radar Research Center, University of Oklahoma, Norman, OK, USA
| | - Jay Wilhelm
- Russ College of Engineering and Technology, Ohio University, Stocker Center, Athens, OH, USA
| | - Jessica E Ruyle
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
- Advanced Radar Research Center, University of Oklahoma, Norman, OK, USA
| | - Eli S Bridge
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, USA
| | - Darren S Proppe
- Biology Department, Calvin University, SE, Grand Rapids, MI, USA
- Wild Basin Creative Research Center, Austin, TX, USA
- School of Natural Sciences, St. Edwards University, Austin, TX, USA
| |
Collapse
|
34
|
Quque M, Paquet M, Zahn S, Théron F, Faivre B, Sueur C, Criscuolo F, Doutrelant C, Covas R. Contrasting associations between nestling telomere length and pre and postnatal helpers' presence in a cooperatively breeding bird. Oecologia 2021; 196:37-51. [PMID: 33864121 DOI: 10.1007/s00442-021-04917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
Studies on cooperative breeders have addressed the effects of non-breeding 'helpers' on reproduction and parental care, but the consequences for offspring physiology and long-term survival are less understood. Helpers are expected to benefit offspring, but their presence can also lead to decreased pre- or post-natal parental reproductive effort. To examine whether prenatal and postnatal helpers influence offspring condition, we conducted a whole-clutch cross-fostering experiment in sociable weavers (Philetairus socius) that altered the nestlings' social environment (presence/absence of helpers). We tested whether relative telomere length (rTL), an indicator of somatic maintenance, was influenced by prenatal and/or postnatal presence of helpers 9 and 17 days after hatching, and whether rTL predicted long-term survival. Nine days after hatching, we found an overall positive effect of postnatal helpers on rTL: for nestlings with prenatal helpers, a reduction in the number of helpers post-hatch was associated with shorter telomeres, while nestlings swapped from nests without helpers to nests with helpers had a larger rTL. However, when prenatal helpers were present, an increased number of helpers after hatching led to shorter telomeres. Nine-day old chicks with longer rTL tended to be more likely to survive over the 5 years following hatching. However, close to fledging, there was no detectable effect of the experiment on rTL and no link between rTL and survival. This experimental study of a wild cooperative breeder, therefore, presents partial support for the importance of the presence of helpers for offspring rTL and the link between early-life telomere length and long-term survival.
Collapse
Affiliation(s)
- Martin Quque
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France.
| | - Matthieu Paquet
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Sandrine Zahn
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France
| | - Frank Théron
- CNRS, CEFE UMR 5175, Université de Montpellier, Montpellier, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cédric Sueur
- CNRS, IPHC UMR 7178, Université de Strasbourg, Strasbourg, France.,Institut Universitaire de France, Paris, France
| | | | - Claire Doutrelant
- CNRS, CEFE UMR 5175, Université de Montpellier, Montpellier, France.,Research Centre On Biodiversity and Genetic Resources, CIBIO-InBio, University of Porto, Porto, Portugal
| | - Rita Covas
- Research Centre On Biodiversity and Genetic Resources, CIBIO-InBio, University of Porto, Porto, Portugal.,Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Molbert N, Angelier F, Alliot F, Ribout C, Goutte A. Fish from urban rivers and with high pollutant levels have shorter telomeres. Biol Lett 2021; 17:20200819. [PMID: 33465329 DOI: 10.1098/rsbl.2020.0819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Environmental pressures, such as urbanization and exposure to pollutants may jeopardize survival of free-living animals. Yet, much remains to be known about physiological and ecological responses to currently-released pollutants, especially in wild vertebrate ectotherms. We tested the effect of urbanization and pollution (phthalates, organochlorine and pyrethroid pesticides, polychlorobiphenyls, polybromodiphenylethers, polycyclic aromatic hydrocarbons, and some of their metabolites) on telomere length, a suggested biomarker of life expectancy, in the European chub, Squalius cephalus, from urban and agricultural rivers of the Marne hydrographic network, France. We showed that telomere length was reduced in chub from urban rivers. Moreover, among the wide range of anthropogenic contaminants investigated, high levels of phthalate metabolites in liver were associated with shorter telomeres. This study suggests that urbanization and chemical pollution may compromise survival of wild fish, by accelerating telomere attrition.
Collapse
Affiliation(s)
- Noëlie Molbert
- Sorbonne Université, CNRS, EPHE, UMR METIS, 75005 Paris, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, 79360 Villiers en Bois, France
| | - Fabrice Alliot
- Sorbonne Université, CNRS, EPHE, UMR METIS, 75005 Paris, France.,EPHE, PSL Research University, 75005 Paris, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, 79360 Villiers en Bois, France
| | - Aurélie Goutte
- Sorbonne Université, CNRS, EPHE, UMR METIS, 75005 Paris, France.,EPHE, PSL Research University, 75005 Paris, France
| |
Collapse
|
36
|
Sepp T, Webb E, Simpson RK, Giraudeau M, McGraw KJ, Hutton P. Light at night reduces digestive efficiency of developing birds: an experiment with king quail. Naturwissenschaften 2021; 108:4. [PMID: 33399962 DOI: 10.1007/s00114-020-01715-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Artificial light at night (ALAN) exposes animals to a novel environmental stimulus, one that is generally thought to be maladaptive. ALAN-related health problems have received little attention in non-model species, and we generally know little about the nutritional-physiological impacts of ALAN, especially in young animals. Here, we use a novel application of the acid steatocrit method to experimentally assess changes in digestive efficiency of growing king quail (Excalfactoria chinensis) in response to ALAN. Two weeks after hatching, quail were split into two groups (n = 20-21 per group): overnight-light-treated vs. overnight-dark-treated. When the chicks were 3 weeks old, the experimental group was exposed to weak blue light (ca. 0.3 lux) throughout the entire night for 6 consecutive weeks, until all the chicks had achieved sexual maturation. Fecal samples for assessing digestive efficiency were collected every week. We found that digestive efficiency of quail was reduced by ALAN at two time points from weeks 4 to 9 after hatching (quail reach adulthood by week 9). The negative effect of ALAN on digestion coincided with the period of fastest skeletal growth, which suggests that ALAN may reduce digestive efficiency when energetic demands of growth are at their highest. Interestingly, growth rate was not influenced by ALAN. This suggests that either the negative physiological impacts of ALAN may be concealed when food is provided ad libitum, the observed changes in digestive efficiency were too small to affect growth or condition, or that ALAN-exposed birds had reduced energy expenditure. Our results illustrate that the health impacts of ALAN on wild animals should not be restricted to traditional markers like body mass or growth rate, but instead on a wide array of integrated physiological traits.
Collapse
Affiliation(s)
- Tuul Sepp
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Emily Webb
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Richard K Simpson
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,CREEC, MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394, Montpellier Cedex 5, France
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
37
|
Watson H, Powell D, Salmón P, Jacobs A, Isaksson C. Urbanization is associated with modifications in DNA methylation in a small passerine bird. Evol Appl 2021; 14:85-98. [PMID: 33519958 PMCID: PMC7819559 DOI: 10.1111/eva.13160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urbanization represents a fierce driver of phenotypic change, yet the molecular mechanisms underlying observed phenotypic patterns are poorly understood. Epigenetic changes are expected to facilitate more rapid adaption to changing or novel environments, such as our towns and cities, compared with slow changes in gene sequence. A comparison of liver and blood tissue from great tits Parus major originating from an urban and a forest site demonstrated that urbanization is associated with variation in genome-wide patterns of DNA methylation. Combining reduced representation bisulphite sequencing with transcriptome data, we revealed habitat differences in DNA methylation patterns that suggest a regulated and coordinated response to the urban environment. In the liver, genomic sites that were differentially methylated between urban- and forest-dwelling birds were over-represented in regulatory regions of the genome and more likely to occur in expressed genes. DNA methylation levels were also inversely correlated with gene expression at transcription start sites. Furthermore, differentially methylated CpG sites, in liver, were over-represented in pathways involved in (i) steroid biosynthesis, (ii) superoxide metabolism, (iii) secondary alcohol metabolism, (iv) chylomicron remodelling, (v) cholesterol transport, (vi) reactive oxygen species (ROS) metabolic process and (vii) epithelial cell proliferation. This corresponds with earlier studies identifying diet and exposure to ROS as two of the main drivers of divergence between organisms in urban and nonurban environments. Conversely, in blood, sites that were differentially methylated between urban- and forest-dwelling birds were under-represented in regulatory regions, more likely to occur in nonexpressed genes and not over-represented in specific biological pathways. It remains to be determined whether diverging patterns of DNA methylation represent adaptive evolutionary responses and whether the conclusions can be more widely attributed to urbanization.
Collapse
Affiliation(s)
- Hannah Watson
- Evolutionary Ecology, Biology DepartmentLund UniversityLundSweden
| | - Daniel Powell
- Evolutionary Ecology, Biology DepartmentLund UniversityLundSweden
- Global Change Ecology, School of Science, Technology and EngineeringUniversity of the Sunshine CoastSippy DownsQLDAustralia
| | - Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | | |
Collapse
|
38
|
Corsini M, Schöll EM, Di Lecce I, Chatelain M, Dubiec A, Szulkin M. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol Appl 2021; 14:69-84. [PMID: 33519957 PMCID: PMC7819560 DOI: 10.1111/eva.13081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Rapid environmental change driven by urbanization offers a unique insight into the adaptive potential of urban-dwelling organisms. Urban-driven phenotypic differentiation is increasingly often demonstrated, but the impact of urbanization (here modelled as the percentage of impervious surface (ISA) around each nestbox) on offspring developmental rates and subsequent survival remains poorly understood. Furthermore, the role of selection on urban-driven phenotypic divergence was rarely investigated to date. METHODS AND RESULTS Data on nestling development and body mass were analysed in a gradient of urbanization set in Warsaw, Poland, in two passerine species: great tits (Parus major) and blue tits (Cyanistes caeruleus). Increasing levels of impervious surface area (ISA) delayed the age of fastest growth in blue tits. Nestling body mass was also negatively affected by increasing ISA 5 and 10 days after hatching in great tits, and 10 and 15 days in blue tits, respectively. High levels of ISA also increased nestling mortality 5 and 10 days after hatching in both species. An analysis of selection differentials performed for two levels of urbanization (low and high ISA) revealed a positive association between mass at day 2 and survival at fledging. DISCUSSION This study confirms the considerable negative impact of imperviousness-a proxy for urbanization level-on offspring development, body mass and survival, and highlights increased selection on avian mass at hatching in a high ISA environment.
Collapse
Affiliation(s)
| | - Eva Maria Schöll
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life SciencesViennaAustria
| | - Irene Di Lecce
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Marion Chatelain
- Applied and Trophic EcologyDepartment of ZoologyUniversity of InnsbruckInnsbruckAustria
| | - Anna Dubiec
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| |
Collapse
|
39
|
Phillips JN, Cooper WJ, Luther DA, Derryberry EP. Territory Quality Predicts Avian Vocal Performance Across an Urban-Rural Gradient. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.587120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow (Zonotrichia leucophrys nuttalli), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulated territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds (N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality.
Collapse
|
40
|
Sánchez-González K, Aguirre-Obando OA, Ríos-Chelén AA. Urbanization levels are associated with the start of the dawn chorus in vermilion flycatchers in Colombia. ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1837963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Katherin Sánchez-González
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia
| | - Oscar A. Aguirre-Obando
- Escuela de Investigación en Biomatemáticas, Universidad del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia
| | - Alejandro A. Ríos-Chelén
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla km 1.5, C.P. 90070, Tlaxcala, México
| |
Collapse
|
41
|
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Tyagun ML, Glyzina OY, Coffin AB, Makarov MM, Shagun AN, Kulikov VA, Gasarov PV, Kirilchik SV, Klimenkov IV, Sudakov NP, Anoshko PN, Kurashova NA, Sukhanova LV. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:895. [PMID: 32873010 DOI: 10.1121/10.0001674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control and sound-exposed peled. The authors measured the effects of long-term (up to 18 days) exposure to a 300 Hz tone at mean sound pressure levels of 176-186 dB re 1 μPa (SPLpk-pk); the frequency and intensity were selected to approximate loud acoustic environments associated with cleaning equipment in aquaculture settings. Acoustic exposure resulted in ultrastructure changes to otoliths, morphological damage to sensory hair cells of the macula sacculi, and a gradual decrease in the number of functionally active mitochondria in the red blood cells but no changes to telomeres. Changes were apparent following at least ten days of acoustic exposure. These data suggest that acoustic exposure found in some aquaculture settings could cause stress responses and auditory damage to peled and, potentially, other commercially important species. Reducing sound levels in fish rearing facilities could contribute to the formation of effective aquaculture practices that mitigate noise-induced stress in fishes.
Collapse
Affiliation(s)
- Yulia P Sapozhnikova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anastasia G Koroleva
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Vera M Yakhnenko
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Marina L Tyagun
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Yu Glyzina
- Experimental Hydrobiology Group, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, Washington 98686, USA
| | - Mikhail M Makarov
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Artem N Shagun
- Laboratory of General and Engineering Seismology and Seismogeology, Institute of the Earth's Crust Siberian Branch of the Russian Academy of Sciences, 128 Lermontova Street, Irkutsk 664033, Russia
| | - Viktor A Kulikov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 1 Nobel Street, Moscow 143026, Russia
| | - Polikarp V Gasarov
- Department of Plant Physiology, Cell Biology, and Genetics, Irkutsk State University, 1 K. Marksa Street, Irkutsk 664003, Russia
| | - Sergey V Kirilchik
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Igor V Klimenkov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nikolay P Sudakov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Pavel N Anoshko
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nadezhda A Kurashova
- Scientific Center of Family Health Problems and Human Reproduction, Irkutsk 664003, Russia
| | - Lyubov V Sukhanova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|
42
|
Ramírez‐Mejía AF, Urbina‐Cardona JN, Sánchez F. Functional diversity of phyllostomid bats in an urban–rural landscape: A scale‐dependent analysis. Biotropica 2020. [DOI: 10.1111/btp.12816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andrés F. Ramírez‐Mejía
- Facultad de Estudios Ambientales y Rurales Pontificia Universidad Javeriana Bogotá Colombia
- ECOTONOS (Research group) Universidad de los Llanos Villavicencio Colombia
| | | | - Francisco Sánchez
- ECOTONOS (Research group) Universidad de los Llanos Villavicencio Colombia
- Museo de Historia Natural‐Unillanos Programa de Biología Facultad de Ciencias Básicas e Ingeniería Universidad de los Llanos Villavicencio Colombia
| |
Collapse
|
43
|
Urbanization is associated with differences in age class structure in black-capped chickadees (Poecile atricapillus). Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 2020; 193:377-388. [PMID: 32533359 PMCID: PMC7320956 DOI: 10.1007/s00442-020-04678-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/30/2020] [Indexed: 11/13/2022]
Abstract
Rapidly increasing urbanisation requires mitigation against associated losses of biodiversity and species abundance. In urban-breeding birds, altered food availability for nestlings is thought to reduce reproductive success compared to forest populations. To compensate for shortages of preferred foods, urban parents could increase their search effort for optimal diets or provision other foods. Here, we used telemetry and faecal metabarcoding on blue tits from one urban and one forest populations to compare parental effort and comprehensively describe nestling diet. Urban parents travelled on average 30% further than those in the forest, likely to offset limited availability of high-quality nestling food (i.e. caterpillars) in cities. Metabarcoding, based on a mean number of 30 identified taxa per faeces, revealed that the diets of urban chicks were nonetheless substantially shifted to include alternative foods. While in the forest caterpillars comprised 82 ± 11% of taxa provisioned to nestlings, in the city they constituted just 44 ± 10%. Pre-fledging chick mass as well as offspring numbers were lower in urban than in forest-reared broods. Thus, at least in our comparison of two sites, the hard labour of urban parents did not fully pay off, suggesting that improved habitat management is required to support urban-breeding birds.
Collapse
|
45
|
Grunst ML, Grunst AS, Pinxten R, Eens M. Anthropogenic noise is associated with telomere length and carotenoid-based coloration in free-living nestling songbirds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114032. [PMID: 32006886 DOI: 10.1016/j.envpol.2020.114032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Growing evidence suggests that anthropogenic noise has deleterious effects on the behavior and physiology of free-living animals. These effects may be particularly pronounced early in life, when developmental trajectories are sensitive to stressors, yet studies investigating developmental effects of noise exposure in free-living populations remain scarce. To elucidate the effects of noise exposure during development, we examined whether noise exposure is associated with shorter telomeres, duller carotenoid-based coloration and reduced body mass in nestlings of a common urban bird, the great tit (Parus major). We also assessed how the noise environment is related to reproductive success. We obtained long-term measurements of the noise environment, over a ∼24-h period, and characterized both the amplitude (measured by LAeq, LA90, LA10, LAmax) and variance in noise levels, since more stochastic, as well as louder, noise regimes might be more likely to induce stress. In our urban population, noise levels varied substantially, with louder, but less variable, noise characteristic of areas adjacent to a highway. Noise levels were also highly repeatable, suggesting that individuals experience consistent differences in noise exposure. The amplitude of noise near nest boxes was associated with shorter telomeres among smaller, but not larger, brood members. In addition, carotenoid chroma and hue were positively associated with variance in average and maximum noise levels, and average reflectance was negatively associated with variance in background noise. Independent of noise, hue was positively related to telomere length. Nestling mass and reproductive success were unaffected by noise exposure. Results indicate that multiple dimensions of the noise environment, or factors associated with the noise environment, could affect the phenotype of developing organisms, that noise exposure, or correlated variables, might have the strongest effects on sensitive groups of individuals, and that carotenoid hue could serve as a signal of early-life telomere length.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, Research Group Didactica, University of Antwerp, 2000, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
46
|
Giraudeau M, Watson H, Powell D, Vincze O, Thomas F, Sepp T, Ujvari B, Le Loc'h G, Isaksson C. Will urbanisation affect the expression level of genes related to cancer of wild great tits? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:135793. [PMID: 32018940 DOI: 10.1016/j.scitotenv.2019.135793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that oncogenic processes (from precancerous lesions to metastatic cancers) are widespread in wild animal species, but their importance for ecosystem functioning is still underestimated by evolutionary biologists and animal ecologists. Similar to what has been observed in humans, environmental modifications that often place wild organisms into an evolutionary trap and/or exposes them to a cocktail of mutagenic and carcinogenic pollutants might favor cancer emergence and progression, if animals do not up-regulate their defenses against these pathologies. Here, we compared, for the first time, the expression of 59 tumor-suppressor genes in blood and liver tissues of urban and rural great tits (Parus major); urban conditions being known to favor cancer progression due to, among other things, exposure to chemical or light pollution. Contrary to earlier indications, once we aligned the transcriptome to the great tit genome, we found negligible differences in the expression of anti-cancer defenses between urban and rural birds in blood and liver. Our results indicate the higher expression of a single caretaker gene (i.e. BRCA1) in livers of rural compared to urban birds. We conclude that, while urban birds might be exposed to an environment favoring the development of oncogenic processes, they seem to not upregulate their cancer defenses accordingly and future studies should confirm this result by assessing more markers of cancer defenses. This may result in a mismatch that might predispose urban birds to higher cancer risk and future studies in urban ecology should take into account this, so far completely ignored, hazard.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; CREEC/MIVEGEC (CNRS - IRD - Université de Montpellier), France.
| | - Hannah Watson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Daniel Powell
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania; Department of Tisza Research, MTA Centre for Ecological Research, Debrecen, Hungary
| | - Frederic Thomas
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; CREEC/MIVEGEC (CNRS - IRD - Université de Montpellier), France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | | | | |
Collapse
|
47
|
Bichet C, Bouwhuis S, Bauch C, Verhulst S, Becker PH, Vedder O. Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long‐lived seabird. Mol Ecol 2020; 29:429-441. [DOI: 10.1111/mec.15331] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | | | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
48
|
Grunst AS, Grunst ML, Bervoets L, Pinxten R, Eens M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113373. [PMID: 31672366 DOI: 10.1016/j.envpol.2019.113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling design to compare telomere shortening and body condition between nestlings from four urban study sites south of Antwerp, Belgium, which are located at different distances from a metal pollution point source. In addition, we explored associations between metal exposure and telomere dynamics on the individual level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were present at concentrations above the limit of detection. To assess whether roadway-associated stressors (e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or body condition, despite elevated blood lead concentrations close to the metal pollution source (mean ± SE = 0.270 ± 0.095 μg/g wet weight at the most polluted study site), suggesting that nestlings may have some capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather, proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution. Our study highlights that traffic-related pollution, which is implicated in human health problems, might also affect urban wildlife.
Collapse
Affiliation(s)
- A S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - M L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - L Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, 2020, Antwerp, Belgium
| | - R Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000, Antwerp, Belgium
| | - M Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
49
|
Chatelain M, Drobniak SM, Szulkin M. The association between stressors and telomeres in non‐human vertebrates: a meta‐analysis. Ecol Lett 2019; 23:381-398. [DOI: 10.1111/ele.13426] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Chatelain
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 30‐387 Kraków Poland
- Ecology & Evolution Research Centre School of Biological, Environmental and Earth Sciences University of New South Wales Sydney Australia
| | - Marta Szulkin
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| |
Collapse
|
50
|
McLennan D, Recknagel H, Elmer KR, Monaghan P. Distinct telomere differences within a reproductively bimodal common lizard population. Funct Ecol 2019; 33:1917-1927. [PMID: 31762528 PMCID: PMC6853248 DOI: 10.1111/1365-2435.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Different strategies of reproductive mode, either oviparity (egg-laying) or viviparity (live-bearing), will be associated with a range of other life-history differences that are expected to affect patterns of ageing and longevity. It is usually difficult to compare the effects of alternative reproductive modes because of evolutionary and ecological divergence. However, the very rare exemplars of reproductive bimodality, in which different modes exist within a single species, offer an opportunity for robust and controlled comparisons.One trait of interest that could be associated with life history, ageing and longevity is the length of the telomeres, which form protective caps at the chromosome ends and are generally considered a good indicator of cellular health. The shortening of these telomeres has been linked to stressful conditions; therefore, it is possible that differing reproductive costs will influence patterns of telomere loss. This is important because a number of studies have linked a shorter telomere length to reduced survival.Here, we have studied maternal and offspring telomere dynamics in the common lizard (Zootoca vivipara). Our study has focused on a population where oviparous and viviparous individuals co-occur in the same habitat and occasionally interbreed to form admixed individuals.While viviparity confers many advantages for offspring, it might also incur substantial costs for the mother, for example require more energy. Therefore, we predicted that viviparous mothers would have relatively shorter telomeres than oviparous mothers, with admixed mothers having intermediate telomere lengths. There is thought to be a heritable component to telomere length; therefore, we also hypothesized that offspring would follow the same pattern as the mothers.Contrary to our predictions, the viviparous mothers and offspring had the longest telomeres, and the oviparous mothers and offspring had the shortest telomeres. The differing telomere lengths may have evolved as an effect of the life-history divergence between the reproductive modes, for example due to the increased growth rate that viviparous individuals may undergo to reach a similar size at reproduction. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13408/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|