1
|
Mathers KL, Armitage PD, Hill M, Bickerton M, Mckenzie M, Pardo I, Tickner D, Wood PJ. Context specific effects of substrate composition on the taxonomic and functional diversity of macroinvertebrate communities in temperate lowland streams. Ecol Evol 2024; 14:e70034. [PMID: 39206456 PMCID: PMC11349607 DOI: 10.1002/ece3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Substrate composition has been widely recognised as a primary variable shaping lotic macroinvertebrate communities at the habitat unit level. However, fundamental understanding of how communities inhabiting mineralogical habitats (i.e., gravel, sand and silt) are structured across differing rivers is lacking. Moreover, research largely focusses on gravel beds and fine sediment in general (<2 mm) and as a result detailed field observations specifically of the sand and silt fractions are lacking. Using data from five UK streams collated from published studies, we assess taxonomic and functional biodiversity (alpha and beta diversity) at the habitat unit level (as defined by substrate composition of sand, silt and gravel). We found that the composition of taxonomic communities were clearly different in all habitat units for each individual stream (and at the landscape scale), with comparable, but less strong, distinctions between substrates for functional macroinvertebrate community composition. However, alpha diversity metrics and Local Contribution to Beta Diversity (LCBD) recorded among the different habitat units varied significantly across individual rivers, and the amount of variation explained by the habitat unit for taxonomic and functional composition demonstrated considerable differences suggesting strong context dependence. The depositional fine sediment habitats of sand and silt were found to support a discrete community composition and differing levels of alpha and beta diversity within and between rivers. We advocate that care should be taken when seeking to generalise biodiversity patterns at a landscape scale as our study highlights the high degree of context dependency when considering the role of the habitat template. Moreover, our results provide evidence that discriminating between the size fractions of fine sediment habitats (sand or silt) is important to fully elucidate the wider ecological importance of these habitats and the distinct taxonomic and functional biodiversity they support.
Collapse
Affiliation(s)
- Kate L. Mathers
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| | | | - Matthew Hill
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Melanie Bickerton
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | | | - Isabel Pardo
- Department of Ecology and Animal BiologyUniversity of VigoVigoSpain
| | | | - Paul J. Wood
- Geography and EnvironmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
2
|
Kowarik C, Martin-Creuzburg D, Mathers KL, Weber C, Robinson CT. Stream degradation affects aquatic resource subsidies to riparian ground-dwelling spiders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158658. [PMID: 36113799 DOI: 10.1016/j.scitotenv.2022.158658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Freshwater systems have undergone drastic alterations during the last century, potentially affecting cross-boundary resource transfers between aquatic and terrestrial ecosystems. One important connection is the export of biomass by emergent aquatic insects containing omega-3 polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), that is scarce in terrestrial systems. Because of taxon-specific differences in PUFA content and functional traits, the contribution of different insect groups should be considered, in addition to total biomass export. In this context, one important trait is the emergence mode. Stoneflies, in contrast to other aquatic insects, crawl to land to emerge instead of flying directly from the water surface, making them accessible to ground-dwelling predators. Because stoneflies are especially susceptible to environmental change, stream degradation might cause a mismatch of available and required nutrients, particularly for ground-dwelling predators. In this study, we estimated emergent biomass and EPA export along two streams with different levels of habitat degradation. The EPA content in aquatic insects did not differ with different degrees of habitat degradation and total biomass export in spring was with 7.9 ± 9.6 mg m-2 day-1 in the degraded and 7.3 ± 8.5 mg m-2 day-1 in the natural system, also unaffected. However, habitat degradation substantially altered the contribution of crawling emergence to the total export in spring, with no biomass export by stoneflies at the most degraded sites. The EPA content in ground-dwelling spiders was correlated with emergent stonefly biomass, making up only 16.0 ± 6.2 % of total fatty acids at sites with no stonefly emergence, but 27.3 ± 3.0 % at sites with highest stonefly emergence. Because immune function in ground-dwelling spiders has been connected to EPA levels, reduced crawling emergence might impact spider fitness. Functional traits, like emergence mode as well as nutritional quality, should be considered when assessing the effects of stream degradation on adjacent terrestrial ecosystems.
Collapse
Affiliation(s)
- Carmen Kowarik
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Aquatic Ecology, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | - Kate L Mathers
- Geography and Environment, Centre for Hydrological and Ecosystem Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK; Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Surface Waters Research and Management, 6047 Kastanienbaum, Switzerland
| | - Christine Weber
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Surface Waters Research and Management, 6047 Kastanienbaum, Switzerland
| | - Christopher T Robinson
- Eawag (Swiss Federal Institute of Aquatic Science and Technology), Department of Aquatic Ecology, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Mathers KL, Doretto A, Fenoglio S, Hill MJ, Wood PJ. Temporal effects of fine sediment deposition on benthic macroinvertebrate community structure, function and biodiversity likely reflects landscape setting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154612. [PMID: 35307447 DOI: 10.1016/j.scitotenv.2022.154612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Globally, excessive fine sediment (particles <2 mm) deposition is acknowledged to have deleterious effects on aquatic biodiversity. However, the impacts are often equivocal possibly reflecting landscape context, although this is rarely considered. To address this, we examined the temporal response of macroinvertebrate taxonomic and functional diversity to experimental fine sediment clogging in a prealpine (Italy) and lowland setting (UK). Colonisation devices were installed insitu with either clean or clogged substrates and examined for short (7-14 days), medium (21-28 days) and long (56-63 days) timescales. Clogging resulted in altered taxonomic community composition in both the lowland and prealpine rivers and modified functional community composition in the prealpine river. Nestedness was consistently found to be the dominant process driving differences in taxonomic composition between the clean and clogged substrates in the prealpine environment, with clogged substrates forming a nested community. No dominant component structured lowland taxonomic communities. Functional community composition was driven by nestedness in both environments but was heavily dominant in the case of the prealpine river, possibly reflecting low functional redundancy. Widely employed community richness metrics (EPT, taxa and functional richness) only displayed a response to fine sediment loading in the prealpine environment but taxa characterized as sensitive to fine sediment as well as some functional feeding groups did exhibit differences in both settings. In the prealpine environment, the effects of fine sediment intensified over time for several community metrics. Although further research is required to corroborate our findings and extend our observations across more rivers and typologies, excessive fine sediment is a pervasive stressor affecting macroinvertebrate communities in prealpine and lowland environments. However, the biodiversity facets that responded to clogging differed between the two landscape settings probably reflecting wider environmental filtering. Monitoring and managing fine sediment loading likely requires context specific approaches to maximise ecological benefits.
Collapse
Affiliation(s)
- Kate L Mathers
- Geography and Environment, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom.
| | - Alberto Doretto
- Department of Life Sciences and Technological Innovation, Università del Piemonte Orientale, Via T. Michel, 15121 Alessandria, Italy; ALPSTREAM - Alpine Stream Research Center, 12030 Ostana, Italy
| | - Stefano Fenoglio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 10123 Turin, Italy; ALPSTREAM - Alpine Stream Research Center, 12030 Ostana, Italy
| | - Matthew J Hill
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Paul J Wood
- Geography and Environment, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
4
|
Peralta-Maraver I, Stubbington R, Arnon S, Kratina P, Krause S, de Mello Cionek V, Leite NK, da Silva ALL, Thomaz SM, Posselt M, Milner VS, Momblanch A, Moretti MS, Nóbrega RLB, Perkins DM, Petrucio MM, Reche I, Saito V, Sarmento H, Strange E, Taniwaki RH, White J, Alves GHZ, Robertson AL. The riverine bioreactor: An integrative perspective on biological decomposition of organic matter across riverine habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145494. [PMID: 33581537 DOI: 10.1016/j.scitotenv.2021.145494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
Collapse
Affiliation(s)
- Ignacio Peralta-Maraver
- Departamento de Ecología, Universidad de Granada, Granada, Spain; Department of Life Sciences, Roehampton University, London, UK.
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vivian de Mello Cionek
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nei Kavaguichi Leite
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aurea Luiza Lemes da Silva
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Andrea Momblanch
- Cranfield Water Science Institute, Cranfield University, Cranfield, UK
| | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, Universidade Vila Velha, Vila Velha, Espírito Santo, Brazil
| | - Rodolfo L B Nóbrega
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | | | - Mauricio M Petrucio
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Isabel Reche
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - Victor Saito
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Emily Strange
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Ricardo Hideo Taniwaki
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - James White
- River Restoration Centre, Cranfield University, Cranfield, Bedfordshire, UK
| | | | | |
Collapse
|
5
|
Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities. WATER 2019. [DOI: 10.3390/w11122610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently there has been increasing concern over the vast array of emerging organic contaminants (EOCs) detected in streams and rivers worldwide. Understanding of the ecological implications of these compounds is limited to local scale case studies, partly as a result of technical limitations and a lack of integrative analyses. Here, we apply state-of-the-art instrumentation to analyze a complex suite of EOCs in the streambed of 30 UK streams and their effect on streambed communities. We apply the abundance–body mass (N–M) relationship approach as an integrative metric of the deviation of natural communities from reference status as a result of EOC pollution. Our analysis includes information regarding the N and M for individual prokaryotes, unicellular flagellates and ciliates, meiofauna, and macroinvertebrates. We detect a strong significant dependence of the N–M relationship coefficients with the presence of EOCs in the system, to the point of shielding the effect of other important environmental factors such as temperature, pH, and productivity. However, contrary to other stressors, EOC pollution showed a positive effect on the N–M coefficient in our work. This phenomenon can be largely explained by the increase in large-size tolerant taxa under polluted conditions. We discuss the potential implications of these results in relation to bioaccumulation and biomagnification processes. Our findings shed light on the impact of EOCs on the organization and ecology of the whole streambed community for the first time.
Collapse
|
6
|
Abstract
Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.
Collapse
|
7
|
Peralta-Maraver I, Robertson AL, Perkins DM. Depth and vertical hydrodynamics constrain the size structure of a lowland streambed community. Biol Lett 2019; 15:20190317. [PMID: 31288689 DOI: 10.1098/rsbl.2019.0317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abundance-body mass (N-M) relationships are prominent macroecological patterns and provide an integrated measurement of the structure and energy flow through natural communities. However, little is known about how N-M relationships are constrained by local environmental conditions. Here, we quantify how sediment depth and direction of surface-groundwater exchange (vertical hydrodynamics), two major drivers of the streambed ecology, determine N-M scaling in a sandy lowland European stream. Streambed assemblages included flagellates, ciliates, meiofauna and macroinvertebrates, and spanned five orders of magnitude in body mass. We detected a significant interaction of body mass with depth and vertical hydrodynamics with a sharp reduction in N-M slopes in the hyporheic zone and under upwelling conditions. These results revealed that streambed assemblages become more size-structured as environmental constraints increase with direct implications for the metabolic capacity and functioning of the system.
Collapse
Affiliation(s)
| | - Anne L Robertson
- Department of Life Sciences, Roehampton University , London , UK
| | - Daniel M Perkins
- Department of Life Sciences, Roehampton University , London , UK
| |
Collapse
|