1
|
Egbujor MC, Okoro UC, Okafor SN, Egu SA, Amasiatu IS, Egwuatu PI, Umeh OR, Ibo EM. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents. Res Pharm Sci 2021; 17:99-110. [PMID: 34909048 PMCID: PMC8621839 DOI: 10.4103/1735-5362.329930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background and purpose: The preponderance of microbial infections remains a global challenge. In the present study, synthesis of novel cysteine-based antimicrobial agents and their biological evaluation is reported. Experimental approach: The reaction of p-toluenesulphonyl chloride with cysteine afforded 2-{[(4-methylphenyl)sulphonyl]amino}-3-sulphanylpropanoic acid (3) which was acetylated based on Lumiere-Barbier method using acetic anhydride. The ammonolysis of the acetylated compound (4) gave the carboxamide derivative (5) which reacted with aniline, aminopyridine and diaminopyrimidine via nickel catalyzed Buchwald-Hartwig amidation reaction to afford compounds 6a, 6b, and 6c, respectively. The compounds were characterized using FTIR, 1H-NMR, 13C-NMR, and elemental analysis. The in vitro antimicrobial activities were determined. Their physicochemical properties were generated in silico and the molecular docking studied bacterial and fungal infections. Findings/Results: Compounds 4, 6b, and 6c exhibited excellent in vitro antibacterial activities while compound 4 had the best antifungal activities. From the in silico antimicrobial results, compound 3 had a better binding affinity (-10.95 kcal/mol) than penicillin (-10.89 kcal/mol) while compounds 3 and 4 had binding affinities (-10.07 and -10.62kcal/mol) comparable to ketoconazole (-10.85 kcal/mol). Conclusion and implication: All the synthesized compounds exhibited significant antibacterial and antifungal activities and were confirmed to be potential antimicrobial agents.
Collapse
Affiliation(s)
- Melford C Egbujor
- Department of Industrial Chemistry, Renaissance University, Ugbawka, Enugu State, Nigeria
| | - Uchechukwu C Okoro
- Synthetic Organic Chemistry Division, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Sunday N Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Samuel A Egu
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Ifeanyi S Amasiatu
- Department of Biochemistry, Renaissance University, Ugbawka, Enugu State, Nigeria
| | - Pius I Egwuatu
- Department of Microbiology, Renaissance University, Ugbawka, Enugu State, Nigeria
| | - Odera R Umeh
- Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B 5025 Awka, Anambra State, Nigeria
| | - Eziafakaego M Ibo
- Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, P.M.B 5025 Awka, Anambra State, Nigeria
| |
Collapse
|
2
|
Junius N, Vahdatahar E, Oksanen E, Ferrer JL, Budayova-Spano M. Optimization of crystallization of biological macromolecules using dialysis combined with temperature control. J Appl Crystallogr 2020; 53:686-698. [PMID: 32684884 PMCID: PMC7312135 DOI: 10.1107/s1600576720003209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 11/10/2022] Open
Abstract
A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone - which is the optimal location for slow and ordered crystal expansion - by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature-precipitant-concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.
Collapse
Affiliation(s)
- Niels Junius
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Esko Oksanen
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Jean-Luc Ferrer
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Abstract
The use of neutron protein crystallography (NPX) is expanding rapidly, with most structures determined in the last decade. This growth is stimulated by a number of developments, spanning from the building of new NPX beamlines to the availability of improved software for structure refinement. The main bottleneck preventing structural biologists from adding NPX to the suite of methods commonly used is the large volume of the individual crystals required for a successful experiment. A survey of deposited NPX structures in the Protein Data Bank shows that about two-thirds came from crystals prepared using vapor diffusion, while batch and dialysis-based methods all-together contribute to most of the remaining one-third. This chapter explains the underlying principles of these protein crystallization methods and provides practical examples that may help others to successfully prepare large crystals for NPX.
Collapse
|
4
|
Kelpšas V, Lafumat B, Blakeley MP, Coquelle N, Oksanen E, von Wachenfeldt C. Perdeuteration, large crystal growth and neutron data collection of Leishmania mexicana triose-phosphate isomerase E65Q variant. Acta Crystallogr F Struct Biol Commun 2019; 75:260-269. [PMID: 30950827 PMCID: PMC6450519 DOI: 10.1107/s2053230x19001882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
Triose-phosphate isomerase (TIM) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Two catalytic mechanisms have been proposed based on two reaction-intermediate analogues, 2-phosphoglycolate (2PG) and phosphoglycolohydroxamate (PGH), that have been used as mimics of the cis-enediol(ate) intermediate in several studies of TIM. The protonation states that are critical for the mechanistic interpretation of these structures are generally not visible in the X-ray structures. To resolve these questions, it is necessary to determine the hydrogen positions using neutron crystallography. Neutron crystallography requires large crystals and benefits from replacing all hydrogens with deuterium. Leishmania mexicana triose-phosphate isomerase was therefore perdeuterated and large crystals with 2PG and PGH were produced. Neutron diffraction data collected from two crystals with different volumes highlighted the importance of crystal volume, as smaller crystals required longer exposures and resulted in overall worse statistics.
Collapse
Affiliation(s)
- Vinardas Kelpšas
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Bénédicte Lafumat
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
- European Spallation Source ESS ERIC, Odarslövsvägen 113, 224 84 Lund, Sweden
| | | | - Nicolas Coquelle
- Insitut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Esko Oksanen
- European Spallation Source ESS ERIC, Odarslövsvägen 113, 224 84 Lund, Sweden
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39A, 221 00 Lund, Sweden
| | | |
Collapse
|
5
|
Neutron macromolecular crystallography. Emerg Top Life Sci 2018; 2:39-55. [DOI: 10.1042/etls20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.
Collapse
|
6
|
The use of neutron scattering to determine the functional structure of glycoside hydrolase. Curr Opin Struct Biol 2016; 40:54-61. [PMID: 27494120 DOI: 10.1016/j.sbi.2016.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022]
Abstract
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples.
Collapse
|
7
|
Kwon JSI, Nayhouse M, Christofides PD. Multiscale, Multidomain Modeling and Parallel Computation: Application to Crystal Shape Evolution in Crystallization. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph Sang-Il Kwon
- Department of Chemical and Biomolecular Engineering and ‡Department of Electrical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Michael Nayhouse
- Department of Chemical and Biomolecular Engineering and ‡Department of Electrical
Engineering, University of California, Los Angeles, California 90095, United States
| | - Panagiotis D. Christofides
- Department of Chemical and Biomolecular Engineering and ‡Department of Electrical
Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Ng JD, Baird JK, Coates L, Garcia-Ruiz JM, Hodge TA, Huang S. Large-volume protein crystal growth for neutron macromolecular crystallography. Acta Crystallogr F Struct Biol Commun 2015; 71:358-70. [PMID: 25849493 PMCID: PMC4388167 DOI: 10.1107/s2053230x15005348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/15/2015] [Indexed: 11/10/2022] Open
Abstract
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
Collapse
Affiliation(s)
- Joseph D. Ng
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- iXpressGenes Inc., Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - James K. Baird
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, MS6475, Oak Ridge, TN 37831, USA
| | - Juan M. Garcia-Ruiz
- Laboratorio de Estudios Cristalográficos (IACT), CSIC–Universidad de Granada, Avenida de la Innovación s/n, Armilla (Granada), Spain
| | - Teresa A. Hodge
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Sijay Huang
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
9
|
Oksanen E, Blakeley MP, El-Hajji M, Ryde U, Budayova-Spano M. The neutron structure of urate oxidase resolves a long-standing mechanistic conundrum and reveals unexpected changes in protonation. PLoS One 2014; 9:e86651. [PMID: 24466188 PMCID: PMC3900588 DOI: 10.1371/journal.pone.0086651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/16/2013] [Indexed: 12/02/2022] Open
Abstract
Urate oxidase transforms uric acid to 5-hydroxyisourate without the help of cofactors, but the catalytic mechanism has remained enigmatic, as the protonation state of the substrate could not be reliably deduced. We have determined the neutron structure of urate oxidase, providing unique information on the proton positions. A neutron crystal structure inhibited by a chloride anion at 2.3 Å resolution shows that the substrate is in fact 8-hydroxyxanthine, the enol tautomer of urate. We have also determined the neutron structure of the complex with the inhibitor 8-azaxanthine at 1.9 Å resolution, showing the protonation states of the K10–T57–H256 catalytic triad. Together with X-ray data and quantum chemical calculations, these structures allow us to identify the site of the initial substrate protonation and elucidate why the enzyme is inhibited by a chloride anion.
Collapse
Affiliation(s)
- Esko Oksanen
- Institut de Biologie Structurale (IBS), Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Grenoble, France, IBS, Centre National de la Recherche Scientifique, Grenoble, France, IBS, Université Grenoble Alpes, Grenoble, France
| | | | | | - Ulf Ryde
- Department of Theoretical Chemistry Lund University, Lund, Sweden
| | - Monika Budayova-Spano
- Institut de Biologie Structurale (IBS), Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Grenoble, France, IBS, Centre National de la Recherche Scientifique, Grenoble, France, IBS, Université Grenoble Alpes, Grenoble, France
- * E-mail:
| |
Collapse
|
10
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|
11
|
Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 2012; 9:055001. [DOI: 10.1088/1478-3975/9/5/055001] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 2012; 21:1570-82. [PMID: 22607884 DOI: 10.1016/j.bmc.2012.04.044] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/02/2012] [Accepted: 04/21/2012] [Indexed: 01/16/2023]
Abstract
The carbonic anhydrases enzymes (CAs, EC 4.2.1.1) are zinc containing metalloproteins, which efficiently catalyse the reversible conversion of carbon dioxide to bicarbonate and release proton. These enzymes are essentially important for biological system and play several important physiological and patho-physiological functions. There are 16 different alpha-carbonic anhydrase isoforms studied, differing widely in their cellular localization and biophysical properties. The catalytic domains of all CAs possess a conserved tertiary structure fold, with predominately β-strands. We performed an extensive analysis of all 16 mammalian CAs for its structure and function in order to establish a structure-function relationship. CAs have been a potential therapeutic target for many diseases. Sulfonamides are considered as a strong and specific inhibitor of CA, and are being used as diuretics, anti-glaucoma, anti-epileptic, anti-ulcer agents. Currently CA inhibitors are widely used as a drug for the treatment of neurological disorders, anti-glaucoma drugs, anti-cancer, or anti-obesity agents. Here we tried to emphasize how CAs can be used for drug discovery, design and screening. Furthermore, we discussed the role of CA in carbon capture, carbon sensor and metabolon. We hope this review provide many useful information on structure, function, mechanism, and applications of CAs in various discipline.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | | | | | | | | |
Collapse
|
13
|
Campbell C, Thakar J, Albert R. Network analysis reveals cross-links of the immune pathways activated by bacteria and allergen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031929. [PMID: 22060425 DOI: 10.1103/physreve.84.031929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Indexed: 05/31/2023]
Abstract
Many biological networks are characterized by directed edges that represent either activating (positive) or inhibiting (negative) regulation. Most graph-theoretical methods used to study biological networks either disregard this important feature, or study the role of edge sign only in the context of small subgraphs called motifs. Here, we develop path-based measures which capture, on continuous scales spanning negative and positive values, both the long- and short-range regulatory relationships among node pairs. These measures also allow the quantification of each node's overall influence on the whole network and its susceptibility to regulation by the rest of the network. We apply the measures to a network representation of the mammalian immune response to simultaneous attack by allergen and respiratory bacteria. Although allergen and bacteria elicit different immune pathways, there is significant overlap (cross-talk) and feedback between these pathways. We identify key immune components in this cross-talk; particularly revealing the importance of natural killer cells as a key regulatory target in the cross-talk.
Collapse
Affiliation(s)
- Colin Campbell
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16803, USA.
| | | | | |
Collapse
|
14
|
Ghosh S, Prasad KVS, Vishveshwara S, Chandra N. Rule-based modelling of iron homeostasis in tuberculosis. MOLECULAR BIOSYSTEMS 2011; 7:2750-68. [PMID: 21833436 DOI: 10.1039/c1mb05093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To establish itself within the host system, Mycobacterium tuberculosis (Mtb) has formulated various means of attacking the host system. One such crucial strategy is the exploitation of the iron resources of the host system. Obtaining and maintaining the required concentration of iron becomes a matter of contest between the host and the pathogen, both trying to achieve this through complex molecular networks. The extent of complexity makes it important to obtain a systems perspective of the interplay between the host and the pathogen with respect to iron homeostasis. We have reconstructed a systems model comprising 92 components and 85 protein-protein or protein-metabolite interactions, which have been captured as a set of 194 rules. Apart from the interactions, these rules also account for protein synthesis and decay, RBC circulation and bacterial production and death rates. We have used a rule-based modelling approach, Kappa, to simulate the system separately under infection and non-infection conditions. Various perturbations including knock-outs and dual perturbation were also carried out to monitor the behavioral change of important proteins and metabolites. From this, key components as well as the required controlling factors in the model that are critical for maintaining iron homeostasis were identified. The model is able to re-establish the importance of iron-dependent regulator (ideR) in Mtb and transferrin (Tf) in the host. Perturbations, where iron storage is increased, appear to enhance nutritional immunity and the analysis indicates how they can be harmful for the host. Instead, decreasing the rate of iron uptake by Tf may prove to be helpful. Simulation and perturbation studies help in identifying Tf as a possible drug target. Regulating the mycobactin (myB) concentration was also identified as a possible strategy to control bacterial growth. The simulations thus provide significant insight into iron homeostasis and also for identifying possible drug targets for tuberculosis.
Collapse
Affiliation(s)
- Soma Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
15
|
Kovalevsky AY, Hanson BL, Seaver S, Fisher SZ, Mustyakimov M, Langan P. Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:283-6. [PMID: 21301107 PMCID: PMC3034629 DOI: 10.1107/s174430911005075x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/14/2010] [Indexed: 11/11/2022]
Abstract
Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Å resolution using a home source and to 1.80 Å resolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications.
Collapse
Affiliation(s)
- Andrey Y Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zaccai G. Biological physics at large facilities: from molecule to cell. J R Soc Interface 2009; 6 Suppl 5:S565-6. [PMID: 19640878 DOI: 10.1098/rsif.2009.0269.focus] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|