1
|
Kannan S, Ko PL, Wu HM, Tung YC. Efficient single-cell oxygen consumption rate characterization based on frequency domain fluorescence lifetime imaging microscopy measurement and microfluidic platform. BIOMICROFLUIDICS 2023; 17:054105. [PMID: 37840539 PMCID: PMC10576626 DOI: 10.1063/5.0161752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.
Collapse
Affiliation(s)
| | | | - Hsiao-Mei Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
2
|
Grate JW, Liu B, Kelly RT, Anheier NC, Schmidt TM. Microfluidic Sensors with Impregnated Fluorophores for Simultaneous Imaging of Spatial Structure and Chemical Oxygen Gradients. ACS Sens 2019; 4:317-325. [PMID: 30609370 DOI: 10.1021/acssensors.8b00924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interior surfaces of polystyrene microfluidic structures were impregnated with the oxygen sensing dye Pt(II) tetra(pentafluorophenyl)porphyrin (PtTFPP) using a solvent-induced fluorophore impregnation (SIFI) method. Using this technique, microfluidic oxygen sensors are obtained that enable simultaneous imaging of both chemical oxygen gradients and the physical structure of the microfluidic interior. A gentle method of fluorophore impregnation using acetonitrile solutions of PtTFPP at 50 °C was developed leading to a 10-μm-deep region containing fluorophore. This region is localized at the surface to sense oxygen in the interior fluid during use. Regions of the device that do not contact the interior fluid pathways lack fluorophores and are dark in fluorescent imaging. The technique was demonstrated on straight microchannel and pore network devices, the latter having pillars of 300 μm diameter spaced center to center at 340 μm providing pore throats of 40 μm. Sensing within channels or pores and imaging across the pore network devices were performed using a Lambert LIFA-P frequency domain fluorescence lifetime imaging system on a Leica microscope platform. Calibrations of different devices prepared by the SIFI method were indistinguishable. Gradient imaging showed fluorescent regions corresponding to the fluid pore network, dark pillars, and fluorescent lifetime varying across the gradient, thus providing both physical and chemical imaging. More generally, the SIFI technique can impregnate the interior surfaces of other polystyrene containers, such as cuvettes or cell and tissue culture containers, to enable sensing of interior conditions.
Collapse
Affiliation(s)
- Jay W. Grate
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bingwen Liu
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Ryan T. Kelly
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Norman C. Anheier
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Thomas M. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB, Song G, Houkal J, Su F, Zhang L, Tian Y, Wang H, Bussey K, Johnson RH, Meldrum DR. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep 2017; 7:45399. [PMID: 28349963 PMCID: PMC5368665 DOI: 10.1038/srep45399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.
Collapse
Affiliation(s)
- Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Honor Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Clifford Anderson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jacob Messner
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kristen B. Lee
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Ganquan Song
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jeff Houkal
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Liqiang Zhang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Hong Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kimberly Bussey
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Roger H. Johnson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| |
Collapse
|
4
|
González-Valverde I, Semino C, García-Aznar JM. Phenomenological modelling and simulation of cell clusters in 3D cultures. Comput Biol Med 2016; 77:249-60. [PMID: 27615191 DOI: 10.1016/j.compbiomed.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/04/2023]
Abstract
Cell clustering and aggregation are fundamental processes in the development of several tissues and the progression of many diseases. The formation of these aggregates also has a direct impact on the oxygen concentration in their surroundings due to cellular respiration and poor oxygen diffusion through clusters. In this work, we propose a mathematical model that is capable of simulating cell cluster formation in 3D cultures through combining a particle-based and a finite element approach to recreate complex experimental conditions. Cells are modelled considering cell proliferation, cell death and cell-cell mechanical interactions. Additionally, the oxygen concentration profile is calculated through finite element analysis using a reaction-diffusion model that considers cell oxygen consumption and diffusion through the extracellular matrix and the cell clusters. In our model, the local oxygen concentration in the medium determines both cell proliferation and cell death. Numerical predictions are also compared with experimental data from the literature. The simulation results indicate that our model can predict cell clustering, cluster growth and oxygen distribution in 3D cultures. We conclude that the initial cell distribution, cell death and cell proliferation dynamics determine the size and density of clusters. Moreover, these phenomena are directly affected by the oxygen transport in the 3D culture.
Collapse
Affiliation(s)
- I González-Valverde
- Universidad de Zaragoza, Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Campus Rio Ebro, 50018 Zaragoza, Spain; Instituto Químico Sarrià, Universidad Ramon Llul, Via Augusta, 390, 08017 Barcelona, Spain
| | - C Semino
- Instituto Químico Sarrià, Universidad Ramon Llul, Via Augusta, 390, 08017 Barcelona, Spain
| | - J M García-Aznar
- Universidad de Zaragoza, Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Campus Rio Ebro, 50018 Zaragoza, Spain.
| |
Collapse
|
5
|
Pham TD, Wallace DC, Burke PJ. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration. SENSORS 2016; 16:s16071065. [PMID: 27409618 PMCID: PMC4970112 DOI: 10.3390/s16071065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
Abstract
It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles’ functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our “micro-respirometer” consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.
Collapse
Affiliation(s)
- Ted D Pham
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Peter J Burke
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
- Department of Electrical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Dittrich P, Ibáñez AJ. Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 2015; 36:2196-2206. [PMID: 25929796 DOI: 10.1002/elps.201500045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Abstract
This review covers new innovations and developments in the field of single-cell level analysis of metabolites, involving the role of microfluidic and microarray platforms to manipulate and handle the cells prior their detection. Microfluidic and microarray platforms have shown great promise. The latest developments demonstrate their potential to identify a particular cell or even an ensemble of cells (sharing a common property or phenotype) that co-exist in a much larger cell population. The reason for this is the capability of these platforms to perform several complex analytical processes, such as: cleanup, sorting, derivatization, separation, and detection, with great robustness, speed, and reduced sample/reagent consumption. Here, we present several examples that illustrate the rapid strides that have been made for the routine analysis of metabolites by coupling different microfluidics and microarrays devices to a wide range of analytical detectors (e.g. fluorescent microscopy, electrochemical, and mass spectrometry). Herein, we also present selected examples detailing the use of microfluidics and microarrays in the visualization of the natural occurring cell-to-cell heterogeneity in isogenic populations, in particular during the response to external cues. The possibility to accurate monitor the cell-to-cell heterogeneity based on different levels of key metabolites is of clinical relevance, since cell-to-cell heterogeneity can influence, for example, the outcome of a drug treatment.
Collapse
Affiliation(s)
- Petra Dittrich
- ETH Zurich - Chemie und Angewandte Biowissenschaften, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
| | - Alfredo J Ibáñez
- ETH Zurich - Department of Chemistry and Applied Biosciences, Vladimir-Prelog-weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
7
|
Sun S, Ungerböck B, Mayr T. Imaging of oxygen in microreactors and microfluidic systems. Methods Appl Fluoresc 2015; 3:034002. [DOI: 10.1088/2050-6120/3/3/034002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Vasdekis AE, Stephanopoulos G. Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 2015; 27:115-135. [PMID: 25448400 PMCID: PMC4399830 DOI: 10.1016/j.ymben.2014.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Fitzgerald NS, Burgess LW, Yang JCY, Kim PJ, Jang SH, Jen AKY. Long-pulsed luminescence for the measurement of dissolved oxygen. APPLIED SPECTROSCOPY 2014; 68:315-323. [PMID: 24666948 DOI: 10.1366/13-07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thin-film luminescent sensors were used to measure dissolved oxygen in picoliter volumes for the purpose of monitoring single-cell oxygen consumption rates, and that work served as the motivation for the development of the method described here. A few different platinum porphyrin sensor materials were examined, with all measurements conducted microscopically. By employing convolution theory to understand observed responses, including an unexpected red luminescent emission from an optic, we developed a new, rapid method for the determination of exponential decay lifetime. This new method of long-pulsed luminescence offers substantially improved signal-to-noise ratios for detected signals as long as self-illumination sources are carefully controlled in the experimental set-up.
Collapse
Affiliation(s)
- Noel S Fitzgerald
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Lloyd W Burgess
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Jeffrey C-Y Yang
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Prince J Kim
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Sei-Hum Jang
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Alex K-Y Jen
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| |
Collapse
|
10
|
|
11
|
Grate JW, Kelly RT, Suter J, Anheier NC. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure. LAB ON A CHIP 2012; 12:4796-4801. [PMID: 22995983 DOI: 10.1039/c2lc40776k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water-wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen-sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges of oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain defined spatial structure in the sensor image.
Collapse
Affiliation(s)
- Jay W Grate
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Velasco D, Tumarkin E, Kumacheva E. Microfluidic encapsulation of cells in polymer microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1633-42. [PMID: 22467645 DOI: 10.1002/smll.201102464] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/03/2012] [Indexed: 05/07/2023]
Abstract
In this Concept article, recent advances in microfluidic platforms for the generation of cell-laden hydrogel particles (microgels) are reported. Advances in the continuous microfluidic encapsulation of cells in droplets and microgels are critically reviewed, and currently used methods for the encapsulation of cells in polymer microgels are discussed. An outlook on current applications and future directions in this field of research are also presented. This article will be of interest to chemists, materials scientists, cell biologists, bioengineers, and pharmacologists.
Collapse
Affiliation(s)
- Diego Velasco
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
14
|
Kelbauskas L, Ashili SP, Houkal J, Smith D, Mohammadreza A, Lee KB, Forrester J, Kumar A, Anis YH, Paulson TG, Youngbull CA, Tian Y, Holl MR, Johnson RH, Meldrum DR. Method for physiologic phenotype characterization at the single-cell level in non-interacting and interacting cells. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:037008. [PMID: 22502580 PMCID: PMC3602818 DOI: 10.1117/1.jbo.17.3.037008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.
Collapse
|
15
|
Huang SH, Hsu YH, Wu CW, Wu CJ. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection. BIOMICROFLUIDICS 2012; 6:44118. [PMID: 24348889 PMCID: PMC3555697 DOI: 10.1063/1.4772604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/04/2012] [Indexed: 05/02/2023]
Abstract
A digital light modulation system that utilizes a modified commercial digital micromirror device (DMD) projector, which is equipped with a UV light-emitting diode as a light modulation source, has been developed to spatially direct excited light toward a microwell array device to detect the oxygen consumption rate (OCR) of single cells via phase-based phosphorescence lifetime detection. The microwell array device is composed of a combination of two components: an array of glass microwells containing Pt(II) octaethylporphine (PtOEP) as the oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids set above the microwells to controllably seal the microwells of interest. By controlling the illumination pattern on the DMD, the modulated excitation light can be spatially projected to only excite the sealed microwell for cellular OCR measurements. The OCR of baby hamster kidney-21 fibroblast cells cultivated on the PtOEP layer within a sealed microwell has been successfully measured at 104 ± 2.96 amol s(-1) cell(-1). Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the measured cells. The OCR of the cells exhibited a good linear relationship with the diameter of the microwells, ranging from 400 to 1000 μm and containing approximately 480 to 1200 cells within a microwell. In addition, the OCR variation of single cells in situ infected by Dengue virus with a different multiplicity of infection was also successfully measured in real-time. This proposed platform provides the potential for a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan ; Center for Marine Bioenvironment and Biotechnology (CMBB), National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Yu-Hsuan Hsu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan
| | - Chih-Wei Wu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202-24, Taiwan
| |
Collapse
|
16
|
Pattappa G, Heywood HK, de Bruijn JD, Lee DA. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 2011; 226:2562-70. [PMID: 21792913 DOI: 10.1002/jcp.22605] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human mesenchymal stem cells (MSCs) reside under hypoxic conditions in vivo, between 4% and 7% oxygen. Differentiation of MSCs under hypoxic conditions results in inhibited osteogenesis, while chondrogenesis is unaffected. The reasons for these results may be associated with the inherent metabolism of the cells. The present investigation measured the oxygen consumption, glucose consumption and lactate production of MSCs during proliferation and subsequent differentiation towards the osteogenic and chondrogenic lineages. MSCs expanded under normoxia had an oxygen consumption rate of ∼98 fmol/cell/h, 75% of which was azide-sensitive, suggesting that these cells derive a significant proportion of ATP from oxidative phosphorylation in addition to glycolysis. By contrast, MSCs differentiated towards the chondrogenic lineage using pellet culture had significantly reduced oxygen consumption after 24 h in culture, falling to ∼12 fmol/cell/h after 21 days, indicating a shift towards a predominantly glycolytic metabolism. By comparison, MSCs retained an oxygen consumption rate of ∼98 fmol/cell/h over 21 days of osteogenic culture conditions, indicating that these cells had a more oxidative energy metabolism than the chondrogenic cultures. In conclusion, osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes. The addition of TGF-β to chondrogenic pellet cultures significantly enhanced glycosaminoglycan accumulation, but caused no significant effect on cellular oxygen consumption. Thus, the differences between the energy metabolism of chondrogenic and osteogenic cultures may be associated with the culture conditions and not necessarily their respective differentiation.
Collapse
Affiliation(s)
- Girish Pattappa
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
17
|
Zhang X, Ohta AT, Garmire D. Rapid monodisperse microencapsulation of single cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:6518-21. [PMID: 21096496 DOI: 10.1109/iembs.2010.5627084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A microfluidic device was designed having the ability to continuously produce monodisperse microcapsules with controlled cell loading. The design included stages of inertial focusing, droplet generation, and photopolymerization. Prototype microfluidic devices were fabricated in polydimethylsiloxane (PDMS) to demonstrate each stage using poly(ethylene-glycol)-diacrylate (PEGDA) as the encapsulating material and oil as the droplet-containing medium, creating a water-in-oil emulsion. 10.3-µm-diameter fluorescent polystyrene beads were used as cell simulants. In the first stage, inertial focusing was demonstrated using a straight-channel configuration. In the second stage, droplets with a 60±5µm diameter were generated. In the third stage, successful encapsulation of the beads in hydrogel droplets was verified. This technology can significantly impact a wide research area ranging from cellular therapeutics to single-cell manipulation.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- University of Hawaii at Manoa (UHM), Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
18
|
Baca HK, Carnes EC, Ashley CE, Lopez DM, Douthit C, Karlin S, Brinker CJ. Cell-directed-assembly: directing the formation of nano/bio interfaces and architectures with living cells. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:259-67. [PMID: 20933574 PMCID: PMC3090153 DOI: 10.1016/j.bbagen.2010.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. SCOPE OF REVIEW This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1]. MAJOR CONCLUSIONS We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying-yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification. GENERAL SIGNIFICANCE Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
|
19
|
Lidstrom ME, Konopka MC. The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 2010; 6:705-12. [PMID: 20852608 DOI: 10.1038/nchembio.436] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the ability to analyze individual cells in microbial populations expands, it is becoming apparent that isogenic microbial populations contain substantial cell-to-cell differences in physiological parameters such as growth rate, resistance to stress and regulatory circuit output. Subpopulations exist that are manyfold different in these parameters from the population average, and these differences arise by stochastic processes. Such differences can dramatically affect the response of cells to perturbations, especially stress, which in turn dictates overall population response. Defining the role of cell-to-cell heterogeneity in population behavior is important for understanding population-based research problems, including those involving infecting populations, normal flora and bacterial populations in water and soils. Emerging technological breakthroughs are poised to transform single-cell analysis and are critical for the next phase of insights into physiological heterogeneity in the near future. These include technologies for multiparameter analysis of live cells, with downstream processing and analysis.
Collapse
Affiliation(s)
- Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
20
|
Strovas TJ, McQuaide SC, Anderson JB, Nandakumar V, Kalyuzhnaya MG, Burgess LW, Holl MR, Meldrum DR, Lidstrom ME. Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber. ACTA ACUST UNITED AC 2010; 5:398-408. [PMID: 21546993 DOI: 10.4236/abb.2010.15053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics.
Collapse
Affiliation(s)
- Timothy J Strovas
- Department of Electrical Engineering, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol 2009; 28:55-62. [PMID: 19914725 DOI: 10.1016/j.tibtech.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/12/2022]
Abstract
'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a 'lab-in-a-cell': the use of a single cell as a minimal and highly confined experimental unit, or experimentation in the simple, but still unequalled, platform provided by nature itself. LOC provides the appropriate format and set of tools for LIC experimentation, and we discuss here three types of LIC investigation: the elucidation of signaling pathways; the creation of novel production units; and the use of microfluidics for assisted reproduction techniques.
Collapse
Affiliation(s)
- Séverine Le Gac
- BIOS The Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | |
Collapse
|
22
|
Lin LI, Chao SH, Meldrum DR. Practical, microfabrication-free device for single-cell isolation. PLoS One 2009; 4:e6710. [PMID: 19696926 PMCID: PMC2725298 DOI: 10.1371/journal.pone.0006710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022] Open
Abstract
Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA) as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in ∼3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis.
Collapse
Affiliation(s)
- Liang-I Lin
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Shih-hui Chao
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| | - Deirdre R. Meldrum
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
23
|
Lanigan PMP, Ninkovic T, Chan K, de Mello AJ, Willison KR, Klug DR, Templer RH, Neil MAA, Ces O. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs). LAB ON A CHIP 2009; 9:1096-1101. [PMID: 19350091 DOI: 10.1039/b816857a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.
Collapse
Affiliation(s)
- Peter M P Lanigan
- The Single Cell Proteomics Group, Chemical Biology Centre (CBC), Imperial College London, Exhibition Road, London, UK SW7 2AZ
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
For this special issue of J. R. Soc. Interface we present an overview of the driving forces behind technological advances in the field of single-cell analysis. These range from increasing our understanding of cellular heterogeneity through to the study of rare cells, areas of research that cannot be tackled effectively using current high-throughput population-based averaging techniques.
Collapse
Affiliation(s)
- Richard H Templer
- The Single Cell Proteomics Group, Chemical Biology Centre (CBC), Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|
25
|
Molter TW, McQuaide SC, Holl MR, Meldrum DR, Dragavon JM, Anderson JB, Young AC, Burgess LW, Lidstrom ME. A New Approach for Measuring Single-Cell Oxygen Consumption Rates. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING : A PUBLICATION OF THE IEEE ROBOTICS AND AUTOMATION SOCIETY 2008; 5:32-42. [PMID: 21057593 PMCID: PMC2971563 DOI: 10.1109/tase.2007.909441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel system that has enabled the measurement of single-cell oxygen consumption rates is presented. The experimental apparatus includes a temperature controlled environmental chamber, an array of microwells etched in glass, and a lid actuator used to seal cells in the microwells. Each microwell contains an oxygen sensitive platinum phosphor sensor used to monitor the cellular metabolic rates. Custom automation software controls the digital image data collection for oxygen sensor measurements, which are analyzed using an image-processing program to yield the oxygen concentration within each microwell versus time. Two proof-of-concept experiments produced oxygen consumption rate measurements for A549 human epithelial lung cancer cells of 5.39 and 5.27 fmol/min/cell, closely matching published oxygen consumption rates for bulk A549 populations.
Collapse
Affiliation(s)
- Timothy W Molter
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195-2500 USA ( ; )
| | | | | | | | | | | | | | | | | |
Collapse
|