1
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Pei Z, Chang L, Bai F, Harrison RJ. Micromagnetic calculation of the magnetite magnetosomal morphology control of magnetism in magnetotactic bacteria. J R Soc Interface 2023; 20:20230297. [PMID: 37751873 PMCID: PMC10522410 DOI: 10.1098/rsif.2023.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Magnetotactic bacteria (MTB), which precisely bio-synthesize magnetosomes of magnetite or greigite nanoparticles, have attracted broad interdisciplinary interests in microbiology, magnetic materials, biotechnology and geobiology. Previous experimental and numerical investigations demonstrate a close link among MTB species, magnetosome crystal habits, and magnetic characteristics, but quantitative constraints are currently lacking. In this study, we build three-dimensional finite-element micromagnetic models of intact magnetosome chains in common MTB species and corresponding collapsed chains. Realistic numerical microstructures were constructed for the three typical biogenic magnetite crystal forms-cuboctahedron, prism and bullet. Our calculations reveal characteristic magnetic properties associated with specific magnetite crystal forms and MTB species. Cuboctahedron and bullet crystals show distinct low coercivity (less than 30 mT) and high coercivity (greater than 50 mT) clusters, respectively. Prismatic crystals have a broad range of hysteresis parameters that are strongly controlled by chain structure. This magnetic property clustering, combined with magnetic unmixing methods and electron microscopy observations, can fingerprint biogenic magnetite components in geological and environmental samples. The passive magnetic orientation efficiency of various magnetosome chains was calculated. Some bullet-shaped magnetosome chains have higher magnetic moments than those with cuboctahedron and prism magnetosomes, which may enable larger MTB cells to overcome viscous resistance for efficient magnetic navigation.
Collapse
Affiliation(s)
- Zhaowen Pei
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Liao Chang
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Fan Bai
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Richard J. Harrison
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| |
Collapse
|
3
|
Study of Cytotoxicity and Internalization of Redox-Responsive Iron Oxide Nanoparticles on PC-3 and 4T1 Cancer Cell Lines. Pharmaceutics 2022; 15:pharmaceutics15010127. [PMID: 36678755 PMCID: PMC9864410 DOI: 10.3390/pharmaceutics15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Redox-responsive and magnetic nanomaterials are widely used in tumor treatment separately, and while the application of their combined functionalities is perspective, exactly how such synergistic effects can be implemented is still unclear. This report investigates the internalization dynamics of magnetic redox-responsive nanoparticles (MNP-SS) and their cytotoxicity toward PC-3 and 4T1 cell lines. It is shown that MNP-SS synthesized by covalent grafting of polyethylene glycol (PEG) on the magnetic nanoparticle (MNP) surface via SS-bonds lose their colloidal stability and aggregate fully in a solution containing DTT, and partially in conditioned media, whereas the PEGylated MNP (MNP-PEG) without S-S linker control remains stable under the same conditions. Internalized MNP-SS lose the PEG shell more quickly, causing enhanced magnetic core dissolution and thus increased toxicity. This was confirmed by fluorescence microscopy using MNP-SS dual-labeled by Cy3 via labile disulfide, and Cy5 via a rigid linker. The dyes demonstrated a significant difference in fluorescence dynamics and intensity. Additionally, MNP-SS demonstrate quicker cellular uptake compared to MNP-PEG, as confirmed by TEM analysis. The combination of disulfide bonds, leading to faster dissolution of the iron oxide core, and the high-oxidative potential Fe3+ ions can synergically enhance oxidative stress in comparison with more stable coating without SS-bonds in the case of MNP-PEG. It decreases the cancer cell viability, especially for the 4T1, which is known for being sensitive to ferroptosis-triggering factors. In this work, we have shown the effect of redox-responsive grafting of the MNP surface as a key factor affecting MNP-internalization rate and dissolution with the release of iron ions inside cancer cells. This kind of synergistic effect is described for the first time and can be used not only in combination with drug delivery, but also in treatment of tumors responsive to ferroptosis.
Collapse
|
4
|
Chen S, Yu M, Zhang W, He K, Pan H, Cui K, Zhao Y, Zhang XH, Xiao T, Zhang W, Wu LF. Metagenomic and Microscopic Analysis of Magnetotactic Bacteria in Tangyin Hydrothermal Field of Okinawa Trough. Front Microbiol 2022; 13:887136. [PMID: 35756025 PMCID: PMC9226615 DOI: 10.3389/fmicb.2022.887136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats, ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields are rich in metal sulfides, which are suitable areas for the growth of MTB. However, MTB in hydrothermal fields have never been reported. Here, the presence of MTB in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing 16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs, affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of magnetofossil were identified by transmission electron microscopy: elongated-prismatic, bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4. A total of 121 sequences were found to be homologous to the published MTB magnetosome-function-related genes, and relevant domains were identified. Further analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.
Collapse
Affiliation(s)
- Si Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kuang He
- Key Lab of Submarine Geosciences and Prospecting Techniques, Frontiers Science Center for Deep Ocean Multispheres and Earth System, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China.,Aix Marseille University, CNRS, LCB, Marseille, France
| |
Collapse
|
5
|
Makela AV, Schott MA, Madsen CS, Greeson EM, Contag CH. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. NANO LETTERS 2022; 22:4630-4639. [PMID: 35686930 DOI: 10.1021/acs.nanolett.1c05042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as imaging agents to differentiate between normal and diseased tissue or track cell movement. Magnetic particle imaging (MPI) detects the magnetic properties of SPIONs, providing quantitative and sensitive image data. MPI performance depends on the size, structure, and composition of nanoparticles. Magnetotactic bacteria produce magnetosomes with properties similar to those of synthetic nanoparticles, and these can be modified by mutating biosynthetic genes. The use of Magnetospirillum gryphiswaldense, MSR-1 with a mamJ deletion, containing clustered magnetosomes instead of typical linear chains, resulted in improved MPI signal and resolution. Bioluminescent MSR-1 with the mamJ deletion were administered into tumor-bearing and healthy mice. In vivo bioluminescence imaging revealed the viability of MSR-1, and MPI detected signals in livers and tumors. The development of living contrast agents offers opportunities for imaging and therapy with multimodality imaging guiding development of these agents by tracking the location, viability, and resulting biological effects.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
| | - Melissa A Schott
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
| | - Cody S Madsen
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Emily M Greeson
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
A Novel Magnetotactic Alphaproteobacterium Producing Intracellular Magnetite and Calcium-Bearing Minerals. Appl Environ Microbiol 2021; 87:e0155621. [PMID: 34756060 DOI: 10.1128/aem.01556-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that form intracellular magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals with tailored sizes, often in chain configurations. Such magnetic particles are each surrounded by a lipid bilayer membrane, called a magnetosome, and provide a model system for studying the formation and function of specialized internal structures in prokaryotes. Using fluorescence-coupled scanning electron microscopy, we identified a novel magnetotactic spirillum, XQGS-1, from freshwater Xingqinggong Lake, Xi'an City, Shaanxi Province, China. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain XQGS-1 represents a novel genus of the Alphaproteobacteria class in the Proteobacteria phylum. Transmission electron microscopy analyses reveal that strain XQGS-1 forms on average 17 ± 3 magnetite magnetosome particles with an ideal truncated octahedral morphology, with an average length and width of 88.3 ± 11.7 nm and 83.3 ± 11.0 nm, respectively. They are tightly organized into a single chain along the cell long axis close to the concave side of the cell. Intrachain magnetic interactions likely result in these large equidimensional magnetite crystals behaving as magnetically stable single-domain particles that enable bacterial magnetotaxis. Combined structural and chemical analyses demonstrate that XQGS-1 cells also biomineralize intracellular amorphous calcium phosphate (2 to 3 granules per cell; 90.5- ± 19.3-nm average size) and weakly crystalline calcium carbonate (2 to 3 granules per cell; 100.4- ± 21.4-nm average size) in addition to magnetite. Our results expand the taxonomic diversity of MTB and provide evidence for intracellular calcium phosphate biomineralization in MTB. IMPORTANCE Biomineralization is a widespread process in eukaryotes that form shells, teeth, or bones. It also occurs commonly in prokaryotes, resulting in more than 60 known minerals formed by different bacteria under wide-ranging conditions. Among them, magnetotactic bacteria (MTB) are remarkable because they might represent the earliest organisms that biomineralize intracellular magnetic iron minerals (i.e., magnetite [Fe3O4] or greigite [Fe3S4]). Here, we report a novel magnetotactic spirillum (XQGS-1) that is phylogenetically affiliated with the Alphaproteobacteria class. In addition to magnetite crystals, XQGS-1 cells form intracellular submicrometer calcium carbonate and calcium phosphate granules. This finding supports the view that MTB are also an important microbial group for intracellular calcium carbonate and calcium phosphate biomineralization.
Collapse
|
7
|
Gareev KG, Grouzdev DS, Kharitonskii PV, Kirilenko DA, Kosterov A, Koziaeva VV, Levitskii VS, Multhoff G, Nepomnyashchaya EK, Nikitin AV, Nikitina A, Sergienko ES, Sukharzhevskii SM, Terukov EI, Trushlyakova VV, Shevtsov M. Magnetic Properties of Bacterial Magnetosomes Produced by Magnetospirillum caucaseum SO-1. Microorganisms 2021; 9:1854. [PMID: 34576748 PMCID: PMC8468085 DOI: 10.3390/microorganisms9091854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the magnetic properties of magnetosomes isolated from lyophilized magnetotactic bacteria Magnetospirillum caucaseum SO-1 were assessed for the first time. The shape and size of magnetosomes and cell fragments were studied by electron microscopy and dynamic light scattering techniques. Phase and elemental composition were analyzed by X-ray and electron diffraction and Raman spectroscopy. Magnetic properties were studied using vibrating sample magnetometry and electron paramagnetic resonance spectroscopy. Theoretical analysis of the magnetic properties was carried out using the model of clusters of magnetostatically interacting two-phase particles and a modified method of moments for a system of dipole-dipole-interacting uniaxial particles. Magnetic properties were controlled mostly by random aggregates of magnetosomes, with a minor contribution from preserved magnetosome chains. Results confirmed the high chemical stability and homogeneity of bacterial magnetosomes in comparison to synthetic iron oxide magnetic nanoparticles.
Collapse
Affiliation(s)
- Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (A.V.N.); (E.I.T.); (V.V.T.)
| | - Denis S. Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia;
| | - Peter V. Kharitonskii
- Department of Physics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (P.V.K.); (A.N.)
| | - Demid A. Kirilenko
- Centre of Nanoheterostructure Physics, Ioffe Institute, 194021 Saint Petersburg, Russia;
| | - Andrei Kosterov
- Department of Earth Physics, Saint Petersburg University, 199034 Saint Petersburg, Russia; (A.K.); (E.S.S.)
| | - Veronika V. Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia;
| | | | - Gabriele Multhoff
- Center of Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany; (G.M.); (M.S.)
| | - Elina K. Nepomnyashchaya
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia;
| | - Andrey V. Nikitin
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (A.V.N.); (E.I.T.); (V.V.T.)
| | - Anastasia Nikitina
- Department of Physics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (P.V.K.); (A.N.)
- Magnetic Resonance Research Centre, Saint Petersburg University, 199034 Saint Petersburg, Russia;
| | - Elena S. Sergienko
- Department of Earth Physics, Saint Petersburg University, 199034 Saint Petersburg, Russia; (A.K.); (E.S.S.)
| | | | - Evgeniy I. Terukov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (A.V.N.); (E.I.T.); (V.V.T.)
- Centre of Nanoheterostructure Physics, Ioffe Institute, 194021 Saint Petersburg, Russia;
- R&D Center TFTE LLC, 194021 Saint Petersburg, Russia;
| | - Valentina V. Trushlyakova
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (A.V.N.); (E.I.T.); (V.V.T.)
| | - Maxim Shevtsov
- Center of Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany; (G.M.); (M.S.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
8
|
Cubic Nanoparticles for Magnetic Hyperthermia: Process Optimization and Potential Industrial Implementation. NANOMATERIALS 2021; 11:nano11071652. [PMID: 34201717 PMCID: PMC8306292 DOI: 10.3390/nano11071652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Cubic nanoparticles are referred to as the best shaped particles for magnetic hyperthermia applications. In this work, the best set of values for obtaining optimized shape and size of magnetic particles (namely: reagents quantities and proportions, type of solvents, temperature, etc.) is determined. A full industrial implementation study is also performed, including production system design and technical and economic viability.
Collapse
|
9
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
10
|
Lee KS, Dumke R, Paterek T. Numerical tests of magnetoreception models assisted with behavioral experiments on American cockroaches. Sci Rep 2021; 11:12221. [PMID: 34108599 PMCID: PMC8190300 DOI: 10.1038/s41598-021-91815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Many animals display sensitivity to external magnetic field, but it is only in the simplest organisms that the sensing mechanism is understood. Here we report on behavioural experiments where American cockroaches (Periplaneta americana) were subjected to periodically rotated external magnetic fields with a period of 10 min. The insects show increased activity when placed in a periodically rotated Earth-strength field, whereas this effect is diminished in a twelve times stronger periodically rotated field. We analyse established models of magnetoreception, the magnetite model and the radical pair model, in light of this adaptation result. A broad class of magnetite models, based on single-domain particles found in insects and assumption that better alignment of magnetic grains towards the external field yields better sensing and higher insect activity, is shown to be excluded by the measured data. The radical-pair model explains the data if we assume that contrast in the chemical yield on the order of one in a thousand is perceivable by the animal, and that there also exists a threshold value for detection, attained in an Earth-strength field but not in the stronger field.
Collapse
Affiliation(s)
- Kai Sheng Lee
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Rainer Dumke
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.4280.e0000 0001 2180 6431Centre for Quantum Technologies, National University of Singapore, Singapore, 117543 Singapore
| | - Tomasz Paterek
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.8585.00000 0001 2370 4076Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals. Appl Environ Microbiol 2020; 86:AEM.01278-20. [PMID: 32887716 PMCID: PMC7642088 DOI: 10.1128/aem.01278-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce iron-based intracellular magnetic crystals. They represent a model system for studying iron homeostasis and biomineralization in microorganisms. MTB sequester a large amount of iron in their crystals and have thus been proposed to significantly impact the iron biogeochemical cycle. Several studies proposed that MTB could also accumulate iron in a reservoir distinct from their crystals. Here, we present a chemical and magnetic methodology for quantifying the iron pools in the magnetotactic strain AMB-1. Results showed that most iron is not contained in crystals. We then adapted protocols for the fluorescent Fe(II) detection in bacteria and showed that iron could be detected outside crystals using fluorescence assays. This work suggests a more complex picture for iron homeostasis in MTB than previously thought. Because iron speciation controls its fate in the environment, our results also provide important insights into the geochemical impact of MTB. Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that form intracellular nanoparticles of magnetite (Fe3O4) or greigite (Fe3S4) in a genetically controlled manner. Magnetite and greigite synthesis requires MTB to transport a large amount of iron from the environment. Most intracellular iron was proposed to be contained within the crystals. However, recent mass spectrometry studies suggest that MTB may contain a large amount of iron that is not precipitated in crystals. Here, we attempted to resolve these discrepancies by performing chemical and magnetic assays to quantify the different iron pools in the magnetite-forming strain Magnetospirillum magneticum AMB-1, as well as in mutant strains showing defects in crystal precipitation, cultivated at various iron concentrations. All results show that magnetite represents at most 30% of the total intracellular iron under our experimental conditions and even less in the mutant strains. We further examined the iron speciation and subcellular localization in AMB-1 using the fluorescent indicator FIP-1, which was designed for the detection of labile Fe(II). Staining with this probe suggests that unmineralized reduced iron is found in the cytoplasm and associated with magnetosomes. Our results demonstrate that, under our experimental conditions, AMB-1 is able to accumulate a large pool of iron distinct from magnetite. Finally, we discuss the biochemical and geochemical implications of these results. IMPORTANCE Magnetotactic bacteria (MTB) produce iron-based intracellular magnetic crystals. They represent a model system for studying iron homeostasis and biomineralization in microorganisms. MTB sequester a large amount of iron in their crystals and have thus been proposed to significantly impact the iron biogeochemical cycle. Several studies proposed that MTB could also accumulate iron in a reservoir distinct from their crystals. Here, we present a chemical and magnetic methodology for quantifying the iron pools in the magnetotactic strain AMB-1. Results showed that most iron is not contained in crystals. We then adapted protocols for the fluorescent Fe(II) detection in bacteria and showed that iron could be detected outside crystals using fluorescence assays. This work suggests a more complex picture for iron homeostasis in MTB than previously thought. Because iron speciation controls its fate in the environment, our results also provide important insights into the geochemical impact of MTB.
Collapse
|
12
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
13
|
Liu P, Liu Y, Zhao X, Roberts AP, Zhang H, Zheng Y, Wang F, Wang L, Menguy N, Pan Y, Li J. Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. Environ Microbiol 2020; 23:1115-1129. [PMID: 32985765 DOI: 10.1111/1462-2920.15254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nicolas Menguy
- France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China.,IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, Paris, France
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
15
|
Pardo A, Yáñez S, Piñeiro Y, Iglesias-Rey R, Al-Modlej A, Barbosa S, Rivas J, Taboada P. Cubic Anisotropic Co- and Zn-Substituted Ferrite Nanoparticles as Multimodal Magnetic Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9017-9031. [PMID: 31999088 DOI: 10.1021/acsami.9b20496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of magnetic nanoparticles as theranostic agents for the detection and treatment of cancer diseases has been extensively analyzed in the last few years. In this work, cubic-shaped cobalt and zinc-doped iron oxide nanoparticles with edge lengths in the range from 28 to 94 nm are proposed as negative contrast agents for magnetic resonance imaging and to generate localized heat by magnetic hyperthermia, obtaining high values of transverse relaxation coefficients and specific adsorption rates. The applied magnetic fields presented suitable characteristics for the potential validation of the results into the clinical practice in all cases. Pure iron oxide and cobalt- and zinc-substituted ferrites have been structurally and magnetically characterized, observing magnetite as the predominant phase and weak ferrimagnetic behavior at room temperature, with saturation values even larger than those of bulk magnetite. The coercive force increased due to the incorporation of cobalt ions, while zinc substitution promotes a significant increase in saturation magnetization. After their transfer to aqueous solution, those particles showing the best properties were chosen for evaluation in in vitro cell models, exhibiting high critical cytotoxic concentrations and high internalization degrees in several cell lines. The magnetic behavior of the nanocubes after their successful cell internalization was analyzed, detecting negligible variations on their magnetic hysteresis loops and a significant decrease in the specific adsorption rate values.
Collapse
Affiliation(s)
- Alberto Pardo
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Susana Yáñez
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Yolanda Piñeiro
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Clinical University Hospital , Health Research Institute of Santiago de Compostela (IDIS) , Santiago de Compostela 15782 , Spain
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - José Rivas
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| |
Collapse
|
16
|
Schuerle S, Furubayashi M, Soleimany AP, Gwisai T, Huang W, Voigt C, Bhatia SN. Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synth Biol 2020; 9:392-401. [PMID: 31922737 DOI: 10.1021/acssynbio.9b00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor-selective contrast agents have the potential to aid in the diagnosis and treatment of cancer using noninvasive imaging modalities such as magnetic resonance imaging (MRI). Such contrast agents can consist of magnetic nanoparticles incorporating functionalities that respond to cues specific to tumor environments. Genetically engineering magnetotactic bacteria to display peptides has been investigated as a means to produce contrast agents that combine the robust image contrast effects of magnetosomes with the transgenic-targeting peptides displayed on their surface. This work reports the first use of magnetic nanoparticles that display genetically encoded pH low insertion peptide (pHLIP), a long peptide intended to enhance MRI contrast by targeting the extracellular acidity associated with the tumors. To demonstrate the modularity of this versatile platform to incorporate diverse targeting ligands by genetic engineering, we also incorporated the cyclic αv integrin-binding peptide iRGD into separate magnetosomes. Specifically, we investigate their potential for enhanced binding and tumor imaging both in vitro and in vivo. Our experiments indicate that these tailored magnetosomes retain their magnetic properties, making them well suited as T2 contrast agents, while exhibiting an increased binding compared to the binding in wild-type magnetosomes.
Collapse
Affiliation(s)
- Simone Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Maiko Furubayashi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Ava P. Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard Graduate Program in Biophysics, Harvard University, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tinotenda Gwisai
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wei Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Murros K, Wasiljeff J, Macías-Sánchez E, Faivre D, Soinne L, Valtonen J, Pohja M, Saari P, Pesonen LJ, Salminen JM. Magnetic Nanoparticles in Human Cervical Skin. Front Med (Lausanne) 2019; 6:123. [PMID: 31245375 PMCID: PMC6563768 DOI: 10.3389/fmed.2019.00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
Magnetic iron oxide nanoparticles, magnetite/maghemite, have been identified in human tissues, including the brain, meninges, heart, liver, and spleen. As these nanoparticles may play a role in the pathogenesis of neurodegenerative diseases, a pilot study explored the occurrence of these particles in the cervical (neck) skin of 10 patients with Parkinson's disease and 10 healthy controls. Magnetometry and transmission electron microscopy analyses revealed magnetite/maghemite nanoparticles in the skin samples of every study participant. Regarding magnetite/maghemite concentrations of the single-domain particles, no significant between-group difference was emerged. In low-temperature magnetic measurement, a magnetic anomaly at ~50 K was evident mainly in the dermal samples of the Parkinson group. This anomaly was larger than the effect related to the magnetic ordering of molecular oxygen. The temperature range of the anomaly, and the size-range of magnetite/maghemite, both refute the idea of magnetic ordering of any iron phase other than magnetite. We propose that the explanation for the finding is interaction between clusters of superparamagnetic and single-domain-sized nanoparticles. The source and significance of these particles remains speculative.
Collapse
Affiliation(s)
- Kari Murros
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Joonas Wasiljeff
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Elena Macías-Sánchez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,CEA, CNRS, BIAM, Aix-Marseille University, Cadarache, France
| | - Lauri Soinne
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Jussi Valtonen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Marjatta Pohja
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Saari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Lauri J Pesonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Johanna M Salminen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo. Proc Natl Acad Sci U S A 2019; 116:407-412. [PMID: 30598434 DOI: 10.1073/pnas.1811074116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.
Collapse
|
19
|
Chang L, Harrison RJ, Zeng F, Berndt TA, Roberts AP, Heslop D, Zhao X. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum. Nat Commun 2018; 9:4007. [PMID: 30275540 PMCID: PMC6167317 DOI: 10.1038/s41467-018-06472-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding marine environmental change and associated biological turnover across the Palaeocene–Eocene Thermal Maximum (PETM; ~56 Ma)—the most pronounced Cenozoic short-term global warming event—is important because of the potential role of the ocean in atmospheric CO2 drawdown, yet proxies for tracing marine productivity and oxygenation across the PETM are limited and results remain controversial. Here we show that a high-resolution record of South Atlantic Ocean bottom water oxygenation can be extracted from exceptionally preserved magnetofossils—the bioinorganic magnetite nanocrystals produced by magnetotactic bacteria (MTB) using a new multiscale environmental magnetic approach. Our results suggest that a transient MTB bloom occurred due to increased nutrient supply. Bottom water oxygenation decreased gradually from the onset to the peak PETM. These observations provide a record of microbial response to the PETM and establish the value of magnetofossils as palaeoenvironmental indicators. Understanding the response of marine productivity and CO2 drawdown to past warming events can provide important insights into the future. Here, the authors use bacterial magnetite nanoparticle fossils to reconstruct nutrient supply and marine deoxygenation during the Palaeocene–Eocene Thermal Maximum.
Collapse
Affiliation(s)
- Liao Chang
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China. .,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China. .,Institute of Ocean Research, Peking University, 100871, Beijing, China.
| | - Richard J Harrison
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Fan Zeng
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Thomas A Berndt
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - David Heslop
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
20
|
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine 2017; 12:4371-4395. [PMID: 28652739 PMCID: PMC5476634 DOI: 10.2147/ijn.s130565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
- Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
| | | |
Collapse
|
21
|
Reichel V, Kovács A, Kumari M, Bereczk-Tompa É, Schneck E, Diehle P, Pósfai M, Hirt AM, Duchamp M, Dunin-Borkowski RE, Faivre D. Single crystalline superstructured stable single domain magnetite nanoparticles. Sci Rep 2017; 7:45484. [PMID: 28358051 PMCID: PMC5371993 DOI: 10.1038/srep45484] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure – property relationship in a magnetic mesoparticle.
Collapse
Affiliation(s)
- Victoria Reichel
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - András Kovács
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Monika Kumari
- Institute of Geophysics, ETH-Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland
| | - Éva Bereczk-Tompa
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H8200 Veszprém, Hungary
| | - Emanuel Schneck
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Patrick Diehle
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mihály Pósfai
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H8200 Veszprém, Hungary
| | - Ann M Hirt
- Institute of Geophysics, ETH-Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland
| | - Martial Duchamp
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
22
|
Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genet 2016; 12:e1006101. [PMID: 27286560 PMCID: PMC4902198 DOI: 10.1371/journal.pgen.1006101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. One of the most intriguing examples for membrane-bounded prokaryotic organelles are magnetosomes which consist of well-ordered chains of perfectly shaped magnetic nanocrystals that in many aquatic bacteria serve as geomagnetic field sensors to direct their swimming towards microoxic zones at the bottom of natural waters. In the model bacterium Magnetospirillum gryphiswaldense and related magnetotactic microorganisms, magnetosomes are formed by a complex pathway that is orchestrated by more than 30 genes. However, the initial and most crucial step of magnetosome biosynthesis, formation and differentiation of a dedicated intracellular membrane compartment for controlled biomineralization of magnetite crystals, remained only poorly understood. By ultrastructural analysis of several mutants and genetic induction of de novo magnetosome synthesis, we identified the key determinants and early steps of magnetosome membrane biogenesis. Our results suggest that formation of intracellular membranes in bacteria is mediated by a cumulative action of several factors, but apparently is differently controlled than intracellular membrane remodeling in eukaryotic cells.
Collapse
|
23
|
Chariaou M, Rahn-Lee L, Kind J, García-Rubio I, Komeili A, Gehring AU. Anisotropy of bullet-shaped magnetite nanoparticles in the magnetotactic bacteria Desulfovibrio magneticus sp. Strain RS-1. Biophys J 2016; 108:1268-74. [PMID: 25762338 DOI: 10.1016/j.bpj.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth's magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp. strain RS-1 forms bullet-shaped magnetite nanoparticles aligned along their (100) magnetocrystalline hard axis, a configuration energetically unfavorable for formation of strong dipoles. We used ferromagnetic resonance spectroscopy to quantitatively determine the magnetocrystalline and uniaxial anisotropy fields of the magnetic assemblies as indicators for a cellular dipole with stable direction in strain RS-1. Experimental and simulated ferromagnetic resonance spectral data indicate that the negative effect of the configuration is balanced by the bullet-shaped morphology of the nanoparticles, which generates a pronounced uniaxial anisotropy field in each magnetosome. The quantitative comparison with anisotropy fields of Magnetospirillum gryphiswaldense, a model MTB with equidimensional magnetite particles aligned along their (111) magnetic easy axes in well-organized chain assemblies, shows that the effectiveness of the dipole is similar to that in RS-1. From a physical perspective, this could be a reason for the persistency of bullet-shaped magnetosomes during the evolutionary development of magnetotaxis in MTB.
Collapse
Affiliation(s)
- Michalis Chariaou
- Department of Physics, University of California, Berkeley, California
| | - Lilah Rahn-Lee
- Plant and Microbial Biology, University of California, Berkeley, California
| | - Jessica Kind
- Institute of Geophysics, ETH Zurich, Zurich, Switzerland
| | - Inés García-Rubio
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland; Centro Universitario de la Defensa, Zaragoza, Spain
| | - Arash Komeili
- Plant and Microbial Biology, University of California, Berkeley, California
| | | |
Collapse
|
24
|
Faivre D, Godec TU. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew Chem Int Ed Engl 2016; 54:4728-47. [PMID: 25851816 DOI: 10.1002/anie.201408900] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 01/28/2023]
Abstract
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions.
Collapse
Affiliation(s)
- Damien Faivre
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Wissenschaftspark Golm, 14424 Potsdam (Germany) http://www.mpikg.mpg.de/135282/MBMB.
| | | |
Collapse
|
25
|
Bharti B, Fameau AL, Rubinstein M, Velev OD. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. NATURE MATERIALS 2015; 14:1104-9. [PMID: 26237128 PMCID: PMC4816044 DOI: 10.1038/nmat4364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 05/17/2023]
Abstract
The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks. For example, particles organized in long-ranged structures by external fields can be bound permanently into stiff chains through electrostatic or van der Waals attraction, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.
Collapse
Affiliation(s)
- Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Anne-Laure Fameau
- National Institute of French Agricultural Research, Nantes 44300, France
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| |
Collapse
|
26
|
Jandacka P, Burda H, Pistora J. Magnetically induced behaviour of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes? J R Soc Interface 2015; 12:20141087. [PMID: 25551148 DOI: 10.1098/rsif.2014.1087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors. Here we determine ferritin low-field paramagnetic susceptibility to estimate its magnetically induced intracellular behaviour. Physical simulations show that ferritin corpuscles cannot be deformed or rotate in weak geomagnetic fields, and thus cannot provide magnetoreception via deformation of the cuticular plate. Furthermore, we reached an alternative hypothesis that ferritin corpuscle in avian ears may function as an intracellular electromagnetic oscillator. Such an oscillator would generate additional cellular electric potential related to normal cell conditions. Though the phenomenon seems to be weak, this effect deserves further analyses.
Collapse
|
27
|
Mériaux S, Boucher M, Marty B, Lalatonne Y, Prévéral S, Motte L, Lefèvre CT, Geffroy F, Lethimonnier F, Péan M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater 2015; 4:1076-83. [PMID: 25676134 DOI: 10.1002/adhm.201400756] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Indexed: 12/28/2022]
Abstract
The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T₂-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water-dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r₂ four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T₂(*) -weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 μmoliron kg(-1)), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy-to-produce biocompatible contrast agents derived from bacterial magnetosomes.
Collapse
Affiliation(s)
- Sébastien Mériaux
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Marianne Boucher
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Benjamin Marty
- Institute of Myology (NMR Laboratory); CEA/DSV/I BM/MIRCen (IdM NMR Laboratory); UPMC Paris 6 University; 75013 Paris France
| | - Yoann Lalatonne
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Sandra Prévéral
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Laurence Motte
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Christopher T. Lefèvre
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Françoise Geffroy
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | | | - Michel Péan
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Daniel Garcia
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Géraldine Adryanczyk-Perrier
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - David Pignol
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Nicolas Ginet
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| |
Collapse
|
28
|
Faivre D, Godec TU. Bakterien und Weichtiere: Prinzipien der Biomineralisation von Eisenoxid-Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Abstract
There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.
Collapse
|
30
|
Bennet M, Bertinetti L, Neely RK, Schertel A, Körnig A, Flors C, Müller FD, Schüler D, Klumpp S, Faivre D. Biologically controlled synthesis and assembly of magnetite nanoparticles. Faraday Discuss 2015; 181:71-83. [PMID: 25932467 PMCID: PMC4672721 DOI: 10.1039/c4fd00240g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022]
Abstract
Magnetite nanoparticles have size- and shape-dependent magnetic properties. In addition, assemblies of magnetite nanoparticles forming one-dimensional nanostructures have magnetic properties distinct from zero-dimensional or non-organized materials due to strong uniaxial shape anisotropy. However, assemblies of free-standing magnetic nanoparticles tend to collapse and form closed-ring structures rather than chains in order to minimize their energy. Magnetotactic bacteria, ubiquitous microorganisms, have the capability to mineralize magnetite nanoparticles, the so-called magnetosomes, and to direct their assembly in stable chains via biological macromolecules. In this contribution, the synthesis and assembly of biological magnetite to obtain functional magnetic dipoles in magnetotactic bacteria are presented, with a focus on the assembly. We present tomographic reconstructions based on cryo-FIB sectioning and SEM imaging of a magnetotactic bacterium to exemplify that the magnetosome chain is indeed a paradigm of a 1D magnetic nanostructure, based on the assembly of several individual particles. We show that the biological forces are a major player in the formation of the magnetosome chain. Finally, we demonstrate by super resolution fluorescence microscopy that MamK, a protein of the actin family necessary to form the chain backbone in the bacteria, forms a bundle of filaments that are not only found in the vicinity of the magnetosome chain but are widespread within the cytoplasm, illustrating the dynamic localization of the protein within the cells. These very simple microorganisms have thus much to teach us with regards to controlling the design of functional 1D magnetic nanoassembly.
Collapse
Affiliation(s)
- Mathieu Bennet
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Science Park Golm , 14424 Potsdam , Germany .
| | - Luca Bertinetti
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Science Park Golm , 14424 Potsdam , Germany .
| | - Robert K. Neely
- The University of Birmingham , School of Chemistry , Edgbaston , Birmingham , B15 2TT , UK
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH , Training , Application and Support Center , Carl-Zeiss-Str. 22 , 73447 Oberkochen , Germany
| | - André Körnig
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Science Park Golm , 14424 Potsdam , Germany .
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) , C/Faraday 9 , Madrid 28049 , Spain
| | - Frank D. Müller
- Universität Bayreuth , Lehrstuhl für Mikrobiologie , Universitätssstraße 30 , 95447 Bayreuth , Germany
| | - Dirk Schüler
- Universität Bayreuth , Lehrstuhl für Mikrobiologie , Universitätssstraße 30 , 95447 Bayreuth , Germany
| | - Stefan Klumpp
- Department of Theory and Biosystems , Max Planck Institute of Colloids and Interfaces , Science Park Golm , 14424 Potsdam , Germany
| | - Damien Faivre
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Science Park Golm , 14424 Potsdam , Germany .
| |
Collapse
|
31
|
Effects of the grain size distribution on magnetic properties of magnetite: constraints from micromagnetic modeling. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0584-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Holowka EP, Bhatia SK. Smart Drug Delivery Systems. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Wu WF, Wang FP, Li JH, Yang XW, Xiao X, Pan YX. Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. GEOBIOLOGY 2013; 11:593-601. [PMID: 24102974 DOI: 10.1111/gbi.12061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
In this study, iron reduction and concomitant biomineralization of a deep-sea iron reducing bacterium (IRB), Shewanella piezotolerans WP3, were systematically examined at different hydrostatic pressures (0.1, 5, 20, and 50 MPa). Our results indicate that bacterial iron reduction and induced biomineralization are influenced by hydrostatic pressure. Specifically, the iron reduction rate and extent consistently decreases with the increase in hydrostatic pressure. By extrapolation, the iron reduction rate should drop to zero by ~68 MPa, which suggests a possible shut-off of enzymatic iron reduction of WP3 at this pressure. Nano-sized superparamagnetic magnetite minerals are formed under all the experimental pressures; nevertheless, even as magnetite production decreases, the crystallinity and grain size of magnetite minerals increase at higher pressure. These results imply that IRB may play an important role in iron reduction, biomineralization, and biogeochemical cycling in deep-sea environments.
Collapse
Affiliation(s)
- W F Wu
- Biogeomagnetism Group, Paleomagnetism and Geochronology Lab, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Jandačka P, Alexa P, Pištora J, Trojková J. Hypothetical superparamagnetic magnetometer in a pigeon's upper beak probably does not work. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:9853. [PMID: 23605568 DOI: 10.1140/epje/i2013-13040-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/06/2012] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
We reanalysed the role of superparamagnetic magnetite clusters observed in a pigeon's upper beak to decide if this matter can be a component of some sort of pigeon magnetometer for Earth orientation. We investigated the mutual interaction of the magnetite clusters induced by the geomagnetic field. The force sensitivity of the hypothetical magnetometer in a pigeon's upper beak was estimated considering the previously presented threshold magnetic sensitivity of pigeons, measured in electrophysiological and behavioural investigations. The typical intercluster magnetic force seems to be 10(-19)N well above the threshold magnetic sensitivity. To strengthen our results, we measured the magnetic susceptibility of superparamagnetic magnetite using a vibrating sample magnetometer. Finally we performed theoretical kinematic analysis of the motion of magnetite clusters in cell plasma. The results indicate that magnetite clusters, constituted by superparamagnetic nanoparticles and observed in a pigeon's upper beak, may not be a component of a measuring system providing the magnetic map.
Collapse
Affiliation(s)
- Petr Jandačka
- Nanotechnology Centre and IT4Innovations Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70833 Ostrava, Czech Republic.
| | | | | | | |
Collapse
|
35
|
Javaheri H, Barbiellini B, Noubir G. Energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. NANOSCALE RESEARCH LETTERS 2012; 7:572. [PMID: 23075029 PMCID: PMC3561270 DOI: 10.1186/1556-276x-7-572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
: We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the nanotube radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of magnetosomes coated with a net of protein fibers.
Collapse
Affiliation(s)
- Hooman Javaheri
- College of Computer and Information Science, Northeastern University, Boston, MA, USA
| | | | - Guevara Noubir
- College of Computer and Information Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
36
|
Roberts AP, Chang L, Heslop D, Florindo F, Larrasoaña JC. Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jb009412] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Klumpp S, Faivre D. Interplay of magnetic interactions and active movements in the formation of magnetosome chains. PLoS One 2012; 7:e33562. [PMID: 22442698 PMCID: PMC3307741 DOI: 10.1371/journal.pone.0033562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum.
Collapse
Affiliation(s)
- Stefan Klumpp
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | |
Collapse
|
38
|
Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 2011; 8:1011-8. [PMID: 21247944 PMCID: PMC3104334 DOI: 10.1098/rsif.2010.0576] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Magnetosome biomineralization and chain formation in magnetotactic bacteria are two processes that are highly controlled at the cellular level in order to form cellular magnetic dipoles. However, even if the magnetosome chains are well characterized, controversial results about the microstructure of magnetosomes were obtained and its possible influence in the formation of the magnetic dipole is to be specified. For the first time, the microstructure of intracellular magnetosomes was investigated using high-resolution synchrotron X-ray diffraction. Significant differences in the lattice parameter were found between intracellular magnetosomes from cultured magnetotactic bacteria and isolated ones. Through comparison with abiotic control materials of similar size, we show that this difference can be associated with different oxidation states and that the biogenic nanomagnetite is stoichiometric, i.e. structurally pure whereas isolated magnetosomes are slightly oxidized. The hierarchical structuring of the magnetosome chain thus starts with the formation of structurally pure magnetite nanoparticles that in turn might influence the magnetic property of the magnetosome chains.
Collapse
Affiliation(s)
- Anna Fischer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, , Science Park Golm, 14424 Potsdam, Germany
| | | | | | | | | |
Collapse
|
39
|
Sun J, Li Y, Liang XJ, Wang PC. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions. JOURNAL OF NANOMATERIALS 2011; 2011:469031-469043. [PMID: 22448162 PMCID: PMC3310401 DOI: 10.1155/2011/469031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers.
Collapse
Affiliation(s)
- Jianbo Sun
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ying Li
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, Division of Nanomedicine and Nanobiology, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| |
Collapse
|
40
|
Baumgartner J, Faivre D. Magnetite biomineralization in bacteria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:3-27. [PMID: 21877261 DOI: 10.1007/978-3-642-21230-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called "magnetosomes." These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.
Collapse
Affiliation(s)
- Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
41
|
Development of cellular magnetic dipoles in magnetotactic bacteria. Biophys J 2010; 99:1268-73. [PMID: 20713012 DOI: 10.1016/j.bpj.2010.05.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/24/2022] Open
Abstract
Magnetotactic bacteria benefit from their ability to form cellular magnetic dipoles by assembling stable single-domain ferromagnetic particles in chains as a means to navigate along Earth's magnetic field lines on their way to favorable habitats. We studied the assembly of nanosized membrane-encapsulated magnetite particles (magnetosomes) by ferromagnetic resonance spectroscopy using Magnetospirillum gryphiswaldense cultured in a time-resolved experimental setting. The spectroscopic data show that 1), magnetic particle growth is not synchronized; 2), the increase in particle numbers is insufficient to build up cellular magnetic dipoles; and 3), dipoles of assembled magnetosome blocks occur when the first magnetite particles reach a stable single-domain state. These stable single-domain particles can act as magnetic docks to stabilize the remaining and/or newly nucleated superparamagnetic particles in their adjacencies. We postulate that docking is a key mechanism for building the functional cellular magnetic dipole, which in turn is required for magnetotaxis in bacteria.
Collapse
|
42
|
Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DMS. Magnetoreception in eusocial insects: an update. J R Soc Interface 2010; 7 Suppl 2:S207-25. [PMID: 20106876 DOI: 10.1098/rsif.2009.0526.focus] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects.
Collapse
Affiliation(s)
- Eliane Wajnberg
- Coordenação de Física Aplicada, Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud, 150, Rio de Janeiro 22290-180, Brazil.
| | | | | | | | | | | |
Collapse
|