Sternberg‐Rodríguez P, Ezcurra P, Costa MT, Aburto‐Oropeza O, Ezcurra E. Precision of mangrove sediment blue carbon estimates and the role of coring and data analysis methods.
Ecol Evol 2022;
12:e9655. [PMID:
36582778 PMCID:
PMC9790802 DOI:
10.1002/ece3.9655]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
Carbon accumulation in coastal wetlands is normally assessed by extracting a sediment core and estimating its carbon content and bulk density. Because carbon content and bulk density are functionally related, the latter can be estimated gravimetrically from a section of the core or, alternatively, from the carbon content in the sample using the mixing model equation from soil science. Using sediment samples from La Paz Bay, Mexico, we analyzed the effect that the choice of corer and the method used to estimate bulk density could have on the final estimates of carbon storage in the sediments. We validated the results using a larger dataset of tropical mangroves, and then by Monte Carlo simulation. The choice of corer did not have sizable influence on the final estimates of carbon density. The main factor in selecting a corer is the operational difficulties that each corer may have in different types of sediments. Because of the multiplication of errors in a product of two variables subject to random sampling error, when using gravimetric estimates of bulk density, the dispersion of the data points in the estimation of total carbon density rises rapidly as the amount of carbon in the sediment increases. In contrast, the estimation of total carbon density using only the carbon fraction as a predictor is very precise, especially in sediments rich in organic matter. This method, however, depends critically on the accurate estimation of the two parameters of the mixing model: the bulk density of pure peat and the bulk density of pure mineral sediment. The estimation of carbon densities in peaty sediments can be very imprecise when using gravimetric bulk densities. Estimating carbon density in peaty sediments using only the estimate of organic fraction can be much more precise, provided the model parameters are estimated with accuracy. These results open the door for simplified and precise estimates of carbon dynamics in mangroves and coastal wetlands.
Collapse