1
|
Kim J, Zhao Y, Yang S, Feng Z, Wang A, Davalos RV, Jia X. Laser Machined Fiber-based Microprobe: Application in Microscale Electroporation. ADVANCED FIBER MATERIALS 2022; 4:859-872. [PMID: 37799114 PMCID: PMC10552288 DOI: 10.1007/s42765-022-00148-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/01/2022] [Indexed: 10/07/2023]
Abstract
Microscale electroporation devices are mostly restricted to in vitro experiments (i.e., microchannel and microcapillary). Novel fiber-based microprobes can enable in vivo microscale electroporation and arbitrarily select the cell groups of interest to electroporate. We developed a flexible, fiber-based microscale electroporation device through a thermal drawing process and femtosecond laser micromachining techniques. The fiber consists of four copper electrodes (80 μm), one microfluidic channel (30 μm), and has an overall diameter of 400 μm. The dimensions of the exposed electrodes and channel were customizable through a delicate femtosecond laser setup. The feasibility of the fiber probe was validated through numerical simulations and in vitro experiments. Successful reversible and irreversible microscale electroporation was observed in a 3D collagen scaffold (seeded with U251 human glioma cells) using fluorescent staining. The ablation regions were estimated by performing the covariance error ellipse method and compared with the numerical simulations. The computational and experimental results of the working fiber-based microprobe suggest the feasibility of in vivo microscale electroporation in space-sensitive areas, such as the deep brain.
Collapse
Affiliation(s)
- Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061 USA
| | - Shuo Yang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ziang Feng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061 USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
2
|
Sun C, Zhang M, Huang G, Zhang P, Lin R, Wang X, You H. A Microfluidic System of Gene Transfer by Ultrasound. MICROMACHINES 2022; 13:1126. [PMID: 35888943 PMCID: PMC9318161 DOI: 10.3390/mi13071126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 01/29/2023]
Abstract
Ultrasonic gene transfer has advantages beyond other cell transfer techniques because ultrasound does not directly act on cells, but rather pushes the gene fragments around the cells into cells through an acoustic hole effect. Most examples reported were carried out in macro volumes with conventional ultrasonic equipment. In the present study, a MEMS focused ultrasonic transducer based on piezoelectric thin film with flexible substrate was integrated with microchannels to form a microfluidic system of gene transfer. The core part of the system is a bowl-shaped curved piezoelectric film structure that functions to focus ultrasonic waves automatically. Therefore, the low input voltage and power can obtain the sound pressure exceeding the cavitation threshold in the local area of the microchannel in order to reduce the damage to cells. The feasibility of the system is demonstrated by finite element simulation and an integrated system of MEMS ultrasonic devices and microchannels are developed to successfully carry out the ultrasonic gene transfection experiments for HeLa cells. The results show that having more ultrasonic transducers leads a higher transfection rate. The system is of great significance to the development of single-cell biochip platforms for early cancer diagnosis and assessment of cancer treatment.
Collapse
Affiliation(s)
- Cuimin Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
- Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing, Nanning 530004, China
| | - Menghua Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China; (C.S.); (M.Z.)
| | - Guangyong Huang
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Ping Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Ronghui Lin
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Xiangjun Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; (P.Z.); (R.L.); (X.W.)
| | - Hui You
- Department of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| |
Collapse
|
3
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
4
|
Habibi S, Lee HY, Moncada-Hernandez H, Minerick AR. Induction and suppression of cell lysis in an electrokinetic microfluidic system. Electrophoresis 2022; 43:1322-1336. [PMID: 35306692 DOI: 10.1002/elps.202100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 01/26/2023]
Abstract
The ability to strategically induce or suppress cell lysis is critical for many cellular-level diagnostic and therapeutic applications conducted within electrokinetic microfluidic platforms. The chemical and structural integrity of sub-cellular components is important when inducing cell lysis. However, metal electrodes and electrolytes participate in undesirable electrochemical reactions that alter solution composition and potentially damage protein, RNA, and DNA integrity within device microenvironments. For many biomedical applications, cell viability must be maintained even when device-imposed cell-stressing stimuli (e.g., electrochemical reaction byproducts) are present. In this work, we explored a novel and tunable method to accurately induce or suppress device-imposed artifacts on human red blood cell (RBC) lysis in non-uniform AC electric fields. For precise tunability, a dielectric hafnium oxide (HfO2 ) layer was used to prevent electron transfer between the electrodes and the electric double layer and thus reduce harmful electrochemical reactions. Additionally, a low concentration of Triton X-100 surfactant was explored as a tool to stabilize cell membrane integrity. The extent of hemolysis was studied as a function of time, electrode configuration (T-shaped and star-shaped), cell position, applied non-uniform AC electric field, with uncoated and HfO2 coated electrodes (50 nm), and absence and presence of Triton X-100 (70 µM). Tangible outcomes include a parametric analysis relying upon literature and this work to design, tune, and operate electrokinetic microdevices to intentionally induce or suppress cellular lysis without altering intracellular components. Implications are that devices can be engineered to leverage or minimize device-imposed biological artefacts extending the versatility and utility of electrokinetic diagnostics.
Collapse
Affiliation(s)
- Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Hwi Yong Lee
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | | | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
5
|
Review of Microfluidic Methods for Cellular Lysis. MICROMACHINES 2021; 12:mi12050498. [PMID: 33925101 PMCID: PMC8145176 DOI: 10.3390/mi12050498] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Cell lysis is a process in which the outer cell membrane is broken to release intracellular constituents in a way that important information about the DNA or RNA of an organism can be obtained. This article is a thorough review of reported methods for the achievement of effective cellular boundaries disintegration, together with their technological peculiarities and instrumental requirements. The different approaches are summarized in six categories: chemical, mechanical, electrical methods, thermal, laser, and other lysis methods. Based on the results derived from each of the investigated reports, we outline the advantages and disadvantages of those techniques. Although the choice of a suitable method is highly dependent on the particular requirements of the specific scientific problem, we conclude with a concise table where the benefits of every approach are compared, based on criteria such as cost, efficiency, and difficulty.
Collapse
|
6
|
Pudasaini S, Perera ATK, Ng SH, Yang C. Bacterial inactivation via microfluidic electroporation device with insulating micropillars. Electrophoresis 2021; 42:1093-1101. [PMID: 33665842 DOI: 10.1002/elps.202000326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Electroporation is a promising method to inactivate cells and it has wide applications in medical science, biology and environmental health. Here, we investigate the bacteria inactivation performance of two different microfluidic electroporation devices with rhombus and circular micropillars used for generating locally enhanced electric field strength. Experiments are carried out to characterize the inactivation performance (i.e., the log removal efficiency) of two types of bacteria: Escherichia coli (E. coli, gram-negative) and Enterococcus faecalis (E. faecalis, gram-positive) in these two microfluidic devices. We find that under the same applied electric field, the device with rhombus micropillars performs better than the device with circular micropillars for both E. coli and E. faecalis. Numerical simulations show that due to the corner-induced singularity effect, the maximum electric field enhancement is higher in the device with rhombus micropillars than that in the device with circular micropillars. We also study the effects of DC and AC electric fields and flowrate. Our experiments demonstrate that the use of the DC field achieves higher log removal efficiencies than the use of AC field.
Collapse
Affiliation(s)
- Sanam Pudasaini
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - A T K Perera
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Sum Huan Ng
- Singapore Institute of Manufacturing Technology, Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
Wang S, Zhu Y, Yang Y, Li J, Hoffmann MR. Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples. Electrochim Acta 2020; 338:135864. [PMID: 32255836 PMCID: PMC7063685 DOI: 10.1016/j.electacta.2020.135864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Cell lysis is an essential step for the nucleic acid-based surveillance of bacteriological water quality. Recently, electrochemical cell lysis (ECL), which is based on the local generation of hydroxide at a cathode surface, has been reported to be a rapid and reagent-free method for cell lysis. Herein, we describe the development of a milliliter-output ECL device and its performance characterization with respect to the DNA extraction efficiency for gram-negative bacteria (Escherichia coli and Salmonella Typhi) and gram-positive bacteria (Enterococcus durans and Bacillus subtilis). Both gram-negative and gram-positive bacteria were successfully lysed within a short but optimal duration of 1 min at a low voltage of ∼5 V. The ECL method described herein, is demonstrated to be applicable to various environmental water sample types, including pond water, treated wastewater, and untreated wastewater with DNA extraction efficiencies similar to a commercial DNA extraction kit. The ECL system outperformed homogeneous chemical lysis in terms of reaction times and DNA extraction efficiencies, due in part to the high pH generated at the cathode surface, which was predicted by simulations of the hydroxide transport in the cathodic chamber. Our work indicates that the ECL method for DNA extraction is rapid, simplified and low-cost with no need for complex instrumentation. It has demonstrable potential as a prelude to PCR analyses of waterborne bacteria in the field, especially for the gram-negative ones.
Collapse
Affiliation(s)
| | | | | | | | - Michael R. Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Wu Y, Fu A, Yossifon G. Active particles as mobile microelectrodes for selective bacteria electroporation and transport. SCIENCE ADVANCES 2020; 6:eaay4412. [PMID: 32064350 PMCID: PMC6989140 DOI: 10.1126/sciadv.aay4412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 05/16/2023]
Abstract
Self-propelling micromotors are emerging as a promising micro- and nanoscale tool for single-cell analysis. We have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallodielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, we successfully demonstrated that the application of an external electric field can singularly trap and transport bacteria and can selectively electroporate the trapped bacteria. Selective electroporation, enabled by the local intensification of the electric field induced by the JP, was obtained under both continuous alternating current and pulsed signal conditions. This approach is generic and applicable to bacteria and JP, as well as a wide range of cell types and micromotor designs. Hence, it constitutes an important and novel experimental tool for single-cell analysis and targeted delivery.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa 3109602, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
9
|
Hemmig E, Temiz Y, Gökçe O, Lovchik RD, Delamarche E. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers. Anal Chem 2019; 92:940-946. [DOI: 10.1021/acs.analchem.9b03792] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Elisa Hemmig
- IBM Research − Zurich, 8803 Rüschlikon, Switzerland
| | - Yuksel Temiz
- IBM Research − Zurich, 8803 Rüschlikon, Switzerland
| | - Onur Gökçe
- IBM Research − Zurich, 8803 Rüschlikon, Switzerland
| | | | | |
Collapse
|
10
|
Pudasaini S, Perera ATK, Das D, Ng SH, Yang C. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones. Electrophoresis 2019; 40:2522-2529. [DOI: 10.1002/elps.201900150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sanam Pudasaini
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| | - A T K Perera
- Interdisciplinary Graduate SchoolNanyang Technological University Singapore
| | - Dhiman Das
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Sum Huan Ng
- Singapore Institute of Manufacturing Technology (SIMTech) Singapore
| | - Chun Yang
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| |
Collapse
|
11
|
Azevedo R, Soares J, Peixoto A, Cotton S, Lima L, Santos LL, Ferreira JA. Circulating tumor cells in bladder cancer: Emerging technologies and clinical implications foreseeing precision oncology. Urol Oncol 2018. [PMID: 29530466 DOI: 10.1016/j.urolonc.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Circulating tumor cells (CTC) in peripheral blood of cancer patients provide an opportunity for real-time liquid biopsies capable of aiding early intervention, therapeutic decision, response to therapy, and prognostication. Nevertheless, the rare and potentially heterogeneous molecular nature of CTC has delayed the standardization of robust high-throughput capture/enrichment and characterization technologies. OBJECTIVE This review aims to systematize emerging solutions for CTC analysis in bladder cancer (BC), their opportunities and limitations, while providing key insights on specific technologic aspects that may ultimately guide molecular studies and clinical implementation. EVIDENCE ACQUISITION State-of-the-art screening for CTC technologies and clinical applications in BC was conducted in MEDLINE through PubMed. EVIDENCE SYNTHESIS From 200 records identified by the search query, 25 original studies and 1 meta-analysis met the full criteria for selection. A significant myriad of CTC technological platforms, including immunoaffinity, biophysical, and direct CTC detection by molecular methods have been presented. Despite their preliminary nature and irrespective of the applied technology, most studies concluded that CTC counts in peripheral blood correlated with metastasis. Associations with advanced tumor stage and grade and worst prognosis have been suggested. However, the unspecific nature, low sensitivity, and the lack of standardization of current methods still constitutes a major drawback. Moreover, few comprehensive molecular studies have been conducted on these poorly known class of malignant cells. CONCLUSION The current rationale supports the importance of moving the CTC field beyond proof of concept studies toward molecular-based solutions capable of improving disease management. The road has been paved for identification of highly specific CTC biomarkers and novel targeted approaches, foreseeing successful clinical applications.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Health School of University Fernando Pessoa, Praça de 9 de Abril 349, 4249-004 Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute of Porto (IPO-Porto), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-013 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Centre (P.ccc), R. Dr. António Bernardino de Almeida 62, 4200-162 Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715 Braga, Portugal.
| |
Collapse
|
12
|
Charmet J, Arosio P, Knowles TP. Microfluidics for Protein Biophysics. J Mol Biol 2018; 430:565-580. [DOI: 10.1016/j.jmb.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
13
|
Lyu C, Wang J, Powell-Palm M, Rubinsky B. Simultaneous electroporation and dielectrophoresis in non-electrolytic micro/nano-electroporation. Sci Rep 2018; 8:2481. [PMID: 29410434 PMCID: PMC5802840 DOI: 10.1038/s41598-018-20535-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
It was recently shown that electrolysis may play a substantial detrimental role in microfluidic electroporation. To overcome this problem, we have developed a non-electrolytic micro/nano electroporation (NEME) electrode surface, in which the metal electrodes are coated with a dielectric. A COMSOL based numerical scheme was used to simultaneously calculate the excitation frequency and dielectric material properties dependent electric field delivered across the dielectric, fluid flow, electroporation field and Clausius-Mossotti factor for yeast and E. coli cells flowing in a channel flow across a NEME surface. A two-layer model for yeast and a three-layer model for E. coli was used. The numerical analysis shows that in NEME electroporation, the electric fields could induce electroporation and dielectrophoresis simultaneously. The simultaneous occurrence of electroporation and dielectrophoresis gives rise to several interesting phenomena. For example, we found that a certain frequency exists for which an intact yeast cell is drawn to the NEME electrode, and once electroporated, the yeast cell is pushed back in the bulk fluid. The results suggest that developing electroporation technologies that combine, simultaneously, electroporation and dielectrophoresis could lead to new applications. Obviously, this is an early stage numerical study and much more theoretical and experimental research is needed.
Collapse
Affiliation(s)
- Chenang Lyu
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou, 310058, China.
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA.
| | - Jianping Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou, 310058, China
| | - Matthew Powell-Palm
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA
| | - Boris Rubinsky
- University of California Berkeley, Department of Mechanical Engineering, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
|
15
|
Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR. A Review on Macroscale and Microscale Cell Lysis Methods. MICROMACHINES 2017. [PMCID: PMC6190294 DOI: 10.3390/mi8030083] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The lysis of cells in order to extract the nucleic acids or proteins inside it is a crucial unit operation in biomolecular analysis. This paper presents a critical evaluation of the various methods that are available both in the macro and micro scale for cell lysis. Various types of cells, the structure of their membranes are discussed initially. Then, various methods that are currently used to lyse cells in the macroscale are discussed and compared. Subsequently, popular methods for micro scale cell lysis and different microfluidic devices used are detailed with their advantages and disadvantages. Finally, a comparison of different techniques used in microfluidics platform has been presented which will be helpful to select method for a particular application.
Collapse
|
16
|
Werner M, Palankar R, Arm L, Hovius R, Vogel H. Microfluidic Single-Cell Analysis with Affinity Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2607-2613. [PMID: 25641862 DOI: 10.1002/smll.201402650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/18/2014] [Indexed: 06/04/2023]
Abstract
A micrometer-sized affinity bead (red) is (i) taken up into a cell by phagocytosis, (ii) photochemically released from phagosomes, (iii) optically trapped by the cell, and (iv) isolated by cell lysis for subsequent analysis of captured intracellular analyte (green).
Collapse
Affiliation(s)
- Michael Werner
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Raghavendra Palankar
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Loïc Arm
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ruud Hovius
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Movahed S, Bazargan-Lari Y, Daneshmad F, Mashhoodi M. Numerical modeling of bi-polar (AC) pulse electroporation of single cell in microchannel to create nanopores on its membrane. J Membr Biol 2014; 247:1229-37. [PMID: 25283613 DOI: 10.1007/s00232-014-9736-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
AC electroporation of a single cell in a microchannel was numerically studied. A 15 μm diameter cell was considered in a microchannel 25 μm in height and the influences of AC electric pulse on its membrane were numerically investigated. The cell was assumed to be suspended between two electroporative electrodes embedded on the walls of a microchannel. An amplitude and a time span of applied electric pulse were chosen to be 80 kV/m and 10 μs, respectively. For different frequency values (50, 100, 200, and 500 kHz), simulations were performed to show how the cell membrane was electroporated and the creation of nanopores. Obtained numerical results show that the most and the largest nanopores are created around poles of cell (nearest points of cell membrane to the electrodes). The numerical simulations also demonstrate that increased frequency will slightly decrease electroporated area of the cell membrane; additionally, growth of the created nanopores will be stabilized. It has also been proven that size and number of the created nanopores will be decreased by moving from the poles to the equator of the cell. There is almost no nanopore created in the vicinity of the equator. Frequency affects the rate of generation of nanopores. In case of AC electroporation, creation of nanopores has two phases that periodically repeat over time. In each period, the pore density sharply increases and then becomes constant. Enhancement of the frequency will result in decrease in time span of the periods. In each period, size of the created nanopores sharply increases and then slightly decreases. However, until the AC electric pulse is present, overall trends of creation and development of nanopores will be ascending. Variation of the size and number of created nanopores can be explained by considering time variation of transmembrane potential (difference of electric potential on two sides of cell membrane) which is clear in the results presented in this study.
Collapse
Affiliation(s)
- Saeid Movahed
- School of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran,
| | | | | | | |
Collapse
|
18
|
Garbis SD, Townsend PA. Proteomics of human prostate cancer biospecimens: the global, systems-wide perspective for Protein markers with potential clinical utility. Expert Rev Proteomics 2014; 10:337-54. [DOI: 10.1586/14789450.2013.827408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosens Bioelectron 2013; 54:462-7. [PMID: 24315878 DOI: 10.1016/j.bios.2013.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/27/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022]
Abstract
We present a portable lab-on-chip device for high-throughput trapping and lysis of single cells with in-situ impedance monitoring in an all-electronic approach. The lab-on-chip device consists of microwell arrays between transparent conducting electrodes within a microfluidic channel to deliver and extract cells using alternating current (AC) dielectrophoresis. Cells are lysed with high efficiency using direct current (DC) electric fields between the electrodes. Results are presented for trapping and lysis of human red blood cells. Impedance spectroscopy is used to estimate the percentage of filled wells with cells and to monitor lysis. The results show impedance between electrodes decreases with increase in the percentage of filled wells with cells and drops to a minimum after lysis. Impedance monitoring provides a reasonably accurate measurement of cell trapping and lysis. Utilizing an all-electronic approach eliminates the need for bulky optical components and cameras for monitoring.
Collapse
|
20
|
Abstract
Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. Fax: +1-540-231-5022; Tel: +1-540-231-8681
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| |
Collapse
|
21
|
|
22
|
Hitzbleck M, Delamarche E. Reagents in microfluidics: an 'in' and 'out' challenge. Chem Soc Rev 2013; 42:8494-516. [PMID: 23925517 DOI: 10.1039/c3cs60118h] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microfluidic devices are excellent at downscaling chemical and biochemical reactions and thereby can make reactions faster, better and more efficient. It is therefore understandable that we are seeing these devices being developed and used for many applications and research areas. However, microfluidic devices are more complex than test tubes or microtitre plates and the integration of reagents into them is a real challenge. This review looks at state-of-the-art methods and strategies for integrating various classes of reagents inside microfluidics and similarly surveys how reagents can be released inside microfluidics. The number of methods used for integrating and releasing reagents is surprisingly large and involves reagents in dry and liquid forms, directly-integrated reagents or reagents linked to carriers, as well as active, passive and hybrid release methods. We also made a brief excursion into the field of drug release and delivery. With this review, we hope to provide a large number of examples of integrating and releasing reagents that can be used by developers and users of microfluidics for their specific needs.
Collapse
|
23
|
|
24
|
Galla L, Greif D, Regtmeier J, Anselmetti D. Microfluidic carbon-blackened polydimethylsiloxane device with reduced ultra violet background fluorescence for simultaneous two-color ultra violet/visible-laser induced fluorescence detection in single cell analysis. BIOMICROFLUIDICS 2012; 6:14104-1410410. [PMID: 22662091 PMCID: PMC3365343 DOI: 10.1063/1.3675608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/16/2011] [Indexed: 05/10/2023]
Abstract
In single cell analysis (SCA), individual cell-specific properties and inhomogeneous cellular responses are being investigated that is not subjected to ensemble-averaging or heterogeneous cell population effects. For proteomic single cell analysis, ultra-sensitive and reproducible separation and detection techniques are essential. Microfluidic devices combined with UV laser induced fluorescence (UV-LIF) detection have been proposed to fulfill these requirements. Here, we report on a novel microfluidic chip fabrication procedure that combines straightforward production of polydimethylsiloxane (PDMS) chips with a reduced UV fluorescence background (83%-reduction) by using PDMS droplets with carbon black pigments (CBP) as additives. The CBP-droplet is placed at the point of detection, whereas the rest of the chip remains transparent, ensuring full optical control of the chip. We systematically studied the relation of the UV background fluorescence at CBP to PDMS ratios (varying from 1:10 to 1:1000) for different UV laser powers. Using a CBP/PDMS ratio of 1:20, detection of a 100 nM tryptophan solution (S/N = 3.5) was possible, providing a theoretical limit of detection of 86 nM (with S/N = 3). Via simultaneous two color UV/VIS-LIF detection, we were able to demonstrate the electrophoretic separation of an analyte mixture of 500 nM tryptophan (UV) and 5 nM fluorescein (VIS) within 30 s. As an application, two color LIF detection was also used for the electrophoretic separation of the protein content from a GFP-labeled single Spodoptera frugiperda (Sf9) insect cell. Thereby just one single peak could be measured in the visible spectral range that could be correlated with one single peak among others in the ultraviolet spectra. This indicates an identification of the labeled protein γ-PKC and envisions a further feasible identification of more than one single protein in the future.
Collapse
Affiliation(s)
- Lukas Galla
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
25
|
Insulator-based dielectrophoretic single particle and single cancer cell trapping. Electrophoresis 2011; 32:2550-8. [DOI: 10.1002/elps.201100066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/02/2023]
|
26
|
Martino C, Zagnoni M, Sandison ME, Chanasakulniyom M, Pitt AR, Cooper JM. Intracellular protein determination using droplet-based immunoassays. Anal Chem 2011; 83:5361-8. [PMID: 21574549 DOI: 10.1021/ac200876q] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells.
Collapse
Affiliation(s)
- Chiara Martino
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Tian R, Hoa XD, Lambert JP, Pezacki JP, Veres T, Figeys D. Development of a multiplexed microfluidic proteomic reactor and its application for studying protein-protein interactions. Anal Chem 2011; 83:4095-102. [PMID: 21520965 DOI: 10.1021/ac200194d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, National Research Council, Boucherville, QC, Canada J4B 6Y4
| | | | | | | | | | | |
Collapse
|
28
|
Theilacker N, Roller EE, Barbee KD, Franzreb M, Huang X. Multiplexed protein analysis using encoded antibody-conjugated microbeads. J R Soc Interface 2011; 8:1104-13. [PMID: 21247950 DOI: 10.1098/rsif.2010.0594] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a method for multiplexed analysis of proteins using fluorescently encoded microbeads. The sensitivity of our method is comparable to the sensitivity obtained by enzyme-linked immunosorbent assay while only 5 µl sample volumes are needed. Streptavidin-coated, 1 µm beads are encoded with a combination of fluorophores at different intensity levels. As a proof of concept, we demonstrate that 27 microbead populations can be readily encoded by affinity conjugation using three intensity levels for each of three different biotinylated fluorescent dyes. Four populations of encoded microbeads are further conjugated with biotinylated capture antibodies and then combined and immobilized in a microfluidic flow cell for multiplexed protein analysis. Using four uniquely encoded microbead populations, we show that a cancer biomarker and three cytokine proteins can be analysed quantitatively in the picogram per millilitre range by fluorescence microscopy in a single assay. Our method will allow for the fabrication of high density, bead-based antibody arrays for multiplexed protein analysis using integrated microfluidic devices and automated sample processing.
Collapse
Affiliation(s)
- Nora Theilacker
- Institut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | |
Collapse
|
29
|
Bahi MM, Tsaloglou MN, Mowlem M, Morgan H. Electroporation and lysis of marine microalga Karenia brevis for RNA extraction and amplification. J R Soc Interface 2010; 8:601-8. [PMID: 21084344 DOI: 10.1098/rsif.2010.0445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here a simple device for dielectrophoretic concentration of marine microalga Karenia brevis non-motile cells, followed by electric field-mediated lysis for RNA extraction. The lysate was purified using magnetic beads and pure RNA extracted. RNA quality was assessed off-chip by nucleic acid sequence-based amplification and the optimum conditions for lysis were determined. This procedure will form part of an integrated microfluidic system that is being developed with sub-systems for performing cell concentration and lysis, RNA extraction/purification and real-time quantitative RNA detection. The integrated system and its components could be used for a large range of applications including in situ harmful algal bloom detection, transcriptomics and point-of-care diagnostics.
Collapse
Affiliation(s)
- M M Bahi
- Sensors Development Group, National Oceanography Centre, Southampton, UK.
| | | | | | | |
Collapse
|
30
|
Hsiao AP, Barbee KD, Huang X. Microfluidic Device for Capture and Isolation of Single Cells. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2010; 7759. [PMID: 21614137 DOI: 10.1117/12.861563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We describe a microfluidic device capable of trapping, isolating, and lysing individual cells in parallel using dielectrophoretic forces and a system of PDMS channels and valves. The device consists of a glass substrate patterned with electrodes and two PDMS layers comprising of the microfluidic channels and valve control channels. Individual cells are captured by positive dielectrophoresis using the microfabricated electrode pairs. The cells are then isolated into nanoliter compartments using pneumatically actuated PDMS valves. Following isolation, the cells are lysed open by applying an electric field using the same electrode pairs. With the ability to capture and compartmentalize single cells our device may be combined with analytical methods for in situ molecular analysis of cellular components from single cells in a highly parallel manner.
Collapse
Affiliation(s)
- Alexander P Hsiao
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412
| | | | | |
Collapse
|
31
|
Gabriele S, Versaevel M, Preira P, Théodoly O. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays. LAB ON A CHIP 2010; 10:1459-67. [PMID: 20480111 DOI: 10.1039/c002257h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article describes a simple and low-tech microfluidic method for single-cell experimentation, which permits cell selection without stress, cell manipulation with fine control, and passive self-exclusion of all undesired super-micronic particles. The method requires only conventional soft lithography microfabrication techniques and is applicable to any microfluidic single-cell circuitry. The principle relies on a bypass plugged in parallel with a single-cell assay device and collecting 97% of the flow rate. Cell selection into the single cell device is performed by moving the cell of interest back and forth in the vicinity of the junction between the bypass and the analysis circuitry. Cell navigation is finely controlled by hydrostatic pressure via centimetre-scale actuation of external macroscopic reservoirs connected to the device. We provide successful examples of biomechanical and biochemical assays on living human leukocytes passing through 4 mum wide capillaries. The blebbing process dynamics are monitored by conventional 24 fps videomicroscopy and subcellular cytoskeleton organization is imaged by on-chip immunostaining.
Collapse
Affiliation(s)
- Sylvain Gabriele
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, Centre d'Innovation et de Recherche en Matériaux (CIRMAP), 20, Place du Parc, B-7000 Mons, Belgique
| | | | | | | |
Collapse
|
32
|
Wang M, Orwar O, Olofsson J, Weber SG. Single-cell electroporation. Anal Bioanal Chem 2010; 397:3235-48. [PMID: 20496058 DOI: 10.1007/s00216-010-3744-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/24/2022]
Abstract
Single-cell electroporation (SCEP) is a relatively new technique that has emerged in the last decade or so for single-cell studies. When a large enough electric field is applied to a single cell, transient nano-pores form in the cell membrane allowing molecules to be transported into and out of the cell. Unlike bulk electroporation, in which a homogenous electric field is applied to a suspension of cells, in SCEP an electric field is created locally near a single cell. Today, single-cell-level studies are at the frontier of biochemical research, and SCEP is a promising tool in such studies. In this review, we discuss pore formation based on theoretical and experimental approaches. Current SCEP techniques using microelectrodes, micropipettes, electrolyte-filled capillaries, and microfabricated devices are all thoroughly discussed for adherent and suspended cells. SCEP has been applied in in-vivo and in-vitro studies for delivery of cell-impermeant molecules such as drugs, DNA, and siRNA, and for morphological observations.
Collapse
Affiliation(s)
- Manyan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
33
|
Lanigan PMP, Ninkovic T, Chan K, de Mello AJ, Willison KR, Klug DR, Templer RH, Neil MAA, Ces O. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs). LAB ON A CHIP 2009; 9:1096-1101. [PMID: 19350091 DOI: 10.1039/b816857a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.
Collapse
Affiliation(s)
- Peter M P Lanigan
- The Single Cell Proteomics Group, Chemical Biology Centre (CBC), Imperial College London, Exhibition Road, London, UK SW7 2AZ
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee WG, Demirci U, Khademhosseini A. Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol (Camb) 2009; 1:242-51. [PMID: 20023735 DOI: 10.1039/b819201d] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.
Collapse
Affiliation(s)
- Won Gu Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
35
|
Abstract
For this special issue of J. R. Soc. Interface we present an overview of the driving forces behind technological advances in the field of single-cell analysis. These range from increasing our understanding of cellular heterogeneity through to the study of rare cells, areas of research that cannot be tackled effectively using current high-throughput population-based averaging techniques.
Collapse
Affiliation(s)
- Richard H Templer
- The Single Cell Proteomics Group, Chemical Biology Centre (CBC), Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | |
Collapse
|