1
|
Byju S, Hassan A, Whitford PC. The energy landscape of the ribosome. Biopolymers 2024; 115:e23570. [PMID: 38051695 DOI: 10.1002/bip.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10-100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Asem Hassan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Núñez-Pertíñez S, Wilks TR. Deep Eutectic Solvents as Media for the Prebiotic DNA-Templated Synthesis of Peptides. Front Chem 2020; 8:41. [PMID: 32083058 PMCID: PMC7005209 DOI: 10.3389/fchem.2020.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Translation of genetic information into peptide products is one of the fundamental processes of biology. How this occurred prebiotically, in the absence of enzyme catalysts, is an intriguing question. Nucleic acid-templated synthesis (NATS) promotes reactions by bringing building blocks tethered to complementary DNA strands into close proximity and has been shown to enable peptide synthesis without enzymes—it could therefore serve as a model for prebiotic translation of information stored in nucleic acid sequences into functional peptides. The decomposition of highly reactive DNA adapters has so far limited the effectiveness of NATS, but these studies have been performed exclusively in aqueous solution. Deep eutectic solvents (DESs) have been proposed as a feasible solvent for prebiotic replication of nucleic acids, and here are studied as media for prebiotic translation using NATS as a model. DESs are shown to enhance the stability of DNA-conjugated activated esters, the precursors of peptides. However, this enhanced stability was coupled with decreased amine reactivity that hampered the formation of peptide bonds in DESs. These properties are exploited to demonstrate the storage of DNA-conjugated activated esters in a DES followed by transfer into aqueous buffer to activate the NATS of peptides “on demand.” These findings, together with the reported functions of DESs in prebiotic processes, shed light on how DESs could have facilitated the non-enzymatic translation of genetic information into functional peptides on the early Earth.
Collapse
Affiliation(s)
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
4
|
Crans DC, Sánchez-Lombardo I, McLauchlan CC. Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit. Front Chem 2019; 7:462. [PMID: 31334216 PMCID: PMC6624422 DOI: 10.3389/fchem.2019.00462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
The polyoxometalate P2W18O626-, the Wells-Dawson cluster, stabilized the ribosome sufficiently for the crystallographers to solve the phase problem and improve the structural resolution. In the following we characterize the interaction of the Wells-Dawson cluster with the ribosome small subunit. There are 14 different P2W18O626- clusters interacting with the ribosome, and the types of interactions range from one simple residue interaction to complex association of multiple sites including backbone interactions with a Wells-Dawson cluster. Although well-documented that bridging oxygen atoms are the main basic sites on other polyoxometalate interaction with most proteins reported, the W=O groups are the main sites of the Wells-Dawson cluster interacting with the ribosome. Furthermore, the peptide chain backbone on the ribosome host constitutes the main sites that associate with the Wells-Dawson cluster. In this work we investigate the potential of one representative pair of closely-located Wells-Dawson clusters being a genuine Double Wells-Dawson cluster. We found that the Double Wells-Dawson structure on the ribosome is geometrically sound and in line with other Double Wells-Dawson clusters previously observed in the solid state and solution. This information suggests that the Double Wells-Dawson structure on the ribosome is real and contribute to characterization of this particular structure of the ribosome.
Collapse
Affiliation(s)
- Debbie C Crans
- Department Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Irma Sánchez-Lombardo
- Department Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States.,División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Normal, IL, United States
| |
Collapse
|
5
|
Zaccai G, Natali F, Peters J, Řihová M, Zimmerman E, Ollivier J, Combet J, Maurel MC, Bashan A, Yonath A. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering. Sci Rep 2016; 6:37138. [PMID: 27849042 PMCID: PMC5111069 DOI: 10.1038/srep37138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
Collapse
Affiliation(s)
- Giuseppe Zaccai
- Institut Laue Langevin, F-38042 Grenoble, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Francesca Natali
- Institut Laue Langevin, F-38042 Grenoble, France.,CNR-IOM, OGG, F-38042 Grenoble, France
| | - Judith Peters
- Institut Laue Langevin, F-38042 Grenoble, France.,Univ. Grenoble Alpes, LiPhy, F-38044 Grenoble, France
| | - Martina Řihová
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205- CNRS, MNHN, UPMC, EPHE UPMC, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Institute of Physics, Charles University, Faculty of Mathematics and Physics, CZ-121 16 Prague, Czech Republic
| | - Ella Zimmerman
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| | - J Ollivier
- Institut Laue Langevin, F-38042 Grenoble, France
| | - J Combet
- Institut Laue Langevin, F-38042 Grenoble, France.,Institut Charles Sadron, CNRS-UdS, 67034 Strasbourg Cedex 2, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205- CNRS, MNHN, UPMC, EPHE UPMC, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Anat Bashan
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| | - Ada Yonath
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| |
Collapse
|
6
|
Zhang Z. Systematic methods for defining coarse-grained maps in large biomolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:33-48. [PMID: 25387958 DOI: 10.1007/978-94-017-9245-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China,
| |
Collapse
|
7
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
8
|
Noel JK, Whitford PC. How Simulations Reveal Dynamics, Disorder, and the Energy Landscapes of Biomolecular Function. Isr J Chem 2014. [DOI: 10.1002/ijch.201400018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Whitford PC, Sanbonmatsu KY. Simulating movement of tRNA through the ribosome during hybrid-state formation. J Chem Phys 2014; 139:121919. [PMID: 24089731 DOI: 10.1063/1.4817212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the ribosome.
Collapse
Affiliation(s)
- Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Marcel V, Ghayad S, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, Vendrell J, Hacot S, Mertani H, Albaret M, Bourdon JC, Jordan L, Thompson A, Tafer Y, Cong R, Bouvet P, Saurin JC, Catez F, Prats AC, Puisieux A, Diaz JJ. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013; 24:318-30. [PMID: 24029231 PMCID: PMC7106277 DOI: 10.1016/j.ccr.2013.08.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Ribosomes are specialized entities that participate in regulation of gene expression through their rRNAs carrying ribozyme activity. Ribosome biogenesis is overactivated in p53-inactivated cancer cells, although involvement of p53 on ribosome quality is unknown. Here, we show that p53 represses expression of the rRNA methyl-transferase fibrillarin (FBL) by binding directly to FBL. High levels of FBL are accompanied by modifications of the rRNA methylation pattern, impairment of translational fidelity, and an increase of internal ribosome entry site (IRES)-dependent translation initiation of key cancer genes. FBL overexpression contributes to tumorigenesis and is associated with poor survival in patients with breast cancer. Thus, p53 acts as a safeguard of protein synthesis by regulating FBL and the subsequent quality and intrinsic activity of ribosomes.
Collapse
Affiliation(s)
- Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Sandra E. Ghayad
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Stéphane Belin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Gabriel Therizols
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Eduardo Solano-Gonzàlez
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Julie A. Vendrell
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Hichem C. Mertani
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Marie Alexandra Albaret
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | | | - Lee Jordan
- Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alastair Thompson
- Dundee Cancer Centre, Clinical Research Centre, University of Dundee, Dundee DD1 9SY, UK
| | - Yasmine Tafer
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Rong Cong
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Philippe Bouvet
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS USR 3010, SFR BioSciences UMS3444, Lyon 69364, France
| | - Jean-Christophe Saurin
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Gastroenterology Unit, Édouard Herriot Hospital, Hospices Civils de Lyon, 69002 Lyon, France
| | - Frédéric Catez
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Anne-Catherine Prats
- Université de Toulouse, UPS, TRADGENE, EA4554, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, F-31432 Toulouse, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, F-69373, Lyon, France
- Université de Lyon, Université Lyon 1, ISPB, Lyon F-69622, France
- Corresponding author
| |
Collapse
|
11
|
Directly from the source: endogenous preparations of molecular machines. Curr Opin Struct Biol 2013; 23:319-25. [DOI: 10.1016/j.sbi.2013.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/06/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
12
|
A Vestige of an RNA Apparatus With Ribozyme Capabilities Embedded and Functions Within the Modern Ribosome. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Whitford PC, Sanbonmatsu KY, Onuchic JN. Biomolecular dynamics: order-disorder transitions and energy landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076601. [PMID: 22790780 PMCID: PMC3695400 DOI: 10.1088/0034-4885/75/7/076601] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.
Collapse
Affiliation(s)
- Paul C Whitford
- Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA
| | | | | |
Collapse
|
14
|
Fox GE, Tran Q, Yonath A. An exit cavity was crucial to the polymerase activity of the early ribosome. ASTROBIOLOGY 2012; 12:57-60. [PMID: 22191510 PMCID: PMC3264961 DOI: 10.1089/ast.2011.0692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The emergence of an RNA entity capable of synthesizing peptides was a key prebiotic development. It is hypothesized that a precursor of the modern ribosomal exit tunnel was associated with this RNA entity (e.g., "protoribosome" or "bonding entity") from the earliest time and played an essential role. Various compounds that can bind and activate amino acids, including extremely short RNA chains carrying amino acids, and possibly di- or tripeptides, would have associated with the internal cavity of the protoribosome. This cavity hosts the site for peptide bond formation and adjacent to it a relatively elongated feature that could have evolved to the modern ribosomal exit tunnel, as it is wide enough to allow passage of an oligopeptide. When two of the compounds carrying amino acids or di- or tripeptides (to which we refer, for simplicity, as small aminoacylated RNAs) were in proximity within the heart of the protoribosome, a peptide bond could form spontaneously. The growing peptide would enter the nearby cavity and would not disrupt the attachment of the substrates to the protoribosome or interfere with the subsequent attachment of additional small aminoacylated RNAs. Additionally, the presence of the peptide in the cavity would increase the lifetime of the oligopeptide in the protoribosome. Thus, subsequent addition of another amino acid would be more likely than detachment from the protoribosome, and synthesis could continue. The early ability to synthesize peptides may have resulted in an abbreviated RNA World.
Collapse
Affiliation(s)
- George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ada Yonath
- Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Zhang Z, Sanbonmatsu KY, Voth GA. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. J Am Chem Soc 2011; 133:16828-38. [PMID: 21910449 DOI: 10.1021/ja2028487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ribosome is a very large complex that consists of many RNA and protein molecules and plays a central role in protein biosynthesis in all organisms. Extensive interactions between different molecules are critical to ribosomal functional dynamics. In this work, intermolecular interactions in the Escherichia coli 70S ribosome are investigated by coarse-grained (CG) analysis. CG models are defined to preserve dynamic domains in RNAs and proteins and to capture functional motions in the ribosome, and then the CG sites are connected by harmonic springs, and spring constants are obtained by matching the computed fluctuations to those of an all-atom molecular dynamics (MD) simulation. Those spring constants indicate how strong the interactions are between the ribosomal components, and they are in good agreement with various experimental data. Nearly all the bridges between the small and large ribosomal subunits are indicated by CG interactions with large spring constants. The head of the small subunit is very mobile because it has minimal CG interactions with the rest of the subunit; however, a large number of small subunit proteins bind to maintain the internal structure of the head. The results show a clear connection between the intermolecular interactions and the structural and functional properties of the ribosome because of the reduced complexity in domain-based CG models. The present approach also provides a useful strategy to map interactions between molecules within large biomolecular complexes since it is not straightforward to investigate these by either atomistic MD simulations or residue-based elastic network models.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Chemistry, James Franck Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
16
|
Luo Y, Eldho NV, Sintim HO, Dayie TK. RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency. Nucleic Acids Res 2011; 39:8559-71. [PMID: 21742763 PMCID: PMC3201860 DOI: 10.1093/nar/gkr464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obtaining homogeneous population of natively folded RNAs is a crippling problem encountered when preparing RNAs for structural or enzymatic studies. Most of the traditional methods that are employed to prepare large quantities of RNAs involve procedures that partially denature the RNA. Here, we present a simple strategy using ‘click’ chemistry to couple biotin to a ‘caged’ photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC GMP, accepted by T7 RNA polymerase, has been used to transcribe RNAs ranging in size from 27 to 527 nt. Furthermore we show, using an in-gel fluorescence assay, that natively prepared 160 and 175 kDa minimal group II intron ribozymes have enhanced catalytic activity over the same RNAs, purified via denaturing conditions and refolded. We conclude that large complex RNAs prepared by non-denaturing means form a homogeneous population and are catalytically more active than those prepared by denaturing methods and subsequent refolding; this facile approach for native RNA preparation should benefit synthesis of RNAs for biophysical and therapeutic applications.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg, College Park, MD 20742-3360, USA
| | | | | | | |
Collapse
|
17
|
Zhang Z, Voth GA. Coarse-Grained Representations of Large Biomolecular Complexes from Low-Resolution Structural Data. J Chem Theory Comput 2010; 6:2990-3002. [PMID: 26616093 DOI: 10.1021/ct100374a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
High-resolution atomistic structures of many large biomolecular complexes have not yet been solved by experiments, such as X-ray crystallography or NMR. Often however low-resolution information is obtained by alternative techniques, such as cryo-electron microscopy or small-angle X-ray scattering. Coarse-grained (CG) models are an appropriate choice to computationally study these complexes given the limited resolution experimental data. One of the important questions therefore is how to define CG representations from these low-resolution density maps. This work provides a space-based essential dynamics coarse-graining (ED-CG) method to define a CG representation from a density map without detailed knowledge of its underlying atomistic structure and primary sequence information. This method is demonstrated on G-actin (both the atomic structure and its density map). It is then applied to the density maps of the Escherichia coli 70S ribosome and the microtubule. The results indicate that the method can define highly CG models that still preserve functionally important dynamics of large biomolecular complexes.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Chemistry, James Franck and Computation Institutes, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck and Computation Institutes, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
18
|
Abstract
Structural analysis, supported by biochemical, mutagenesis and computational evidence, indicates that the peptidyltransferase centre of the contemporary ribosome is a universal symmetrical pocket composed solely of rRNA. This pocket seems to be a relic of the proto-ribosome, an ancient ribozyme, which was a dimeric RNA assembly formed from self-folded RNA chains of identical, similar or different sequences. This could have occurred spontaneously by gene duplication or gene fusion. This pocket-like entity was capable of autonomously catalysing various reactions, including peptide bond formation and non-coded or semi-coded amino acid polymerization. Efforts toward the structural definition of the early entity capable of genetic decoding involve the crystallization of the small ribosomal subunit of a bacterial organism harbouring a single functional rRNA operon.
Collapse
|
19
|
Zaccai G. Biological physics at large facilities: from molecule to cell. J R Soc Interface 2009; 6 Suppl 5:S565-6. [PMID: 19640878 DOI: 10.1098/rsif.2009.0269.focus] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|