1
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Salerno N, Panuccio G, Sabatino J, Leo I, Torella M, Sorrentino S, De Rosa S, Torella D. Cellular and Molecular Mechanisms Underlying Tricuspid Valve Development and Disease. J Clin Med 2023; 12:jcm12103454. [PMID: 37240563 DOI: 10.3390/jcm12103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tricuspid valve (TV) disease is highly prevalent in the general population. For ages considered "the forgotten valve" because of the predominant interest in left-side valve disease, the TV has now received significant attention in recent years, with significant improvement both in diagnosis and in management of tricuspid disease. TV is characterized by complex anatomy, physiology, and pathophysiology, in which the right ventricle plays a fundamental role. Comprehensive knowledge of molecular and cellular mechanisms underlying TV development, TV disease, and tricuspid regurgitation-related right-ventricle cardiomyopathy is necessary to enhance TV disease understanding to improve the ability to risk stratify TR patients, while also predicting valve dysfunction and/or response to tricuspid regurgitation treatment. Scientific efforts are still needed to eventually decipher the complete picture describing the etiopathogenesis of TV and TV-associated cardiomyopathy, and future advances to this aim may be achieved by combining emerging diagnostic imaging modalities with molecular and cellular studies. Overall, basic science studies could help to streamline a new coherent hypothesis underlying both the development of TV during embryogenesis and TV-associated disease and its complications in adult life, providing the conceptual basis for the ultimate and innovative field of valve repair and regeneration using tissue-engineered heart valves.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:cells11132082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body’s basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes “see” light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the “secret identity” of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
|
4
|
Nasim S, Pandey P, Kanashiro-Takeuchi RM, He J, Hutcheson JD, Kos L. Pigmentation Affects Elastic Fiber Patterning and Biomechanical Behavior of the Murine Aortic Valve. Front Cardiovasc Med 2021; 8:754560. [PMID: 34957247 PMCID: PMC8702816 DOI: 10.3389/fcvm.2021.754560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The aortic valve (AoV) maintains unidirectional blood distribution from the left ventricle of the heart to the aorta for systemic circulation. The AoV leaflets rely on a precise extracellular matrix microarchitecture of collagen, elastin, and proteoglycans for appropriate biomechanical performance. We have previously demonstrated a relationship between the presence of pigment in the mouse AoV with elastic fiber patterning using multiphoton imaging. Here, we extended those findings using wholemount confocal microscopy revealing that elastic fibers were diminished in the AoV of hypopigmented mice (KitWv and albino) and were disorganized in the AoV of K5-Edn3 transgenic hyperpigmented mice when compared to wild type C57BL/6J mice. We further used atomic force microscopy to measure stiffness differences in the wholemount AoV leaflets of mice with different levels of pigmentation. We show that AoV leaflets of K5-Edn3 had overall higher stiffness (4.42 ± 0.35 kPa) when compared to those from KitWv (2.22 ± 0.21 kPa), albino (2.45 ± 0.16 kPa), and C57BL/6J (3.0 ± 0.16 kPa) mice. Despite the striking elastic fiber phenotype and noted stiffness differences, adult mutant mice were found to have no overt cardiac differences as measured by echocardiography. Our results indicate that pigmentation, but not melanocytes, is required for proper elastic fiber organization in the mouse AoV and dictates its biomechanical properties.
Collapse
Affiliation(s)
- Sana Nasim
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Popular Pandey
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States.,Department of Physics, Florida International University, Miami, FL, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jin He
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States.,Department of Physics, Florida International University, Miami, FL, United States
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States.,Department of Biological Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
6
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
7
|
Hutcheson JD, Schlotter F, Creager MD, Li X, Pham T, Vyas P, Higashi H, Body SC, Aikawa M, Singh SA, Kos L, Aikawa E. Elastogenesis Correlates With Pigment Production in Murine Aortic Valve Leaflets. Front Cardiovasc Med 2021; 8:678401. [PMID: 34239903 PMCID: PMC8257952 DOI: 10.3389/fcvm.2021.678401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Aortic valve (AV) leaflets rely on a precise extracellular matrix (ECM) microarchitecture for appropriate biomechanical performance. The ECM structure is maintained by valvular interstitial cells (VICs), which reside within the leaflets. The presence of pigment produced by a melanocytic population of VICs in mice with dark coats has been generally regarded as a nuisance, as it interferes with histological analysis of the AV leaflets. However, our previous studies have shown that the presence of pigment correlates with increased mechanical stiffness within the leaflets as measured by nanoindentation analyses. In the current study, we seek to better characterize the phenotype of understudied melanocytic VICs, explore the role of these VICs in ECM patterning, and assess the presence of these VICs in human aortic valve tissues. Approach and Results: Immunofluorescence and immunohistochemistry revealed that melanocytes within murine AV leaflets express phenotypic markers of either neuronal or glial cells. These VIC subpopulations exhibited regional patterns that corresponded to the distribution of elastin and glycosaminoglycan ECM proteins, respectively. VICs with neuronal and glial phenotypes were also found in human AV leaflets and showed ECM associations similar to those observed in murine leaflets. A subset of VICs within human AV leaflets also expressed dopachrome tautomerase, a common melanocyte marker. A spontaneous mouse mutant with no aortic valve pigmentation lacked elastic fibers and had reduced elastin gene expression within AV leaflets. A hyperpigmented transgenic mouse exhibited increased AV leaflet elastic fibers and elastin gene expression. Conclusions: Melanocytic VIC subpopulations appear critical for appropriate elastogenesis in mouse AVs, providing new insight into the regulation of AV ECM homeostasis. The identification of a similar VIC population in human AVs suggests conservation across species.
Collapse
Affiliation(s)
- Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Florian Schlotter
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Heart Center Leipzig at Leipzig University, Department of Internal Medicine/Cardiology, Leipzig, Germany
| | - Michael D. Creager
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoshuang Li
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Payal Vyas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Simon C. Body
- Center for Perioperative Genomics, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Cardiovascular Division, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
9
|
Regional Changes of Iris Stiffness in the Rabbits Suffered from Chronic High Intraocular Pressure. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Chaparro D, Dargam V, Alvarez P, Yeung J, Saytashev I, Bustillo J, Loganathan A, Ramella-Roman J, Agarwal A, Hutcheson JD. A Method to Quantify Tensile Biaxial Properties of Mouse Aortic Valve Leaflets. J Biomech Eng 2020; 142:100801. [PMID: 32291440 DOI: 10.1115/1.4046921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/08/2022]
Abstract
Understanding aortic valve (AV) mechanics is crucial in elucidating both the mechanisms that drive the manifestation of valvular diseases as well as the development of treatment modalities that target these processes. Genetically modified mouse models have become the gold standard in assessing biological mechanistic influences of AV development and disease. However, very little is known about mouse aortic valve leaflet (MAVL) tensile properties due to their microscopic size (∼500 μm long and 45 μm thick) and the lack of proper mechanical testing modalities to assess uniaxial and biaxial tensile properties of the tissue. We developed a method in which the biaxial tensile properties of MAVL tissues can be assessed by adhering the tissues to a silicone rubber membrane utilizing dopamine as an adhesive. Applying equiaxial tensile loads on the tissue-membrane composite and tracking the engineering strains on the surface of the tissue resulted in the characteristic orthotropic response of AV tissues seen in human and porcine tissues. Our data suggest that the circumferential direction is stiffer than the radial direction (n = 6, P = 0.0006) in MAVL tissues. This method can be implemented in future studies involving longitudinal mechanical stimulation of genetically modified MAVL tissues bridging the gap between cellular biological mechanisms and valve mechanics in popular mouse models of valve disease.
Collapse
Affiliation(s)
- Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Valentina Dargam
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Paulina Alvarez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Jay Yeung
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Ilyas Saytashev
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Jenniffer Bustillo
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174
| | - Archana Loganathan
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174
| | - Jessica Ramella-Roman
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|
11
|
Sánchez-Piña J, Lorenzale M, Fernández MC, Durán AC, Sans-Coma V, Fernández B. Pigmentation of the aortic and pulmonary valves in C57BL/6J x Balb/cByJ hybrid mice of different coat colours. Anat Histol Embryol 2019; 48:429-436. [PMID: 31259435 DOI: 10.1111/ahe.12463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/19/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
Neural crest-derived melanocytes have been recorded in several parts of the mammalian heart but not in the pulmonary valve. We report here the presence of melanin-containing cells in the leaflets (cusps) of both the aortic and pulmonary valves. A total of 158 C57BL/6J x Balb/cByJ hybrid mice exhibiting four coat colours, namely black, white, agouti and non-agouti brown, were examined. We sought for any relationship between the presence of melanocytes in the valves and the coat colour of the animals. The pigmentation levels of the leaflets were accomplished using a scale of five pigment intensities. White mice lacked pigment in the heart. In 10.5% of the remaining animals, there were melanocytes in the pulmonary valve leaflets. Thus, this is the first study to report the presence of such cells in the pulmonary valve of mammals. Melanocytes occurred in the leaflets of the aortic valves of 87.2% of mice. The incidence of melanocytes and the pigmentation level of the leaflets did not statistically differ according to the coat colours of the animals. This disagrees with previous observations, indicating that the amount of melanocytes in the heart reflects that of the skin. The incidence and distribution of melanocytes in aortic and pulmonary valves are consistent with the notion that the formation of the arterial valves is mediated by specific subpopulations of neural crest cells. We hypothesize that melanocytes, even not producing melanin, may be more frequent in the heart than previously thought, exerting presumably an immunological function.
Collapse
Affiliation(s)
- Jaira Sánchez-Piña
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Miguel Lorenzale
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - María Carmen Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Ana C Durán
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Valentín Sans-Coma
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
12
|
Hulin A, Hortells L, Gomez-Stallons MV, O'Donnell A, Chetal K, Adam M, Lancellotti P, Oury C, Potter SS, Salomonis N, Yutzey KE. Maturation of heart valve cell populations during postnatal remodeling. Development 2019; 146:dev.173047. [PMID: 30796046 DOI: 10.1242/dev.173047] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/07/2019] [Indexed: 01/23/2023]
Abstract
Heart valve cells mediate extracellular matrix (ECM) remodeling during postnatal valve leaflet stratification, but phenotypic and transcriptional diversity of valve cells in development is largely unknown. Single cell analysis of mouse heart valve cells was used to evaluate cell heterogeneity during postnatal ECM remodeling and leaflet morphogenesis. The transcriptomic analysis of single cells from postnatal day (P)7 and P30 murine aortic (AoV) and mitral (MV) heart valves uncovered distinct subsets of melanocytes, immune and endothelial cells present at P7 and P30. By contrast, interstitial cell populations are different from P7 to P30. P7 valve leaflets exhibit two distinct collagen- and glycosaminoglycan-expressing interstitial cell clusters, and prevalent ECM gene expression. At P30, four interstitial cell clusters are apparent with leaflet specificity and differential expression of complement factors, ECM proteins and osteogenic genes. This initial transcriptomic analysis of postnatal heart valves at single cell resolution demonstrates that subpopulations of endothelial and immune cells are relatively constant throughout postnatal development, but interstitial cell subpopulations undergo changes in gene expression and cellular functions in primordial and mature valves.
Collapse
Affiliation(s)
- Alexia Hulin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA.,Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Luis Hortells
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
| | - M Victoria Gomez-Stallons
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
| | - Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA
| | - Patrizio Lancellotti
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium.,University of Liège Hospital, GIGA Cardiovascular Sciences, Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, Liège 4000, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari 70124, Italy
| | - Cecile Oury
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229, USA .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229, USA
| |
Collapse
|
13
|
Ultracytochemical visualization of calcium distribution in heart cells and erythrocytes of zebrafish Danio rerio. Micron 2018; 111:19-27. [DOI: 10.1016/j.micron.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023]
|
14
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
15
|
The bulbus arteriosus of the holocephalan heart: gross anatomy, histomorphology, pigmentation, and evolutionary significance. ZOOLOGY 2017; 123:37-45. [PMID: 28760682 DOI: 10.1016/j.zool.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/20/2022]
Abstract
This study was designed to determine whether the outflow tract of the holocephalan heart is composed of a myocardial conus arteriosus and a non-myocardial bulbus arteriosus, as is the case in elasmobranchs. This is a key issue to verify the hypothesis that these two anatomical components existed from the onset of the jawed vertebrate radiation. The Holocephali are the sister group of the elasmobranchs, sharing with them a common, still unknown Palaeozoic ancestor. The sample examined herein consisted of hearts from individuals of four species, two of them belonging to the Chimaeridae and the other two to the Rhinochimaeridae. In all specimens, the cardiac outflow tract consisted of a conus arteriosus, with myocardium in its walls and two rows of valves at its luminal side, and an intrapericardial bulbus arteriosus shorter than the conus and devoid of valves. The bulbus, mainly composed of elastin and smooth musculature, was covered by the epicardium and crossed longitudinally by coronary artery trunks. These findings give added support to the viewpoint that the outflow tract of the primitive heart of the gnathostomes was not composed of a single component, but two, the conus and the bulbus. All rabbitfish (Chimaera monstrosa) examined had pigment cells over the surface of the heart. The degree of pigmentation, which varied widely between individuals, was particularly intense in the cardiac outflow tract. Pigment cells also occurred in the bulbus arteriosus of one of the two hearts of the straightnose rabbitfish (Rhinochimaera atlantica) included in the study. The cells containing pigment, presumably derived from the neural crest, were located in the subepicardium.
Collapse
|
16
|
Zukowska P, Kutryb-Zajac B, Jasztal A, Toczek M, Zabielska M, Borkowski T, Khalpey Z, Smolenski RT, Slominska EM. Deletion of CD73 in mice leads to aortic valve dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1464-1472. [PMID: 28192180 DOI: 10.1016/j.bbadis.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca2+, Mg2+ and PO43- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity.
Collapse
Affiliation(s)
- P Zukowska
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - B Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - A Jasztal
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - M Toczek
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - M Zabielska
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - T Borkowski
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - Z Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona, College of Medicine, Tuscon, United States
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - E M Slominska
- Department of Biochemistry, Medical University of Gdansk, Poland.
| |
Collapse
|
17
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
18
|
Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC DEVELOPMENTAL BIOLOGY 2015; 15:36. [PMID: 26472242 PMCID: PMC4608261 DOI: 10.1186/s12861-015-0087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Background Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3 mice, which are null for MBNL1 protein. Methods Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. Results As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. Conclusions Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0087-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Coram
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
| | - Samantha J Stillwagon
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Anuradha Guggilam
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Andrea N Ladd
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
19
|
Reyes-Moya I, Torres-Prioris A, Sans-Coma V, Fernández B, Durán AC. Heart Pigmentation in the Gray Bichir,Polypterus senegalus(Actinopterygii: Polypteriformes). Anat Histol Embryol 2014; 44:475-80. [DOI: 10.1111/ahe.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 10/15/2014] [Indexed: 11/26/2022]
Affiliation(s)
- I. Reyes-Moya
- Department of Animal Biology; Faculty of Science; University of Málaga; 29071 Málaga Spain
| | - A. Torres-Prioris
- Department of Animal Biology; Faculty of Science; University of Málaga; 29071 Málaga Spain
| | - V. Sans-Coma
- Department of Animal Biology; Faculty of Science; University of Málaga; 29071 Málaga Spain
- Biomedical Research Institute of Málaga (IBIMA); University of Málaga; 29071 Málaga Spain
| | - B. Fernández
- Department of Animal Biology; Faculty of Science; University of Málaga; 29071 Málaga Spain
- Biomedical Research Institute of Málaga (IBIMA); University of Málaga; 29071 Málaga Spain
| | - A. C. Durán
- Department of Animal Biology; Faculty of Science; University of Málaga; 29071 Málaga Spain
- Biomedical Research Institute of Málaga (IBIMA); University of Málaga; 29071 Málaga Spain
| |
Collapse
|
20
|
Body pigmentation as a risk factor for the formation of intracranial aneurysms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301631. [PMID: 24967348 PMCID: PMC4054613 DOI: 10.1155/2014/301631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrated pigmented cells both in the murine heart, in pulmonary veins, and in brain arteries. Moreover, a role for melanocytes in the downregulation of inflammatory processes was suggested. As there is increasing evidence that inflammation is contributing significantly to the pathogenesis of intracranial aneurysms, melanocyte-like cells may be relevant in preventing age-related impairment of vessels. As pigmentation of the heart reflects that of coat color, aspects of body pigmentation might be associated with the incidence of intracranial aneurysms. We performed a case-control study to evaluate associations between the pigmentation of hair and eyes and the formation of aneurysms. In addition to hair and eye color, constitutive and facultative skin pigmentation were assessed in a replication study as well as individual handedness which can be seen as a neurophysiological correlate of developmental pigmentation processes. Hair pigmentation was highly associated with intracranial aneurysms in both samples, whereas eye pigmentation was not. In the replication cohort, facultative but not constitutive skin pigmentation proved significant. The strongest association was observed for individual handedness. Results indicate a significant association of intracranial aneurysms with particular aspects of body pigmentation as well as handedness, and imply clinical usefulness for screening of aneurysms and possible interventions.
Collapse
|
21
|
Arianayagam S, Ryan TJ. Human pigmentation: A side effect adapted from a primitive organism's survival, acting through cell attachment with an affinity for the keratinocyte and for elastin: Part I. Indian Dermatol Online J 2014; 5:201-9. [PMID: 24860764 PMCID: PMC4030357 DOI: 10.4103/2229-5178.131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pigmentation featured millions of years ago and perhaps began with an amoeba frightening off a predator with some agent such as dopamine to prevent its attachment for phagocytosis by an enemy. This paper suggests that the environmental forces of grip and stick deserve greater emphasis and that mechanical forces involved in grip and stick or release from attachment, all point to control of proteases underlying pigmentation. There is an affinity for elastin as a pathway for melanin to exit its peripheral location in the epidermis into lymphatics and play a humeral role in defense mechanisms. The hair follicle follows the epidermal-dermal pattern of behavior with an affinity for elastin, a controlling function of melanin and through the bulge, an influence of mechanical forces and control by protease inhibitors.
Collapse
Affiliation(s)
| | - Terence J Ryan
- Department of Dermatology, Oxford University, Oxford, UK
| |
Collapse
|
22
|
Dubey S, Roulin A. Evolutionary and biomedical consequences of internal melanins. Pigment Cell Melanoma Res 2014; 27:327-38. [DOI: 10.1111/pcmr.12231] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sylvain Dubey
- Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore Lausanne Switzerland
| |
Collapse
|
23
|
Larue L, de Vuyst F, Delmas V. Modeling melanoblast development. Cell Mol Life Sci 2013; 70:1067-79. [PMID: 22915137 PMCID: PMC11113344 DOI: 10.1007/s00018-012-1112-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Melanoblasts are a particular type of cell that displays extensive cellular proliferation during development to contribute to the skin. There are only a few melanoblast founders, initially located just dorsal to the neural tube, and they sequentially colonize the dermis, epidermis, and hair follicles. In each compartment, melanoblasts are exposed to a wide variety of developmental cues that regulate their expansion. The colonization of the dermis and epidermis by melanoblasts involves substantial proliferation to generate thousands of cells or more from a few founders within a week of development. This review addresses the cellular and molecular events occurring during melanoblast development. We focus on intrinsic and extrinsic factors that control melanoblast proliferation. We also present a robust mathematical model for estimating the doubling-time of dermal and epidermal melanoblasts for all coat color phenotypes from black to white.
Collapse
Affiliation(s)
- Lionel Larue
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, 91405, Orsay, France.
| | | | | |
Collapse
|
24
|
A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus. PLoS One 2013; 8:e53183. [PMID: 23382837 PMCID: PMC3561373 DOI: 10.1371/journal.pone.0053183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/26/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes.
Collapse
|
25
|
Balani K, Patel RR, Keshri AK, Lahiri D, Agarwal A. Multi-scale hierarchy of Chelydra serpentina: Microstructure and mechanical properties of turtle shell. J Mech Behav Biomed Mater 2011; 4:1440-51. [DOI: 10.1016/j.jmbbm.2011.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 11/25/2022]
|
26
|
Deletion of RBP-J in adult mice leads to the onset of aortic valve degenerative diseases. Mol Biol Rep 2011; 39:3837-45. [DOI: 10.1007/s11033-011-1162-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/30/2011] [Indexed: 01/04/2023]
|