1
|
Bocková J, Jones NC, Hoffmann SV, Meinert C. The astrochemical evolutionary traits of phospholipid membrane homochirality. Nat Rev Chem 2024; 8:652-664. [PMID: 39025922 DOI: 10.1038/s41570-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.
Collapse
Affiliation(s)
- Jana Bocková
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Cornelia Meinert
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France.
| |
Collapse
|
2
|
Rodriguez LE, Weber JM, Barge LM. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. ASTROBIOLOGY 2024; 24:767-782. [PMID: 38768415 DOI: 10.1089/ast.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.
Collapse
Affiliation(s)
- Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Khalfallah HB, Jelassi M, Rissaoui H, Barchouchi M, Baraille C, Gardes J, Demongeot J. Information Gradient among Nucleotide Sequences of Essential RNAs from an Evolutionary Perspective. Int J Mol Sci 2024; 25:7521. [PMID: 39062761 PMCID: PMC11277137 DOI: 10.3390/ijms25147521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
We hypothesize that the first ancestral "protocell" molecular structures, i.e., the first RNAs and peptides that gradually transformed into real cells once the Earth had cooled sufficiently for organic molecules to appear, have left traces in the RNAs and the genes in present cells. We propose a circular RNA that could have been one of these ancestral structures whose vestigial pentameric subsequences would mark the evolution from this key moment when the protocells began to join with living organisms. In particular, we propose that, in present RNAs (ribosomal or messenger), which play an important role in the metabolism of current cells, we look for traces of the proposed primitive structure in the form of pentamers (or longer fragments) that belong to their nucleotide sequence. The result obtained can be summarized in the existence of a gradient of occurrence of such pentamers, with a high frequency for the most vital functions (protein synthesis, nucleic synthesis, cell respiration, etc.). This gradient is also visible between organisms, from the oldest (Archaea) to the most recent (Eukaryotes) in the evolution of species.
Collapse
Affiliation(s)
- Houssem Ben Khalfallah
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France; (H.B.K.); (H.R.); (M.B.)
- ENSI—Ecole Nationale des Sciences de l’Informatique, Campus Universitaire de la Manouba, La Manouba 2010, Tunisia
| | - Mariem Jelassi
- ENSI—Ecole Nationale des Sciences de l’Informatique, Campus Universitaire de la Manouba, La Manouba 2010, Tunisia
| | - Hajar Rissaoui
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France; (H.B.K.); (H.R.); (M.B.)
| | - Mohtadi Barchouchi
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France; (H.B.K.); (H.R.); (M.B.)
| | | | - Joël Gardes
- Orange Laboratorys, 38229 Meylan, France; (C.B.); (J.G.)
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France; (H.B.K.); (H.R.); (M.B.)
| |
Collapse
|
4
|
Zhu P, Hou J, Xiong Y, Xie R, Wang Y, Wang F. Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis. Microorganisms 2024; 12:707. [PMID: 38674651 PMCID: PMC11052028 DOI: 10.3390/microorganisms12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yixuan Xiong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
5
|
Shenault DM, Fabijanczuk KC, Murtada R, Finn S, Gonzalez LE, Gao J, McLuckey SA. Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching. Anal Chem 2024; 96:3389-3401. [PMID: 38353412 DOI: 10.1021/acs.analchem.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis.
Collapse
Affiliation(s)
- De'Shovon M Shenault
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly C Fabijanczuk
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Rao A, Driessen AJM. Unraveling the multiplicity of geranylgeranyl reductases in Archaea: potential roles in saturation of terpenoids. Extremophiles 2024; 28:14. [PMID: 38280122 PMCID: PMC10821996 DOI: 10.1007/s00792-023-01330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/15/2023] [Indexed: 01/29/2024]
Abstract
The enzymology of the key steps in the archaeal phospholipid biosynthetic pathway has been elucidated in recent years. In contrast, the complete biosynthetic pathways for proposed membrane regulators consisting of polyterpenes, such as carotenoids, respiratory quinones, and polyprenols remain unknown. Notably, the multiplicity of geranylgeranyl reductases (GGRs) in archaeal genomes has been correlated with the saturation of polyterpenes. Although GGRs, which are responsible for saturation of the isoprene chains of phospholipids, have been identified and studied in detail, there is little information regarding the structure and function of the paralogs. Here, we discuss the diversity of archaeal membrane-associated polyterpenes which is correlated with the genomic loci, structural and sequence-based analyses of GGR paralogs.
Collapse
Affiliation(s)
- Alka Rao
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
7
|
Buckner DK, Anderson MJ, Wisnosky S, Alvarado W, Nuevo M, Williams AJ, Ricco AJ, Anamika, Debic S, Friend L, Hoac T, Jahnke L, Radosevich L, Williams R, Wilhelm MB. Quantifying Global Origin-Diagnostic Features and Patterns in Biotic and Abiotic Acyclic Lipids for Life Detection. ASTROBIOLOGY 2024; 24:1-35. [PMID: 38150549 DOI: 10.1089/ast.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.
Collapse
Affiliation(s)
- Denise K Buckner
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Morgan J Anderson
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Axient Corporation, Huntsville, Alabama, USA
| | - Sydney Wisnosky
- Axient Corporation, Huntsville, Alabama, USA
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Walter Alvarado
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Michel Nuevo
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio J Ricco
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Electrical Engineering-Integrated Circuits Laboratory, Stanford University, Stanford, California, USA
| | - Anamika
- Department of Space Studies, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sara Debic
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Trinh Hoac
- Axient Corporation, Huntsville, Alabama, USA
| | - Linda Jahnke
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Ross Williams
- Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, Indiana, USA
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
8
|
Holler S, Bartlett S, Löffler RJG, Casiraghi F, Diaz CIS, Cartwright JHE, Hanczyc MM. Hybrid organic-inorganic structures trigger the formation of primitive cell-like compartments. Proc Natl Acad Sci U S A 2023; 120:e2300491120. [PMID: 37561785 PMCID: PMC10438843 DOI: 10.1073/pnas.2300491120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Richard J. G. Löffler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Federica Casiraghi
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Claro Ignacio Sainz Diaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada18071, Spain
| | - Martin M. Hanczyc
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM87106
| |
Collapse
|
9
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
10
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Namani T, Ruf RJ, Arsano I, Hu R, Wesdemiotis C, Sahai N. Novel Chimeric Amino Acid-Fatty Alcohol Ester Amphiphiles Self-Assemble into Stable Primitive Membranes in Diverse Geological Settings. ASTROBIOLOGY 2023; 23:327-343. [PMID: 36724479 DOI: 10.1089/ast.2022.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Primitive cells are believed to have been self-assembled vesicular structures with minimal metabolic components, that were capable of self-maintenance and self-propagation in early Earth geological settings. The coevolution and self-assembly of biomolecules, such as amphiphiles, peptides, and nucleic acids, or their precursors, were essential for protocell emergence. Here, we present a novel class of amphiphiles-amino acid-fatty alcohol esters-that self-assemble into stable primitive membrane compartments under a wide range of geochemical conditions. Glycine n-octyl ester (GOE) and isoleucine n-octyl ester (IOE), the condensation ester products of glycine or isoleucine with octanol (OcOH), are expected to form at a mild temperature by wet-dry cycles. The GOE forms micelles in acidic aqueous solutions (pH 2-7) and vesicles at intermediate pH (pH 7.3-8.2). When mixed with cosurfactants (octanoic acid [OcA]; OcOH, or decanol) in different mole fractions [XCosurfactant = 0.1-0.5], the vesicle stability range expands significantly to span the extremely acidic to mildly alkaline (pH 2-8) and extremely alkaline (pH 10-11) regions. Only a small mole fraction of cosurfactant [XCosurfactant = 0.1] is needed to make stable vesicular structures. Notably, these GOE-based vesicles are also stable in the presence of high concentrations of divalent cations, even at low pHs and in simulated Hadean seawater composition (without sulfate). To better understand the self-assembly behavior of GOE-based systems, we devised complementary molecular dynamics computer simulations for a series of mixed GOE/OcA systems under simulated acidic pHs. The resulting calculated critical packing parameter values and self-assembly behavior were consistent with our experimental findings. The IOE is expected to show similar self-assembly behavior. Thus, amino acid-fatty alcohol esters, a novel chimeric amphiphile class composed of an amino acid head group and a fatty alcohol tail, may have aided in building protocell membranes, which were stable in a wide variety of geochemical circumstances and were conducive to supporting replication and self-maintenance. The present work contributes to our body of work supporting our hypothesis for synergism and coevolution of (proto)biomolecules on early Earth.
Collapse
Affiliation(s)
- Trishool Namani
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
| | - Reghan J Ruf
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
- Integrated Biosciences Program, University of Akron, Akron, Ohio, USA
| | - Iskinder Arsano
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
| | - Ruibo Hu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
| | - Chrys Wesdemiotis
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, USA
- Integrated Biosciences Program, University of Akron, Akron, Ohio, USA
- Department of Geosciences, and University of Akron, Akron, Ohio, USA
- Department of Biology, University of Akron, Akron, Ohio, USA
| |
Collapse
|
12
|
Joshi MP, Uday A, Rajamani S. Elucidating N-acyl amino acids as a model protoamphiphilic system. Commun Chem 2022; 5:147. [PMID: 36697941 PMCID: PMC9814278 DOI: 10.1038/s42004-022-00762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Protoamphiphiles are prebiotically-plausible moieties that would have constituted protocell membranes on early Earth. Although prebiotic soup would have contained a diverse set of amphiphiles capable of generating protocell membranes, earlier studies were mainly limited to fatty acid-based systems. Herein, we characterize N-acyl amino acids (NAAs) as a model protoamphiphilic system. To the best of our knowledge, we report a new abiotic route in this study for their synthesis under wet-dry cycles from amino acids and monoglycerides via an ester-amide exchange process. We also demonstrate how N-oleoyl glycine (NOG, a representative NAA) results in vesicle formation over a broad pH range when blended with a monoglyceride or a fatty acid. Notably, NOG also acts as a substrate for peptide synthesis under wet-dry cycles, generating different lipopeptides. Overall, our study establishes NAAs as a promising protoamphiphilic system, and highlights their significance in generating robust and functional protocell membranes on primitive Earth.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| | - Ashwin Uday
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, 411008, India.
| |
Collapse
|
13
|
Nunes Palmeira R, Colnaghi M, Harrison SA, Pomiankowski A, Lane N. The limits of metabolic heredity in protocells. Proc Biol Sci 2022; 289:20221469. [PMID: 36350219 PMCID: PMC9653231 DOI: 10.1098/rspb.2022.1469] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H
2
and CO
2
, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO
2
fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO
2
fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO
2
fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO
2
fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.
Collapse
Affiliation(s)
- Raquel Nunes Palmeira
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Marco Colnaghi
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Stuart A. Harrison
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Computer Science, Engineering Building, Malet Place, University College London, WC1E 7JG, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF, Ward J, Werner F, Lane N. A prebiotic basis for ATP as the universal energy currency. PLoS Biol 2022; 20:e3001437. [PMID: 36194581 PMCID: PMC9531788 DOI: 10.1371/journal.pbio.3001437] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires 6 phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleoside triphosphates, remains a mystery. Here, we show that the deep conservation of ATP might reflect its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate (AcP), which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that AcP can phosphorylate ADP to ATP at nearly 20% yield in water in the presence of Fe3+ ions. We then show that Fe3+ and AcP are surprisingly favoured. A wide range of prebiotically relevant ions and minerals failed to catalyse ADP phosphorylation. From a panel of prebiotic phosphorylating agents, only AcP, and to a lesser extent carbamoyl phosphate, showed any significant phosphorylating potential. Critically, AcP did not phosphorylate any other nucleoside diphosphate. We use these data, reaction kinetics, and molecular dynamic simulations to infer a possible mechanism. Our findings might suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.
Collapse
Affiliation(s)
- Silvana Pinna
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Cäcilia Kunz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Aaron Halpern
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Stuart A. Harrison
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - Sean F. Jordan
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| | - John Ward
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, Darwin Building, London, United Kingdom
| | - Nick Lane
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, Darwin Building, London, United Kingdom
| |
Collapse
|
15
|
Camprubi E, Harrison SA, Jordan SF, Bonnel J, Pinna S, Lane N. Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars? ASTROBIOLOGY 2022; 22:981-991. [PMID: 35833833 DOI: 10.1089/ast.2021.0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formose reaction has been a leading hypothesis for the prebiotic synthesis of sugars such as ribose for many decades but tends to produce complex mixtures of sugars and often tars. Channeling the formose reaction towards the synthesis of biologically useful sugars such as ribose has been a holy grail of origins-of-life research. Here, we tested the hypothesis that a simple, prebiotically plausible phosphorylating agent, acetyl phosphate, could direct the formose reaction towards ribose through phosphorylation of intermediates in a manner resembling gluconeogenesis and the pentose phosphate pathway. We did indeed find that addition of acetyl phosphate to a developing formose reaction stabilized pentoses, including ribose, such that after 5 h of reaction about 10-fold more ribose remained compared with control runs. But mechanistic analyses using liquid chromatography-mass spectrometry showed that, far from being directed towards ribose by phosphorylation, the formose reaction was halted by the precipitation of Ca2+ ions as phosphate minerals such as apatite and hydroxyapatite. Adding orthophosphate had the same effect. Phosphorylated sugars were only detected below the limit of quantification when adding acetyl phosphate. Nonetheless, our findings are not strictly negative. The sensitivity of the formose reaction to geochemically reasonable conditions, combined with the apparent stability of ribose under these conditions, serves as a valuable constraint on possible pathways of sugar synthesis at the origin of life.
Collapse
Affiliation(s)
- E Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S F Jordan
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - J Bonnel
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S Pinna
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - N Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
16
|
Spietz RL, Payne D, Kulkarni G, Metcalf WW, Roden EE, Boyd ES. Investigating Abiotic and Biotic Mechanisms of Pyrite Reduction. Front Microbiol 2022; 13:878387. [PMID: 35615515 PMCID: PMC9124975 DOI: 10.3389/fmicb.2022.878387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrite (FeS2) has a very low solubility and therefore has historically been considered a sink for iron (Fe) and sulfur (S) and unavailable to biology in the absence of oxygen and oxidative weathering. Anaerobic methanogens were recently shown to reduce FeS2 and assimilate Fe and S reduction products to meet nutrient demands. However, the mechanism of FeS2 mineral reduction and the forms of Fe and S assimilated by methanogens remained unclear. Thermodynamic calculations described herein indicate that H2 at aqueous concentrations as low as 10-10 M favors the reduction of FeS2, with sulfide (HS-) and pyrrhotite (Fe1- x S) as products; abiotic laboratory experiments confirmed the reduction of FeS2 with dissolved H2 concentrations greater than 1.98 × 10-4 M H2. Growth studies of Methanosarcina barkeri provided with FeS2 as the sole source of Fe and S resulted in H2 production but at concentrations too low to drive abiotic FeS2 reduction, based on abiotic laboratory experimental data. A strain of M. barkeri with deletions in all [NiFe]-hydrogenases maintained the ability to reduce FeS2 during growth, providing further evidence that extracellular electron transport (EET) to FeS2 does not involve H2 or [NiFe]-hydrogenases. Physical contact between cells and FeS2 was required for mineral reduction but was not required to obtain Fe and S from dissolution products. The addition of a synthetic electron shuttle, anthraquinone-2,6-disulfonate, allowed for biological reduction of FeS2 when physical contact between cells and FeS2 was prohibited, indicating that exogenous electron shuttles can mediate FeS2 reduction. Transcriptomics experiments revealed upregulation of several cytoplasmic oxidoreductases during growth of M. barkeri on FeS2, which may indicate involvement in provisioning low potential electrons for EET to FeS2. Collectively, the data presented herein indicate that reduction of insoluble FeS2 by M. barkeri occurred via electron transfer from the cell surface to the mineral surface resulting in the generation of soluble HS- and mineral-associated Fe1- x S. Solubilized Fe(II), but not HS-, from mineral-associated Fe1- x S reacts with aqueous HS- yielding aqueous iron sulfur clusters (FeS aq ) that likely serve as the Fe and S source for methanogen growth and activity. FeS aq nucleation and subsequent precipitation on the surface of cells may result in accelerated EET to FeS2, resulting in positive feedback between cell activity and FeS2 reduction.
Collapse
Affiliation(s)
- Rachel L. Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Gargi Kulkarni
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - William W. Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eric E. Roden
- Department of Geosciences, University of Wisconsin, Madison, WI, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
17
|
Li L, Fang Y, Xia Y, Bo C, Fan Y. Monosaccharides driving the formation of conjugated linoleic acid vesicles in near-neutral solutions via weak noncovalent bonding interactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Misuraca L, Caliò A, LoRicco JG, Hoffmann I, Winter R, Demé B, Peters J, Oger PM. Alkanes as Membrane Regulators of the Response of Early Membranes to Extreme Temperatures. Life (Basel) 2022; 12:445. [PMID: 35330196 PMCID: PMC8949167 DOI: 10.3390/life12030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
One of the first steps in the origin of life was the formation of a membrane, a physical boundary that allowed the retention of molecules in concentrated solutions. The proto-membrane was likely formed by self-assembly of simple readily available amphiphiles, such as short-chain fatty acids and alcohols. In the commonly accepted scenario that life originated near hydrothermal systems, how these very simple membrane bilayers could be stable enough in time remains a debated issue. We used various complementary techniques such as dynamic light scattering, small angle neutron scattering, neutron spin-echo spectroscopy, and Fourier-transform infrared spectroscopy to explore the stability of a novel protomembrane system in which the insertion of alkanes in the midplane is proposed to shift membrane stability to higher temperatures, pH, and hydrostatic pressures. We show that, in absence of alkanes, protomembranes transition into lipid droplets when temperature increases; while in presence of alkanes, membranes persist for longer times in a concentration-dependent manner. Proto-membranes containing alkanes are stable at higher temperatures and for longer times, have a higher bending rigidity, and can revert more easily to their initial state upon temperature variations. Hence, the presence of membrane intercalating alkanes could explain how the first membranes could resist the harsh and changing environment of the hydrothermal systems. Furthermore, modulating the quantity of alkanes in the first membranes appears as a possible strategy to adapt the proto-membrane behavior according to temperature fluctuations, and it offers a first glimpse into the evolution of the first membranes.
Collapse
Affiliation(s)
- Loreto Misuraca
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France;
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Antonino Caliò
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| | - Josephine G. LoRicco
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| | - Ingo Hoffmann
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Roland Winter
- Fakultät für Chemie und Chemische Biologie, Physikalische Chemie, Technische Universität Dortmund, 44227 Dortmund, Germany;
| | - Bruno Demé
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Judith Peters
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France;
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
- Institut Universitaire de France, 75005 Paris, France
| | - Philippe M. Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| |
Collapse
|
19
|
Absolute Configuration of Aliphatic Hydrocarbon Enantiomers Identified by Gas Chromatography: Theorized Application for Isoprenoid Alkanes and the Search of Molecular Biosignatures on Mars. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acyclic saturated hydrocarbon enantiomers were resolved by gas chromatography using a β-cyclodextrin-based chiral stationary phase. The stereospecific synthesis of single enantiomers of 4-methyloctane allowed to assign the absolute stereochemical configuration to the resolved enantiomers. Data show that the (S)-4-methyloctane shows higher chromatographic retention as compared to the (R)-4-methyloctane due to stronger van der Waals interactions with the β-cyclodextrin chiral selector. This introductive research presents future prospects for the separation of stereoisomers of larger branched hydrocarbons. We discuss the importance of chiral hydrocarbons, more precisely the stereochemistry of the isoprenoid alkanes pristane and phytane, as potential biosignatures stable on geological timescales. The origins of pristane and phytane in Earth sediments are presented, and we detail the implications for the search of extinct or extant life on Mars. The data presented here will help to systematically investigate the chirality of hydrocarbon enantiomers in biological and nonbiological samples and in samples to be analyzed by the ESA’s ExoMars rover to trace the chiral precursors of life in 2023.
Collapse
|
20
|
Spontaneous assembly of redox-active iron-sulfur clusters at low concentrations of cysteine. Nat Commun 2021; 12:5925. [PMID: 34635654 PMCID: PMC8505563 DOI: 10.1038/s41467-021-26158-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Iron-sulfur (FeS) proteins are ancient and fundamental to life, being involved in electron transfer and CO2 fixation. FeS clusters have structures similar to the unit-cell of FeS minerals such as greigite, found in hydrothermal systems linked with the origin of life. However, the prebiotic pathway from mineral surfaces to biological clusters is unknown. Here we show that FeS clusters form spontaneously through interactions of inorganic Fe2+/Fe3+ and S2- with micromolar concentrations of the amino acid cysteine in water at alkaline pH. Bicarbonate ions stabilize the clusters and even promote cluster formation alone at concentrations >10 mM, probably through salting-out effects. We demonstrate robust, concentration-dependent formation of [4Fe4S], [2Fe2S] and mononuclear iron clusters using UV-Vis spectroscopy, 57Fe-Mössbauer spectroscopy and 1H-NMR. Cyclic voltammetry shows that the clusters are redox-active. Our findings reveal that the structures responsible for biological electron transfer and CO2 reduction could have formed spontaneously from monomers at the origin of life.
Collapse
|
21
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
22
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
23
|
A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat Ecol Evol 2020; 4:534-542. [PMID: 32123322 DOI: 10.1038/s41559-020-1125-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Hydrogen gas, H2, is generated by alkaline hydrothermal vents through an ancient geochemical process called serpentinization, in which water reacts with iron-containing minerals deep within the Earth's crust. H2 is the electron donor for the most ancient and the only energy-releasing route of biological CO2 fixation, the acetyl-CoA pathway. At the origin of metabolism, CO2 fixation by hydrothermal H2 within serpentinizing systems could have preceded and patterned biotic pathways. Here we show that three hydrothermal minerals-greigite (Fe3S4), magnetite (Fe3O4) and awaruite (Ni3Fe)-catalyse the fixation of CO2 with H2 at 100 °C under alkaline aqueous conditions. The product spectrum includes formate (up to 200 mM), acetate (up to 100 µM), pyruvate (up to 10 µM), methanol (up to 100 µM) and methane. The results shed light on both the geochemical origin of microbial metabolism and the nature of abiotic formate and methane synthesis in modern hydrothermal vents.
Collapse
|
24
|
Vasiliadou R, Dimov N, Szita N, Jordan SF, Lane N. Possible mechanisms of CO 2 reduction by H 2 via prebiotic vectorial electrochemistry. Interface Focus 2019; 9:20190073. [PMID: 31641439 PMCID: PMC6802132 DOI: 10.1098/rsfs.2019.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Methanogens are putatively ancestral autotrophs that reduce CO2 with H2 to form biomass using a membrane-bound, proton-motive Fe(Ni)S protein called the energy-converting hydrogenase (Ech). At the origin of life, geologically sustained H+ gradients across inorganic barriers containing Fe(Ni)S minerals could theoretically have driven CO2 reduction by H2 through vectorial chemistry in a similar way to Ech. pH modulation of the redox potentials of H2, CO2 and Fe(Ni)S minerals could in principle enable an otherwise endergonic reaction. Here, we analyse whether vectorial electrochemistry can facilitate the reduction of CO2 by H2 under alkaline hydrothermal conditions using a microfluidic reactor. We present pilot data showing that steep pH gradients of approximately 5 pH units can be sustained over greater than 5 h across Fe(Ni)S barriers, with H+-flux across the barrier about two million-fold faster than OH--flux. This high flux produces a calculated 3-pH unit-gradient (equating to 180 mV) across single approximately 25-nm Fe(Ni)S nanocrystals, which is close to that required to reduce CO2. However, the poor solubility of H2 at atmospheric pressure limits CO2 reduction by H2, explaining why organic synthesis has so far proved elusive in our reactor. Higher H2 concentration will be needed in future to facilitate CO2 reduction through prebiotic vectorial electrochemistry.
Collapse
Affiliation(s)
- Rafaela Vasiliadou
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nikolay Dimov
- School of Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Sean F. Jordan
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
25
|
Cartwright JHE, Russell MJ. The origin of life: the submarine alkaline vent theory at 30. Interface Focus 2019; 9:20190104. [PMCID: PMC6802131 DOI: 10.1098/rsfs.2019.0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 11/12/2023] Open
Affiliation(s)
- Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, 18100 Armilla, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
| | - Michael J. Russell
- NASA Astrobiology Institute, NASA Ames Research Center California, CA, USA
| |
Collapse
|
26
|
Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat Ecol Evol 2019; 3:1705-1714. [PMID: 31686020 DOI: 10.1038/s41559-019-1015-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
Abstract
Vesicles formed from single-chain amphiphiles (SCAs) such as fatty acids probably played an important role in the origin of life. A major criticism of the hypothesis that life arose in an early ocean hydrothermal environment is that hot temperatures, large pH gradients, high salinity and abundant divalent cations should preclude vesicle formation. However, these arguments are based on model vesicles using 1-3 SCAs, even though Fischer-Tropsch-type synthesis under hydrothermal conditions produces a wide array of fatty acids and 1-alkanols, including abundant C10-C15 compounds. Here, we show that mixtures of these C10-C15 SCAs form vesicles in aqueous solutions between pH ~6.5 and >12 at modern seawater concentrations of NaCl, Mg2+ and Ca2+. Adding C10 isoprenoids improves vesicle stability even further. Vesicles form most readily at temperatures of ~70 °C and require salinity and strongly alkaline conditions to self-assemble. Thus, alkaline hydrothermal conditions not only permit protocell formation at the origin of life but actively favour it.
Collapse
|