1
|
Zakynthinos GE, Tsolaki V, Oikonomou E, Pantelidis P, Gialamas I, Kalogeras K, Zakynthinos E, Vavuranakis M, Siasos G. Unveiling the Role of Endothelial Dysfunction: A Possible Key to Enhancing Catheter Ablation Success in Atrial Fibrillation. Int J Mol Sci 2024; 25:2317. [PMID: 38396990 PMCID: PMC10889579 DOI: 10.3390/ijms25042317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atrial fibrillation, a prevalent type of arrhythmia, is increasingly contributing to the economic burden on healthcare systems. The development of innovative treatments, notably catheter ablation, has demonstrated both impressive and promising outcomes. However, these treatments have not yet fully replaced pharmaceutical approaches, primarily due to the relatively high incidence of atrial fibrillation recurrence post-procedure. Recent insights into endothelial dysfunction have shed light on its role in both the onset and progression of atrial fibrillation. This emerging understanding suggests that endothelial function might significantly influence the effectiveness of catheter ablation. Consequently, a deeper exploration into endothelial dynamics could potentially elevate the status of catheter ablation, positioning it as a primary treatment option for atrial fibrillation.
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (E.Z.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Ioannis Gialamas
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (E.Z.)
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.O.); (P.P.); (I.G.); (K.K.); (M.V.); (G.S.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Li X, Wu J, Xu F, Chu C, Li X, Shi X, Zheng W, Wang Z, Jia Y, Xiao W. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules 2022; 27:molecules27186010. [PMID: 36144745 PMCID: PMC9503003 DOI: 10.3390/molecules27186010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus, a metabolic disease mainly characterized by hyperglycemia, is becoming a serious social health problem worldwide with growing prevalence. Many natural compounds have been found to be effective in the prevention and treatment of diabetes, with negligible toxic effects. Ferulic acid (FA), a phenolic compound commonly found in medicinal herbs and the daily diet, was proved to have several pharmacological effects such as antihyperglycemic, antihyperlipidemic and antioxidant actions, which are beneficial to the management of diabetes and its complications. Data from PubMed, EM-BASE, Web of Science and CNKI were searched with the keywords ferulic acid and diabetes mellitus. Finally, 28 articles were identified after literature screening, and the research progress of FA for the management of DM and its complications was summarized in the review, in order to provide references for further research and medical applications of FA.
Collapse
Affiliation(s)
- Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Jingxian Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (Y.J.); (W.X.)
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Correspondence: (Y.J.); (W.X.)
| |
Collapse
|
3
|
Shi J, Ren Y, Liu S, Zhao Q, Kong F, Guo Y, Xu J, Liu S, Qiao Y, Li Y, Liu Y, Liu Y, Cheng Y. Circulating miR-3656 induces human umbilical vein endothelial cell injury by targeting eNOS and ADAMTS13: a novel biomarker for hypertension. J Hypertens 2022; 40:310-317. [PMID: 34475349 DOI: 10.1097/hjh.0000000000003010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertension, as one of the most common chronic diseases, is a major public health issue. Previous studies have shown that there are miRNAs differentially expressed in hypertensive patients. In addition, hypertension is closely related to endothelial dysfunction, and miRNAs have been identified as important molecular mediators for endothelial function. Therefore, it is necessary to identify specific miRNAs related to hypertension and explore their molecular mechanism in the progression of hypertension. METHODS We investigated the association of circulating levels of miR-3656 with hypertension. Furthermore, in-vitro studies were performed to investigate its possible mechanisms for hypertension in that the direct target genes of miR-3656 were confirmed using dual-luciferase reporter assay; moreover, the effects of miR-3656 on proliferation, migration, apoptosis, and microvascular rarefaction of HUVECs were investigated using MTS kit, wound-healing assay, FITC Annexin V apoptosis detection kit, and tube formation assay, correspondingly. RESULTS Circulating miR-3656 was upregulated in patients with hypertension. MiR-3656 suppressed the proliferation, migration, and angiogenesis of HUVECs, but promoted the apoptosis of HUVECs. In addition, eNOS and ADAMTS13 were direct target genes of miR-3656, and overexpression of eNOS and ADAMTS13 abolished the effect of miR-3656 on HUVECs. CONCLUSION MiR-3656 is a potential biomarker for hypertension. MiR-3656 is involved in endothelial cellular injury implicated in hypertension by targeting eNOS and ADAMTS13.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Fei Kong
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yanbo Guo
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Jiayi Xu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Siyu Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yunkai Liu
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Matjuda EN, Engwa GA, Anye SNC, Nkeh-Chungag BN, Goswami N. Cardiovascular Risk Factors and Their Relationship with Vascular Dysfunction in South African Children of African Ancestry. J Clin Med 2021; 10:jcm10020354. [PMID: 33477761 PMCID: PMC7832309 DOI: 10.3390/jcm10020354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/31/2022] Open
Abstract
Vascular dysfunction is known to be an initiator of the development and progression of cardiovascular diseases (CVDs). However, there is paucity of information on the relationship of vascular dysfunction with cardiovascular risk factors in children of African ancestry. This study investigated the relationship between cardiovascular risk factors and vascular function in South African children of African ancestry. A cross-sectional study on 6–9-year-old children in randomly selected rural and urban schools of the Eastern Cape Province of South Africa was conducted. General anthropometric indices were measured, followed by blood pressure (BP) measurements. The pulse wave velocity (PWV) was measured using a Vicorder. Albumin to creatinine ratio (ACR), asymmetric dimethylarginine (ADMA), 8-hydroxy-2deoxyguanosine (8-OHdG) and thiobarbituric acid reactive substance (TBARS) were assayed in urine. Children from urban settings (10.8%) had a higher prevalence of overweight/obesity than their rural counterparts (8.5%) while the prevalence of elevated/high blood pressure was higher in rural (23.2%) than urban children (19.0%). Mean arterial blood pressure (MAP) and diastolic blood pressure (DBP) increased with increasing PWV (p < 0.05). Body mass index (BMI), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) positively associated (p < 0.05) with PWV. Creatinine, albumin and ACR significantly (p < 0.005) increased with increasing ADMA. ADMA associated positively (p < 0.05) with creatinine and 8-OHdG. In conclusion, vascular dysfunction was associated with obesity, high blood pressure, oxidative stress and microalbuminuria in South African children of African ancestry.
Collapse
Affiliation(s)
- Edna N. Matjuda
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha 5117, South Africa;
| | - Godwill A. Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha 5117, South Africa;
| | - Samuel Nkeh Chungag Anye
- MBCHB Programme, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha 5117, South Africa;
| | - Benedicta N. Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha 5117, South Africa;
- Correspondence:
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstrasse 6, 8036 Graz, Austria;
| |
Collapse
|
5
|
Plotnikov MB, Aliev OI, Shamanaev AY, Sidekhmenova AV, Anishchenko AM, Fomina TI, Rydchenko VS, Khlebnikov AI, Anfinogenova YJ, Schepetkin IA, Atochin DN. Antihypertensive activity of a new c-Jun N-terminal kinase inhibitor in spontaneously hypertensive rats. Hypertens Res 2020; 43:1068-1078. [PMID: 32382155 DOI: 10.1038/s41440-020-0446-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia. .,National Research Tomsk State University, Tomsk, Russia.
| | - Oleg I Aliev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Aleksandr Y Shamanaev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anastasia V Sidekhmenova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Anna M Anishchenko
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia.,Department of Pharmacology, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Tatiana I Fomina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk, 634028, Russia
| | - Victoria S Rydchenko
- Department of Biophysics, Siberian State Medical University, 2 Moskovsky Trakt, Tomsk, 634050, Russia
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | - Yana J Anfinogenova
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiology Research Institute, Tomsk National Research Medical Center, 111a Kievskaya St., Tomsk, 634012, Russia
| | - Igor A Schepetkin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Dmitriy N Atochin
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia.,Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Hirunpattarasilp C, Attwell D, Freitas F. The role of pericytes in brain disorders: from the periphery to the brain. J Neurochem 2019; 150:648-665. [PMID: 31106417 DOI: 10.1111/jnc.14725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly apparent that disorders of the brain microvasculature contribute to many neurological disorders. In recent years it has become clear that a major player in these events is the capillary pericyte which, in the brain, is now known to control the blood-brain barrier, regulate blood flow, influence immune cell entry and be crucial for angiogenesis. In this review we consider the under-explored possibility that peripheral diseases which affect the microvasculature, such as hypertension, kidney disease and diabetes, produce central nervous system (CNS) dysfunction by mechanisms affecting capillary pericytes within the CNS. We highlight how cellular messengers produced peripherally can act via signalling pathways within CNS pericytes to reshape blood vessels, restrict blood flow or compromise blood-brain barrier function, thus causing neuronal dysfunction. Increased understanding of how renin-angiotensin, Rho-kinase and PDGFRβ signalling affect CNS pericytes may suggest novel therapeutic approaches to reducing the CNS effects of peripheral disorders.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - David Attwell
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| |
Collapse
|
7
|
Hadjadj L, Pál É, Monori-Kiss A, Sziva RE, Korsós-Novák Á, Mária Horváth E, Benkő R, Magyar A, Magyar P, Benyó Z, Nádasy GL, Várbíró S. Vitamin D deficiency and androgen excess result eutrophic remodeling and reduced myogenic adaptation in small cerebral arterioles in female rats. Gynecol Endocrinol 2019; 35:529-534. [PMID: 30623742 DOI: 10.1080/09513590.2018.1554037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vitamin D (vitD) insufficiency affects 1 billion people worldwide. Androgen excess (AE) occurs in 8% of fertile females. There are few data about the combined effect of vitD deficiency and AE on the early biomechanical changes of cerebral arterioles in fertile-aged female. Forty-six adolescent female Wistar rats (21-28 day-old, weighing 90-110 g) were grouped randomly in four groups: vitD supplemented groups with and without transdermal testosterone (T) treatment, as well as vitD deficient groups also with and without transdermal T (n = 11 or 12, in all cases). After 8 weeks of treatment, anterior cerebral arterioles (in vivo diameter of 90-130 µm) were obtained and cylindrical segments were examined by pressure arteriography. Myogenic tone, tangential stress and incremental elastic moduli were computed and statistically analyzed. Elastic density was studied on resorcin-fuchsin-stained histological section. VitD deficiency with T treatment resulted in significantly lower inner radii and higher wall thickness values with reduced tangential stress and increased elastic fiber density. VitD deficiency reduced myogenic tone at higher intraluminar pressures (>110 mmHg). Our conclusion is that plasma vitD level is an important factor in the control of myogenic tone in cerebral resistance arteries. AE and vitD deficiency acting parallel induce remodeling of their wall.
Collapse
Affiliation(s)
- Leila Hadjadj
- a Faculty of Medicine , Institute of Human Physiology and Clinical Experimental Research, Semmelweis University , Budapest , Hungary
| | - Éva Pál
- a Faculty of Medicine , Institute of Human Physiology and Clinical Experimental Research, Semmelweis University , Budapest , Hungary
| | - Anna Monori-Kiss
- a Faculty of Medicine , Institute of Human Physiology and Clinical Experimental Research, Semmelweis University , Budapest , Hungary
| | - Réka Eszter Sziva
- b 2nd Department of Obstetrics and Gynecology, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Ágnes Korsós-Novák
- c Department of Pathology , Jász-Nagykun-Szolnok Megyei Hetényi Géza Regional Hospital , Szolnok , Hungary
| | - Eszter Mária Horváth
- d Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest , Hungary
| | - Rita Benkő
- d Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest , Hungary
| | - Attila Magyar
- e Department of Anatomy, Histology and Embryology , Semmelweis University , Faculty of Medicine , Budapest , Hungary
| | - Péter Magyar
- f Department of Radiology , Semmelweis University , Faculty of Medicine , Budapest , Hungary
| | - Zoltán Benyó
- a Faculty of Medicine , Institute of Human Physiology and Clinical Experimental Research, Semmelweis University , Budapest , Hungary
| | - György L Nádasy
- d Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest , Hungary
| | - Szabolcs Várbíró
- b 2nd Department of Obstetrics and Gynecology, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| |
Collapse
|
8
|
Marketou ME, Maragkoudakis S, Anastasiou I, Nakou H, Plataki M, Vardas PE, Parthenakis FI. Salt-induced effects on microvascular function: A critical factor in hypertension mediated organ damage. J Clin Hypertens (Greenwich) 2019; 21:749-757. [PMID: 31002481 DOI: 10.1111/jch.13535] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Salt has been linked very closely to the occurrence and complications of arterial hypertension. A large percentage of patients with essential hypertension are salt-sensitive; that is, their blood pressure increases with increased salt intake and decreases with its reduction. For this reason, emphasis is placed on reducing salt intake to better regulate blood pressure. In day-to-day clinical practice this is viewed as mandatory for hypertensive patients who are judged to be salt-sensitive. Previous studies have highlighted the negative effect of high-salt diets on macrovascular function, which also affects blood pressure levels by increasing peripheral resistances. More recent studies provide a better overview of the pathophysiology of microvascular disorders and show that they are largely due to the overconsumption of salt. Microvascular lesions, which have a major impact on the functioning of vital organs, are often not well recognized in clinical practice and are not paid sufficient attention. In general, the damage caused by hypertension to the microvascular network is likely to be overlooked, while reversion of the damage is only rarely considered as a therapeutic target by the treating physician. The purpose of this review is to summarize the impact and the harmful consequences of increased salt consumption in the microvascular network, their significance and pathophysiology, and at the same time to place some emphasis on their treatment and reversion, mainly through diet.
Collapse
Affiliation(s)
- Maria E Marketou
- Department of Cardiology, Heraklion University Hospital, Heraklion, Greece
| | | | - Ioannis Anastasiou
- Department of Cardiology, Heraklion University Hospital, Heraklion, Greece
| | - Helen Nakou
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Marina Plataki
- Department of Cardiology, Heraklion University Hospital, Heraklion, Greece
| | - Panos E Vardas
- Department of Cardiology, Heraklion University Hospital, Heraklion, Greece
| | | |
Collapse
|
9
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res 2018; 3:144-153. [PMID: 30175287 PMCID: PMC6114265 DOI: 10.1016/j.ncrna.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marida Sansonetti
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Klein A, Joseph PD, Christensen VG, Jensen LJ, Jacobsen JCB. Lack of tone in mouse small mesenteric arteries leads to outward remodeling, which can be prevented by prolonged agonist-induced vasoconstriction. Am J Physiol Heart Circ Physiol 2018; 315:H644-H657. [PMID: 29775408 DOI: 10.1152/ajpheart.00111.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inward remodeling of resistance vessels is an independent risk factor for cardiovascular events. Thus far, the remodeling process remains incompletely elucidated, but the activation level of the vascular smooth muscle cell appears to play a central role. Accordingly, previous data have suggested that an antagonistic and supposedly beneficial response, outward remodeling, may follow prolonged vasodilatation. The present study aimed to determine whether 1) outward remodeling follows 3 days of vessel culture without tone, 2) a similar response can be elicited in a much shorter 4-h timeframe, and, finally, 3) whether a 4-h response can be prevented or reversed by the presence of vasoconstrictors in the medium. Cannulated mouse small mesenteric arteries were organocultured for 3 days in the absence of tone, leading to outward remodeling that continued throughout the culture period. In more acute experiments in which cannulated small mesenteric arteries were maintained in physiological saline without tone for 4 h, we detected a similar outward remodeling that proceeded at a rate several times faster. In the 4-h experimental setting, continuous vasoconstriction to ~50% tone by abluminal application of UTP or norepinephrine + neuropeptide Y prevented outward remodeling but did not cause inward remodeling. Computational modeling was used to simulate and interpret these findings and to derive time constants of the remodeling processes. It is suggested that depriving resistance arteries of activation will lead to eutrophic outward remodeling, which can be prevented by vascular smooth muscle cell activation induced by prolonged vasoconstrictor exposure. NEW & NOTEWORTHY We have established an effective 4-h method for studying outward remodeling in pressurized mouse resistance vessels ex vivo and have determined conditions that block the remodeling response. This allows for investigating the subtle but clinically highly relevant phenomenon of outward remodeling while avoiding both laborious 3-day organoid culture of cannulated vessels and in vivo experiments lasting several weeks.
Collapse
Affiliation(s)
- Anika Klein
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Philomeena Daphne Joseph
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Vibeke Grøsfjeld Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
12
|
Poulsen CB, Damkjær M, Hald BO, Wang T, Holstein-Rathlou NH, Jacobsen JCB. Vascular flow reserve as a link between long-term blood pressure level and physical performance capacity in mammals. Physiol Rep 2016; 4:4/11/e12813. [PMID: 27255360 PMCID: PMC4908491 DOI: 10.14814/phy2.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Mean arterial pressure (MAP) is surprisingly similar across different species of mammals, and it is, in general, not known which factors determine the arterial pressure level. Mammals often have a pronounced capacity for sustained physical performance. This capacity depends on the vasculature having a flow reserve that comes into play as tissue metabolism increases. We hypothesize that microvascular properties allowing for a large vascular flow reserve is linked to the level of the arterial pressure.To study the interaction between network properties and network inlet pressure, we developed a generic and parsimonious computational model of a bifurcating microvascular network where diameter and growth of each vessel evolves in response to changes in biomechanical stresses. During a simulation, the network develops well-defined arterial and venous vessel characteristics. A change in endothelial function producing a high precapillary resistance and thus a high vascular flow reserve is associated with an increase in network inlet pressure. Assuming that network properties are independent of body mass, and that inlet pressure of the microvascular network is a proxy for arterial pressure, the study provides a conceptual explanation of why high performing animals tend to have a high MAP.
Collapse
Affiliation(s)
- Christian B Poulsen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense C, Denmark
| | - Bjørn O Hald
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
13
|
Positive effects of aggressive vasodilator treatment of well-treated essential hypertensive patients. J Hum Hypertens 2016; 30:690-696. [PMID: 26961172 DOI: 10.1038/jhh.2016.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Increased systemic vascular resistance and coronary microvascular dysfunction are well-documented in essential hypertension (EH). We investigated the effect of additional vasodilating treatment on coronary and peripheral resistance circulation in EH patients with high systemic vascular resistance index (SVRI) despite well-treated blood pressure (BP). We enroled patients on stable antihypertensive treatment that were given intensified vasodilating therapy (ACE inhibitor, angiotensin II receptor blocker or calcium channel blocker). Before and following 6 months of intensified therapy, coronary resting and maximal artery flow were measured by transthoracic Doppler echocardiography to calculate coronary flow reserve (CFR) and minimum vascular resistance (C-Rmin). Cardiac output was estimated by inert gas rebreathing to calculate SVRI. Maximal forearm blood flow was determined by venous occlusion plethysmography to calculate minimum vascular resistance (F-Rmin). Patients were assigned into two groups: high-SVRI and low-SVRI subgroups, based on a median split at baseline. Following additional treatment SVRI decreased more in the high-SVRI group than in the low-SVRI group (14.4 vs -2.2%: P=0.003), despite similar baseline ambulatory BP (132/81 mm Hg) and BP reduction (6.5 and 4.6%: P=0.19). F-Rmin remained unchanged (6.5 vs -2.0%: P=0.30), while C-Rmin decreased by 22 and 24% (P=0.80) and CFR increased by 23 and 17% (P=0.16). Thus, intensified vasodilating therapy improved SVRI more in patients with high SVRI than in those with low SVRI. Regardless of SVRI status, the treatment improved cardiac but not forearm dilatation capacity. The substantial improvement of the hypertensive cardiac microvascular dysfunction was not related to the reduction in SVRI.
Collapse
|
14
|
Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:511-540. [DOI: 10.1007/5584_2016_90] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Jacobsen JCB, Holstein-Rathlou NH. A Life under Pressure: Circumferential Stress in the Microvascular Wall. Basic Clin Pharmacol Toxicol 2011; 110:26-34. [PMID: 21917118 DOI: 10.1111/j.1742-7843.2011.00796.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jens C B Jacobsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
16
|
Levi F, Mosekilde E, Rand DA. Advancing systems medicine and therapeutics through biosimulation. Interface Focus 2010. [DOI: 10.1098/rsfs.2010.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Francis Levi
- U776, INSERM, hôpital Paul Brousse, 14-16 Avenue Paul Vaillant Couturier, Villejuif, France
| | - Erik Mosekilde
- Department of Physics, Technical University of Denmark, Fysikvej 309, Lyngby, Denmark
| | - David A. Rand
- Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry House, Coventry, UK
| |
Collapse
|