1
|
Zollikofer CPE, Beyrand V, Lordkipanidze D, Tafforeau P, Ponce de León MS. Dental evidence for extended growth in early Homo from Dmanisi. Nature 2024; 635:906-911. [PMID: 39537931 PMCID: PMC11602720 DOI: 10.1038/s41586-024-08205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Human life history is characterized by an extended period of immaturity during which there is a disjunction between cerebral and somatic growth rates1. This mode of ontogeny is thought to be essential for the acquisition of advanced cognitive capabilities in a socially complex environment while the brain is still growing2. Key information about when and how this pattern evolved can be gleaned from the teeth of fossil hominins because dental development informs about the pace of life history3-5. Here we show that the first evolutionary steps towards an extended growth phase occurred in the genus Homo at least 1.77 million years ago, before any substantial increase in brain size. We used synchrotron phase-contrast tomography6 to track the microstructural development of the dentition of a subadult early Homo individual from Dmanisi, Georgia. The individual died at the age of 11.4 ± 0.6 years, shortly before reaching dental maturity. Tooth growth rates were high, similar to rates in living great apes. However, the Dmanisi individual showed a human-like delayed formation of the posterior relative to the anterior dentition, and a late growth spurt of the dentition as a whole. The unique combination of great-ape-like and human-like features of dental ontogeny suggests that early Homo had evolved an extended growth phase before a general slow-down in life history, possibly related to biocultural reproduction7 rather than brain growth.
Collapse
Affiliation(s)
- Christoph P E Zollikofer
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| | - Vincent Beyrand
- Department of Informatics, University of Zurich, Zurich, Switzerland
- European Synchrotron Radiation Facility, Grenoble, France
| | - David Lordkipanidze
- Georgian National Museum, Tbilisi, Georgia
- Tbilisi State University, Tbilisi, Georgia
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France.
| | - Marcia S Ponce de León
- Department of Informatics, University of Zurich, Zurich, Switzerland.
- IBS Center for Climate Physics, Busan, South Korea.
| |
Collapse
|
2
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Delezene LK, Scott JE, Irish JD, Villaseñor A, Skinner MM, Hawks J, Berger LR. Sex-biased sampling may influence Homo naledi tooth size variation. J Hum Evol 2024; 187:103490. [PMID: 38266614 DOI: 10.1016/j.jhevol.2023.103490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa.
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison. Madison, WI, 53706, USA
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS, 2050, South Africa; National Geographic Society, 1145 17th Street NW, Washington DC, 20036, USA
| |
Collapse
|
4
|
Brophy JK, Bolter DR, Elliott M, Hawks J, Berger LR. An examination of Homo naledi early juveniles recovered from the Rising Star cave system, South Africa. Ann Hum Biol 2024; 51:2321128. [PMID: 38509686 DOI: 10.1080/03014460.2024.2321128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.
Collapse
Affiliation(s)
- Juliet K Brophy
- Department of Geography and Anthropology, LA State University, Baton Rouge, LA, USA
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Debra R Bolter
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Modesto Junior College, Modesto, CA, USA
- Department of Anthropology, CA State University Stanislaus, Turlock, CA, USA
| | - Marina Elliott
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| | - John Hawks
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of WI-Madison, Madison, WI, USA
| | - Lee R Berger
- The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Delezene LK, Skinner MM, Bailey SE, Brophy JK, Elliott MC, Gurtov A, Irish JD, Moggi-Cecchi J, de Ruiter DJ, Hawks J, Berger LR. Descriptive catalog of Homo naledi dental remains from the 2013 to 2015 excavations of the Dinaledi Chamber, site U.W. 101, within the Rising Star cave system, South Africa. J Hum Evol 2023; 180:103372. [PMID: 37229947 DOI: 10.1016/j.jhevol.2023.103372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.
Collapse
Affiliation(s)
- Lucas K Delezene
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa.
| | - Matthew M Skinner
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury CT2 7NR, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Shara E Bailey
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY 10003, USA
| | - Juliet K Brophy
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Marina C Elliott
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, USA
| | - Alia Gurtov
- Stripe, Inc., 199 Water Street, 30th Floor, New York, NY 10038, USA
| | - Joel D Irish
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jacopo Moggi-Cecchi
- Laboratory of Anthropology, Department of Biology, University of Florence, Via del Proconsolo 12, Firenze 50122, Italy
| | - Darryl J de Ruiter
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa; Department of Anthropology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lee R Berger
- National Geographic Society, 1145 17th Street NW, Washington, DC 20036, USA; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa
| |
Collapse
|
6
|
Dean MC, Lim SY, Liversidge HM. Patterns of permanent incisor, canine and molar development in modern humans, great apes and early fossil hominins. Arch Oral Biol 2022; 143:105549. [PMID: 36167014 DOI: 10.1016/j.archoralbio.2022.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objectives of this study were to quantify the variation in coincident stages of incisor, canine and molar eruption and tooth formation in modern humans and great apes and then to ask if any early fossil hominins showed a dental development pattern beyond the human range and/or clearly typical of great apes. DESIGN Four stages of eruption and 18 stages of tooth development were defined and then scored for each developing tooth on radiographs of 159 once-free-living subadult great apes and on orthopantomographs of 4091 dental patients aged 1-23 years. From original observations, and from published images of eleven early fossil hominins, we then scored formation stages of permanent incisors when M1 was at root formation stage R¼-R½ and R¾-RC. RESULTS Incisor and canine eruption/development was delayed in great apes relative to molar development when compared with humans but there was overlap in almost all anterior tooth stages observed. Molar crown initiation was generally advanced in great apes and delayed in humans but again, we observed overlap in all stages in both samples. Only two fossil hominin specimens (L.H.-3 from Laetoli, Tanzania and KNM-KP 34725 from Kanapoi, Kenya) showed delayed incisor development relative to M1 beyond any individuals observed in the human sample. CONCLUSIONS For certain tooth types, the distribution of formation stages in our samples showed evidence of generally advanced or delayed development between taxa. However, it would rarely if ever be possible to allocate an individual to one taxon or another on this basis.
Collapse
Affiliation(s)
- M Christopher Dean
- Centre for Human Evolution Research, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Sing-Ying Lim
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | - Helen M Liversidge
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| |
Collapse
|
7
|
Cofran Z, VanSickle C, Valenzuela R, García‐Martínez D, Walker CS, Hawks J, Zipfel B, Williams SA, Berger LR. The immature
Homo naledi
ilium from the Lesedi Chamber, Rising Star Cave, South Africa. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9546141 DOI: 10.1002/ajpa.24522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives Homo naledi is represented by abundant remains from the Dinaledi Chamber of the Rising Star Cave system in South Africa. While pelvic elements from the Dinaledi Chamber of the cave are fragmentary, a relatively complete ilium (U.W. 102a–138) was recovered from the Lesedi Chamber. We reconstructed and analyzed the Lesedi ilium, providing qualitative descriptions and quantitative assessment of its morphology and developmental state. Materials and Methods We compared the Lesedi ilium to remains from the Dinaledi Chamber, other South African hominin fossils, and an ontogenetic series of human ilia. We used the Dinaledi adults as a guide for reconstructing the Lesedi ilium. To assess development of the Lesedi ilium, we compared immature/mature proportional ilium height for fossils and humans. We used 3D geometric morphometrics (GMs) to examine size and shape variation among this sample. Results The Lesedi ilium showed incipient development of features expressed in adult H. naledi ilia. The proportional height of the Lesedi ilium was within the range of human juveniles between 4–11 years of age. GM analyses showed that the Lesedi ilium had an iliac blade shape similar to those of australopiths and an expanded auricular surface more similar to humans. Conclusions The reconstructed Lesedi specimen represents the best preserved ilium of H. naledi, confirming the australopith‐like iliac blade morphology first hypothesized in adult specimens, and establishing that this anatomy was present early in this species' ontogeny. In contrast to australopiths, the Lesedi ilium displays an enlarged sacroiliac joint, the significance of which requires further investigation.
Collapse
Affiliation(s)
- Zachary Cofran
- Anthropology Department, Vassar College Poughkeepsie New York USA
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
| | - Caroline VanSickle
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Anatomy A.T. Still University, Kirksville College of Osteopathic Medicine Kirksville Missouri USA
| | | | - Daniel García‐Martínez
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Physical Anthropology Unit, Department of Biodiversity, Ecology, and Evolution, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Centro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| | - Christopher S. Walker
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine North Carolina State University Raleigh North Carolina USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Department of Anthropology University of Wisconsin Madison Wisconsin USA
| | - Bernhard Zipfel
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Evolutionary Studies Institute University of the Witwatersrand Johannesburg South Africa
| | - Scott A. Williams
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
- Evolutionary Studies Institute University of the Witwatersrand Johannesburg South Africa
- Center for the Study of Human Origins, Department of Anthropology New York University New York New York USA
- New York Consortium in Evolutionary Primatology New York New York USA
| | - Lee R. Berger
- Centre for the Exploration of the Deep Human Journey University of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
8
|
Cazenave M, Dean C, Zanolli C, Oettlé AC, Hoffman J, Tawane M, Thackeray F, Macchiarelli R. Reassessment of the TM 1517 odonto-postcranial assemblage from Kromdraai B, South Africa, and the maturational pattern of Paranthropus robustus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:714-722. [PMID: 32449177 DOI: 10.1002/ajpa.24082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/03/2020] [Accepted: 05/10/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The Pleistocene taxon Paranthropus robustus was established in 1938 following the discovery at Kromdraai B, South Africa, of the partial cranium TM 1517a and associated mandible TM 1517b. Shortly thereafter, a distal humerus (TM 1517g), a proximal ulna (TM 1517e), and a distal hallucial phalanx (TM 1517k) were collected nearby at the site, and were considered to be associated with the holotype. TM 1517a-b represents an immature individual; however, no analysis of the potentially associated postcranial elements has investigated the presence of any endostructural remnant of recent epiphyseal closure. This study aims at tentatively detecting such traces in the three postcranial specimens from Kromdraai B. MATERIALS AND METHODS By using μXCT techniques, we assessed the developmental stage of the TM 1517b's C-M3 roots and investigated the inner structure of TM 1517g, TM 1517e, and TM 1517k. RESULTS The M2 shows incompletely closed root apices and the M3 a half-completed root formation stage. The distal humerus was likely completely fused, while the proximal ulna and the distal hallucial phalanx preserve endosteal traces of the diaphyseo-epiphyseal fusion process. DISCUSSION In the hominin fossil record, there are few unambiguously associated craniodental and postcranial remains sampling immature individuals, an essential condition for assessing the taxon-specific maturational patterns. Our findings corroborate the original association of the craniodental and postcranial remains representing the P. robustus type specimen. As with other Plio-Pleistocene hominins, the odonto-postcranial maturational pattern of TM 1517 more closely fits an African great ape rather than the extant human pattern.
Collapse
Affiliation(s)
- Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Christopher Dean
- Department of Earth Sciences, Natural History Museum, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Anna C Oettlé
- Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Jakobus Hoffman
- South African Nuclear Energy Corporation SOC, Ltd., Pelindaba, South Africa
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roberto Macchiarelli
- UMR 7194 CNRS, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France.,Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
9
|
Bolter DR, Elliott MC, Hawks J, Berger LR. Immature remains and the first partial skeleton of a juvenile Homo naledi, a late Middle Pleistocene hominin from South Africa. PLoS One 2020; 15:e0230440. [PMID: 32236122 PMCID: PMC7112188 DOI: 10.1371/journal.pone.0230440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/29/2020] [Indexed: 11/18/2022] Open
Abstract
Immature remains are critical for understanding maturational processes in hominin species as well as for interpreting changes in ontogenetic development in hominin evolution. The study of these subjects is hindered by the fact that associated juvenile remains are extremely rare in the hominin fossil record. Here we describe an assemblage of immature remains of Homo naledi recovered from the 2013–2014 excavation season. From this assemblage, we attribute 16 postcranial elements and a partial mandible with some dentition to a single juvenile Homo naledi individual. The find includes postcranial elements never before discovered as immature elements in the sub-equatorial early hominin fossil record, and contributes new data to the field of hominin ontogeny.
Collapse
Affiliation(s)
- Debra R. Bolter
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Modesto Junior College, Modesto, California, United States of America
- * E-mail:
| | - Marina C. Elliott
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Hawks
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lee R. Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|