1
|
Sisodia Y, Shah K, Ali Sayyed A, Jain M, Ali SA, Gondaliya P, Kalia K, Tekade RK. Lung-on-chip microdevices to foster pulmonary drug discovery. Biomater Sci 2023; 11:777-790. [PMID: 36537540 DOI: 10.1039/d2bm00951j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Respiratory diseases account for unprecedented mortality owing to a lack of personalized or insufficient therapeutic interventions. Fostering pulmonary research into managing pulmonary threat requires a potential alternative approach that can mimick the in vivo complexities of the human body. The in vitro miniaturized bionic simulation of the lung holds great potential in the quest for a successful therapeutic intervention. This review discusses the emerging roles of lung-on-chip microfluidic simulator devices in fostering translational pulmonary drug discovery and personalized medicine. This review also explicates how the lung-on-chip model emulates the breathing patterns, elasticity, and vascularization of lungs in creating a 3D pulmonary microenvironment.
Collapse
Affiliation(s)
- Yashi Sisodia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Shah
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Adil Ali Sayyed
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Meenakshi Jain
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Syed Ansar Ali
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.,Department of Transplantation, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India.
| |
Collapse
|
2
|
3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023; 19:292-327. [PMID: 35574057 PMCID: PMC9058956 DOI: 10.1016/j.bioactmat.2022.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 01/10/2023] Open
|
3
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
4
|
Perugini V, Santin M. A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures. Front Cell Dev Biol 2021; 9:701842. [PMID: 34650967 PMCID: PMC8507467 DOI: 10.3389/fcell.2021.701842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix-derived products (e.g. Matrigel) are widely used for in vitro cell cultures both as two-dimensional (2D) substrates and as three-dimensional (3D) encapsulation gels because of their ability to control cell phenotypes through biospecific cues. However, batch-to-batch variations, poor stability, cumbersome handling, and the relatively high costs strictly limit their use. Recently, a new substrate known as PhenoDrive-Y has been used as 2D coating of tissue culture plastic showing to direct the bone marrow mesenchymal stromal cells (MSCs) toward the formation of 3D spheroids. When organized into 3D spheroids, the MSCs expressed levels of pluripotency markers and of paracrine angiogenic activity higher than those of the MSCs adhering as fibroblast-like colonies on tissue culture plastic. The formation of the spheroids was attributed to the properties of this biomaterial that resemble the main features of the basement membrane by mimicking the mesh structure of collagen IV and by presenting the cells with orderly spaced laminin bioligands. In this study, PhenoDrive-Y was compared to Matrigel for its ability to drive the formation of perivascular stem cell niche-like structures in 2D co-culture conditions of human endothelial cells and adult bone marrow MSCs. Morphological analyses demonstrated that, when compared to Matrigel, PhenoDrive-Y led endothelial cells to sprout into a more consolidated tubular network and that the MSCs nestled as compact spheroids above the anastomotic areas of this network resemble more closely the histological features of the perivascular stem cell niche. A study of the expressions of relevant markers led to the identification of the pathways linking the PhenoDrive-Y biomimicking properties to the acquired histological features, demonstrating the enhanced levels of stemness, renewal potential, predisposition to migration, and paracrine activities of the MSCs.
Collapse
Affiliation(s)
- Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
5
|
Shen Z, Cao Y, Li M, Yan Y, Cheng R, Zhao Y, Shao Q, Wang J, Sang S. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112360. [PMID: 34579879 DOI: 10.1016/j.msec.2021.112360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Tissue-engineered skin, as a promising skin substitute, can be used for in vitro skin research and skin repair. However, most of research on tissue-engineered skin tend to ignore the rete ridges (RRs) microstructure, which enhances the adhesion between dermis and epidermis and provides a growth environment for epidermal stem cells. Here, we prepared and characterized photocurable gelatin methacrylated (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) co-network hydrogels with different concentrations. Using a UV curing 3D printer, resin molds were designed and fabricated to create three-dimensional micropatterns and replicated onto GelMA-PEGDA scaffolds. Human keratinocytes (HaCaTs) and human skin fibroblasts (HSFs) were co-cultured on the hydrogel scaffold to prepare tissue-engineered skin. The results showed that 10%GelMA-2%PEGDA hydrogel provides the sufficient mechanical properties and biocompatibility to prepare a human skin model with RRs microstructure, that is, it presents excellent structural support, suitable degradation rate, good bioactivity and is suitable for long-term culturing. Digital microscope image analyses showed the micropattern was well-transferred onto the scaffold surface. Both in vitro and in vivo experiments confirmed the formation of the epidermal layer with undulating microstructure. In wound healing experiments, hydrogel can significantly accelerate wound healing. This study provides a simple and powerful way to mimic the structures of human skin and can make a contribution to skin tissue engineering and wound healing.
Collapse
Affiliation(s)
- Zhizhong Shen
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanyan Cao
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Meng Li
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yayun Yan
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rong Cheng
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yajing Zhao
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Quan Shao
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030024, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030024, China.
| | - Shengbo Sang
- MicroNano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
6
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
7
|
Deng C, He Y, Feng J, Dong Z, Yao Y, Lu F. Conditioned medium from 3D culture system of stromal vascular fraction cells accelerates wound healing in diabetic rats. Regen Med 2019; 14:925-937. [PMID: 31599183 DOI: 10.2217/rme-2018-0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We investigated the healing effects of conditioned medium (CM) derived from a physiological 3D culture system engineered to use an extracellular matrix/stromal vascular fraction (SVF) gel enriched for adipose on diabetic wounds in rats. This CM (Gel-CM) was compared with that from a 2D culture system that used SVF cells (SVF-CM). Materials & methods: Keratinocytes, fibroblasts and wounds were treated with Gel-CM and SVF-CM, and cytokine levels in the CM types were quantified. Results: Proliferation and migration of keratinocytes and fibroblasts were significantly higher after treatment with Gel-CM than with SVF-CM. Collagen secretion by fibroblasts and wound closure were highly stimulated by Gel-CM. Proteomic analyses revealed a higher concentration of growth factors in Gel-CM than in SVF-CM. Conclusion: Gel-CM is a promising therapeutic option for treating diabetic wounds.
Collapse
Affiliation(s)
- Chengliang Deng
- Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, PR China.,Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
8
|
Deegan AJ, Hendrikson WJ, El Haj AJ, Rouwkema J, Yang Y. Regulation of endothelial cell arrangements within hMSC - HUVEC co-cultured aggregates. Biomed J 2019; 42:166-177. [PMID: 31466710 PMCID: PMC6717755 DOI: 10.1016/j.bj.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Micro-mass culturing or cellular aggregation is an effective method used to form mineralised bone tissue. Poor core cell viability, however, is often an impeding characteristic of large micro-mass cultures, and equally for large tissue-engineered bone grafts. Because of this, efforts are being made to enhance large graft perfusion, often through pre-vascularisation, which involves the co-culture of endothelial cells and bone cells or stem cells. Methods This study investigated the effects of different aggregation techniques and culture conditions on endothelial cell arrangements in mesenchymal stem cell and human umbilical vein endothelial cell co-cultured aggregates when endothelial cells constituted just 5%. Two different cellular aggregation techniques, i.e. suspension culture aggregation and pellet culture aggregation, were applied alongside two subsequent culturing techniques, i.e. hydrostatic loading and static culturing. Endothelial cell arrangements were assessed under such conditions to indicate potential pre-vascularisation. Results Our study found that the suspension culture aggregates cultured under hydrostatic loading offered the best environment for enhanced endothelial cell regional arrangements, closely followed by the pellet culture aggregates cultured under hydrostatic loading, the suspension culture aggregates cultured under static conditions, and the pellet culture aggregates cultured under static conditions. Conclusions The combination of particular aggregation techniques with dynamic culturing conditions appeared to have a synergistic effect on the cellular arrangements within the co-cultured aggregates.
Collapse
Affiliation(s)
- Anthony J Deegan
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Wim J Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, AE, the Netherlands
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
9
|
Yang X, Liu X, Wu Q, Lv X, Li B, Sun H, Xu W, Liao X. Dopamine-assisted immobilization of peptide arginine–glycine–aspartic acid to enhance the cellular performances of MC3T3-E1 cells of carbon–carbon composites. J Biomater Appl 2019; 34:284-296. [DOI: 10.1177/0885328219845962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xue Liu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Qianqian Wu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xu Lv
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
10
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019; 13:031501. [PMID: 31263514 PMCID: PMC6597342 DOI: 10.1063/1.5100070] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/13/2019] [Indexed: 05/11/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
13
|
Khurshid M, Mulet-Sierra A, Adesida A, Sen A. Osteoarthritic human chondrocytes proliferate in 3D co-culture with mesenchymal stem cells in suspension bioreactors. J Tissue Eng Regen Med 2017; 12:e1418-e1432. [PMID: 28752579 DOI: 10.1002/term.2531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a painful disease, characterized by progressive surface erosion of articular cartilage. The use of human articular chondrocytes (hACs) sourced from OA patients has been proposed as a potential therapy for cartilage repair, but this approach is limited by the lack of scalable methods to produce clinically relevant quantities of cartilage-generating cells. Previous studies in static culture have shown that hACs co-cultured with human mesenchymal stem cells (hMSCs) as 3D pellets can upregulate proliferation and generate neocartilage with enhanced functional matrix formation relative to that produced from either cell type alone. However, because static culture flasks are not readily amenable to scale up, scalable suspension bioreactors were investigated to determine if they could support the co-culture of hMSCs and OA hACs under serum-free conditions to facilitate clinical translation of this approach. When hACs and hMSCs (1:3 ratio) were inoculated at 20,000 cells/ml into 125-ml suspension bioreactors and fed weekly, they spontaneously formed 3D aggregates and proliferated, resulting in a 4.75-fold increase over 16 days. Whereas the apparent growth rate was lower than that achieved during co-culture as a 2D monolayer in static culture flasks, bioreactor co-culture as 3D aggregates resulted in a significantly lower collagen I to II mRNA expression ratio and more than double the glycosaminoglycan/DNA content (5.8 vs. 2.5 μg/μg). The proliferation of hMSCs and hACs as 3D aggregates in serum-free suspension culture demonstrates that scalable bioreactors represent an accessible platform capable of supporting the generation of clinical quantities of cells for use in cell-based cartilage repair.
Collapse
Affiliation(s)
- Madiha Khurshid
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola Adesida
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Remodeling the Human Adult Stem Cell Niche for Regenerative Medicine Applications. Stem Cells Int 2017; 2017:6406025. [PMID: 29090011 PMCID: PMC5635271 DOI: 10.1155/2017/6406025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regeneration in vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizing in vitro or in vivo the various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.
Collapse
|
15
|
Sgambato A, Cipolla L, Russo L. Bioresponsive Hydrogels: Chemical Strategies and Perspectives in Tissue Engineering. Gels 2016; 2:E28. [PMID: 30674158 PMCID: PMC6318637 DOI: 10.3390/gels2040028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 12/28/2022] Open
Abstract
Disease, trauma, and aging account for a significant number of clinical disorders. Regenerative medicine is emerging as a very promising therapeutic option. The design and development of new cell-customised biomaterials able to mimic extracellular matrix (ECM) functionalities represents one of the major strategies to control the cell fate and stimulate tissue regeneration. Recently, hydrogels have received a considerable interest for their use in the modulation and control of cell fate during the regeneration processes. Several synthetic bioresponsive hydrogels are being developed in order to facilitate cell-matrix and cell-cell interactions. In this review, new strategies and future perspectives of such synthetic cell microenvironments will be highlighted.
Collapse
Affiliation(s)
- Antonella Sgambato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
16
|
Yalikun Y, Kanda Y, Morishima K. A Method of Three-Dimensional Micro-Rotational Flow Generation for Biological Applications. MICROMACHINES 2016; 7:E140. [PMID: 30404312 PMCID: PMC6190094 DOI: 10.3390/mi7080140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/28/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023]
Abstract
We report a convenient method to create a three-dimensional micro-rotational fluidic platform for biological applications in the direction of a vertical plane (out-of-plane) without contact in an open space. Unlike our previous complex fluidic manipulation system, this method uses a micro-rotational flow generated near a single orifice when the solution is pushed from the orifice by using a single pump. The three-dimensional fluidic platform shows good potential for fluidic biological applications such as culturing, stimulating, sorting, and manipulating cells. The pattern and velocity of the micro-rotational flow can be controlled by tuning the parameters such as the flow rate and the liquid-air interface height. We found that bio-objects captured by the micro-rotational flow showed self-rotational motion and orbital motion. Furthermore, the path length and position, velocity, and pattern of the orbital motion of the bio-object could be controlled. To demonstrate our method, we used embryoid body cells. As a result, the orbital motion had a maximum length of 2.4 mm, a maximum acceleration of 0.63 m/s², a frequency of approximately 0.45 Hz, a maximum velocity of 15.4 mm/s, and a maximum rotation speed of 600 rpm. The capability to have bio-objects rotate or move orbitally in three dimensions without contact opens up new research opportunities in three-dimensional microfluidic technology.
Collapse
Affiliation(s)
- Yaxiaer Yalikun
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory for Integrated Biodevice, Quantitative Biology Center, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Mellati A, Kiamahalleh MV, Madani SH, Dai S, Bi J, Jin B, Zhang H. Poly(N
-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering. J Biomed Mater Res A 2016; 104:2764-74. [DOI: 10.1002/jbm.a.35810] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Amir Mellati
- School of Chemical Engineering, The University of Adelaide; Adelaide SA5005 Australia
| | | | - S. Hadi Madani
- Ian Wark Research Institute, University of South Australia; Mawson Lakes SA5095 Australia
| | - Sheng Dai
- School of Chemical Engineering, The University of Adelaide; Adelaide SA5005 Australia
| | - Jingxiu Bi
- School of Chemical Engineering, The University of Adelaide; Adelaide SA5005 Australia
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide; Adelaide SA5005 Australia
| | - Hu Zhang
- School of Chemical Engineering, The University of Adelaide; Adelaide SA5005 Australia
| |
Collapse
|
18
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
19
|
Formation of stable cell–cell contact without a solid/gel scaffold: Non-invasive manipulation by laser under depletion interaction with a polymer. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 2015; 7:044101. [DOI: 10.1088/1758-5090/7/4/044101] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Regeneration of a Compromized Masticatory Unit in a Large Mandibular Defect Caused by a Huge Solitary Bone Cyst: A Case Report and Review of the Regenerative Literature. J Maxillofac Oral Surg 2015; 15:295-305. [PMID: 27408457 DOI: 10.1007/s12663-015-0828-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/24/2015] [Indexed: 01/14/2023] Open
Abstract
The reconstructive options for large expansive cystic lesion affecting the jaws are many. The first stage of treatment may involve enucleation or marsupialization of the cyst. Attempted reconstruction of large osseous defects arising from the destruction of local tissue can present formidable challenges. The literature reports the use of bone grafts, free tissue transfer, bone morphogenic protein and reconstruction plates to assist in the healing and rehabilitation process. The management of huge mandibular cysts needs to take into account the preservation of existing intact structures, removal of the pathology and the reconstructive objectives which focus both on aesthetic and functional rehabilitation. The planning and execution of such treatment requires not only the compliance of the patient and family but also their assent as customers with a voice in determining their surgical destiny. The authors would like to report a unique case of a huge solitary bone cyst that had reduced the ramus, angle and part of the body of one side of the mandible to a pencil-thin-like strut of bone. A combination of decompression through marsupialization, serial packing, and the fabrication of a custom made obturator facilitated the regeneration of the myo-osseous components of the masticatory unit of this patient. Serial CT scans showed evidence of concurrent periosteal and endosteal bone formation and, quite elegantly, the regeneration of the first branchial arch components of the right myo-osseous masticatory complex. The microenvironmental factors that may have favored regeneration of these complex structures are discussed.
Collapse
|
22
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
24
|
Arayanarakool R, Meyer AK, Helbig L, Sanchez S, Schmidt OG. Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures. LAB ON A CHIP 2015; 15:2981-2989. [PMID: 26053736 DOI: 10.1039/c5lc00024f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Artificial microvasculature, particularly as part of the blood-brain barrier, has a high benefit for pharmacological drug discovery and uptake regulation. We demonstrate the fabrication of tubular structures with patterns of holes, which are capable of mimicking microvasculatures. By using photolithography, the dimensions of the cylindrical scaffolds can be precisely tuned as well as the alignment and size of holes. Overlapping holes can be tailored to create diverse three-dimensional configurations, for example, periodic nanoscaled apertures. The porous tubes, which can be made from diverse materials for differential functionalization, are biocompatible and can be modified to be biodegradable in the culture medium. As a proof of concept, endothelial cells (ECs) as well as astrocytes were cultured on these scaffolds. They form monolayers along the scaffolds, are guided by the array of holes and express tight junctions. Nanoscaled filaments of cells on these scaffolds were visualized by scanning electron microscopy (SEM). This work provides the basic concept mainly for an in vitro model of microvasculature which could also be possibly implanted in vivo due to its biodegradability.
Collapse
Affiliation(s)
- Rerngchai Arayanarakool
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraβe 20, 01069, Dresden, Germany.
| | | | | | | | | |
Collapse
|
25
|
Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep 2015; 5:8577. [PMID: 25716032 PMCID: PMC4341216 DOI: 10.1038/srep08577] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022] Open
Abstract
The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures. Using embryonic stem cells, 3D structures of varying geometries were created and stabilized using hydrogels and cell-cell adhesion methods. Control of chemical microenvironments was achieved by the temporal release of specific factors from polymer microparticles positioned within these constructs. Complex co-culture micro-environmental analogues were also generated to reproduce structures found within adult stem cell niches. The application of holographic optical tweezers-based micromanipulation will enable novel insights into biological microenvironments by allowing researchers to form complex architectures with sub-micron precision of cells, matrices and molecules.
Collapse
|
26
|
Shen Z, Mellati A, Bi J, Zhang H, Dai S. A thermally responsive cationic nanogel-based platform for three-dimensional cell culture and recovery. RSC Adv 2014. [DOI: 10.1039/c4ra02852j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Choi YC, Choi JS, Woo CH, Cho YW. Stem cell delivery systems inspired by tissue-specific niches. J Control Release 2014; 193:42-50. [PMID: 24979211 DOI: 10.1016/j.jconrel.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022]
Abstract
Since stem cells have the capacity to differentiate into a variety of cell types, stem cell delivery systems (SCDSs) can be effective therapeutic strategies for a multitude of diseases and disorders. For stem cell-based therapy, stem cells are introduced directly (or peripherally) into a target tissue via different delivery systems. Despite initial promising results obtained from preclinical studies, a number of technical hurdles must be overcome for ultimate clinical utility of stem cells. A key aspect of SCDSs is how to create local environments, called stem cell niches, for improvement of survival and engraftment as well as the fate of transplanted stem cells. The stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues play a guidance role to modulate stem cell behaviors such as adhesion, proliferation, and differentiation. Recent studies have tried to decipher the complex interplay between stem cells and niches, and thereafter to engineer SCDS, mimicking dynamic stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues. Here, we discuss the biological role of stem cell niches and highlight recent progress in SCDS to mimic stem cell niches, particularly focusing on important biomaterial properties for modulating stem cell fate.
Collapse
Affiliation(s)
- Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Chang Hee Woo
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea.
| |
Collapse
|
28
|
Affiliation(s)
- Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Michelle L. Oyen
- Engineering Department, Cambridge University, Trumpington St., Cambridge CB2 1PZ, UK
| |
Collapse
|
29
|
Mekala NK, Baadhe RR, Potumarthi R. Mass transfer aspects of 3D cell cultures in tissue engineering. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naveen Kumar Mekala
- Department of Biotechnology; National Institute of Technology; Warangal 506004 India
| | - Rama Raju Baadhe
- Department of Biotechnology; National Institute of Technology; Warangal 506004 India
| | | |
Collapse
|
30
|
Bloom AB, Zaman MH. Influence of the microenvironment on cell fate determination and migration. Physiol Genomics 2014; 46:309-14. [PMID: 24619520 DOI: 10.1152/physiolgenomics.00170.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several critical cell functions are influenced not only by internal cellular machinery but also by external mechanical and biochemical cues from the surrounding microenvironment. Slight changes to the microenvironment can result in dramatic changes to the cell's phenotype; for example, a change in the nutrients or pH of a tumor microenvironment can result in increased tumor metastasis. While cellular fate and the regulators of cell fate have been studied in detail for several decades now, our understanding of the extracellular regulators remains qualitative and far from comprehensive. In this review, we discuss the microenvironment influence on cell fate in terms of adhesion, migration, and differentiation and focus on both developments in experimental and computation tools to analyze cellular fate.
Collapse
Affiliation(s)
- Alexander B Bloom
- Department of Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts; and
| | | |
Collapse
|
31
|
Sivan U, Jayakumar K, Krishnan LK. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix. J Tissue Eng Regen Med 2014; 10:E546-E558. [DOI: 10.1002/term.1865] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 11/02/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Unnikrishnan Sivan
- Thrombosis Research Unit, Biomedical Technology Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - K. Jayakumar
- Department of Cardiovascular and Thoracic Surgery; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Lissy K. Krishnan
- Thrombosis Research Unit, Biomedical Technology Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| |
Collapse
|
32
|
Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J Tissue Eng Regen Med 2014; 10:876-887. [DOI: 10.1002/term.1868] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/07/2013] [Accepted: 12/20/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Sun
- Department of Industrial Engineering and Biotech Research Centre; University of Trento; Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Trento Italy
- Centre for Integrative Biology; University of Trento; Italy
| | - Tania Incitti
- Centre for Integrative Biology; University of Trento; Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering and Biotech Research Centre; University of Trento; Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Trento Italy
| | | | - Simona Casarosa
- Centre for Integrative Biology; University of Trento; Italy
- CNR Neuroscience Institute; Pisa Italy
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Research Centre; University of Trento; Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Trento Italy
| |
Collapse
|
33
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 865] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
34
|
Mellati A, Dai S, Bi J, Jin B, Zhang H. A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 2014. [DOI: 10.1039/c4ra12215a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan-g-poly(N-isopropylacrylamide) was synthesized as a stem cell mimicking microenvironment. Solubility and gel mechanical strength were optimised through manipulating the grafting parameters.
Collapse
Affiliation(s)
- Amir Mellati
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Sheng Dai
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Bo Jin
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| | - Hu Zhang
- School of Chemical Engineering
- The University of Adelaide
- Adelaide SA5005, Australia
| |
Collapse
|
35
|
Bandiera A, Markulin A, Corich L, Vita F, Borelli V. Stimuli-Induced Release of Compounds from Elastin Biomimetic Matrix. Biomacromolecules 2013; 15:416-22. [DOI: 10.1021/bm401677n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Antonella Bandiera
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ana Markulin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lucia Corich
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Francesca Vita
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Violetta Borelli
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
36
|
Maisonneuve BGC, Roux DCD, Thorn P, Cooper-White JJ. Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions. Biomacromolecules 2013; 14:4388-97. [PMID: 24255972 DOI: 10.1021/bm401335g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the rapidly growing interest in the use of mesenchymal stromal cells (MSCs) for cell therapy and regenerative medicine applications, either alone as an injected suspension, or dispersed within injectable hydrogel delivery systems, greater understanding of the structure-function-property characteristics of suspensions of adhesion-dependent mesenchymal cells is required. In this paper, we present the results of an experimental study into the flow behavior of concentrated suspensions of living cells of mesenchymal origin (fibroblasts) over a wide range of cell concentrations, with and without the addition of hyaluronic acid (HA), a commonly utilized biomolecule in injectable hydrogel formulations. We characterize the change in the shear viscosity as a function of shear stress and shear rate for cell volume fractions varying from 20 to 60%. We show that high volume fraction suspensions of living mesenchymal cells, known to be capable of homotypic interactions, exhibit highly complex but reproducible rheological footprints, including yield stress, shear thinning and shear-induced fracture behaviors. We show that with the addition of HA, we can significantly modify and tailor the rheology of these cell suspensions at all volume fractions. Using FACS and confocal imaging, we show that the observed effect of HA addition is due to a significantly modulation in the formation of cellular aggregates in these suspensions, and thus the resultant volume spanning network. Considering the aggregates as fractal structures, we show that by taking into account the changes in volume fractions with shear, we are able to plot a master curve for the range of conditions investigated and extract from it the average adhesion force between individual cells, across a population of millions of cells. The outcomes of this study not only provide new insight into the complexity of the flow behaviors of concentrated, adhesive mesenchymal cell suspensions, and their sensitivity to associative biomacromolecule addition, but also a novel, rapid method by which to measure the average adhesion force between individual cells, and the impacts of biomacromolecules on this important parameter.
Collapse
Affiliation(s)
- Benoît G C Maisonneuve
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechology, The University of Queensland , St. Lucia 4072 Australia
| | | | | | | |
Collapse
|
37
|
Abstract
Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.
Collapse
Affiliation(s)
- David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
38
|
Xu W, Liao X, Zhang L, Liu B. Tissue induction, the relationship between biomaterial’s microenvironment and mesenchymal stem cell differentiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.61011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol 2012; 2012:797410. [PMID: 23091358 PMCID: PMC3471035 DOI: 10.1155/2012/797410] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022] Open
Abstract
The control of stem cell response in vitro, including self-renewal and lineage commitment, has been proved to be directed by mechanical cues, even in the absence of biochemical stimuli. Through integrin-mediated focal adhesions, cells are able to anchor onto the underlying substrate, sense the surrounding microenvironment, and react to its properties. Substrate-cell and cell-cell interactions activate specific mechanotransduction pathways that regulate stem cell fate. Mechanical factors, including substrate stiffness, surface nanotopography, microgeometry, and extracellular forces can all have significant influence on regulating stem cell activities. In this paper, we review all the most recent literature on the effect of purely mechanical cues on stem cell response, and we introduce the concept of "force isotropy" relevant to cytoskeletal forces and relevant to extracellular loads acting on cells, to provide an interpretation of how the effects of insoluble biophysical signals can be used to direct stem cells fate in vitro.
Collapse
|
40
|
Zhang H, Kay A, Forsyth NR, Liu KK, El Haj AJ. Gene expression of single human mesenchymal stem cell in response to fluid shear. J Tissue Eng 2012; 3:2041731412451988. [PMID: 22798982 PMCID: PMC3394398 DOI: 10.1177/2041731412451988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell therapy may rely on delivery and homing through the vascular system to reach the target tissue. An optical tweezer model has been employed to exert different levels of shear stress on a single non-adherent human bone marrow–derived mesenchymal stem cell to simulate physiological flow conditions. A single-cell quantitative polymerase chain reaction analysis showed that collagen type 1, alpha 2 (COL1A2), heat shock 70-kDa protein 1A (HSPA1A) and osteopontin (OPN) are expressed to a detectable level in most of the cells. After exposure to varying levels of shear stress, there were significant variations in gene transcription levels across human mesenchymal stem cells derived from four individual donors. Significant trend towards upregulation of COL1A2 and OPN gene expression following shear was observed in some donors with corresponding variations in HSPA1A gene expression. The results indicate that shear stress associated with vascular flow may have the potential to significantly direct non-adherent stem cell expression towards osteogenic phenotypic expression. However, our results demonstrate that these results are influenced by the selection process and donor variability.
Collapse
Affiliation(s)
- Hu Zhang
- Institute of Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Vincent Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| |
Collapse
|