1
|
Knuchel R, Erlic Z, Gruber S, Amar L, Larsen CK, Gimenez-Roqueplo AP, Mulatero P, Tetti M, Pecori A, Pamporaki C, Langton K, Peitzsch M, Ceccato F, Prejbisz A, Januszewicz A, Adolf C, Remde H, Lenzini L, Dennedy M, Deinum J, Jefferson E, Blanchard A, Zennaro MC, Eisenhofer G, Beuschlein F. Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension. Front Endocrinol (Lausanne) 2024; 15:1370525. [PMID: 38596218 PMCID: PMC11002274 DOI: 10.3389/fendo.2024.1370525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Endocrine hypertension (EHT) due to pheochromocytoma/paraganglioma (PPGL), Cushing's syndrome (CS), or primary aldosteronism (PA) is linked to a variety of metabolic alterations and comorbidities. Accordingly, patients with EHT and primary hypertension (PHT) are characterized by distinct metabolic profiles. However, it remains unclear whether the metabolomic differences relate solely to the disease-defining hormonal parameters. Therefore, our objective was to study the association of disease defining hormonal excess and concomitant adrenal steroids with metabolomic alterations in patients with EHT. Methods Retrospective European multicenter study of 263 patients (mean age 49 years, 50% females; 58 PHT, 69 PPGL, 37 CS, 99 PA) in whom targeted metabolomic and adrenal steroid profiling was available. The association of 13 adrenal steroids with differences in 79 metabolites between PPGL, CS, PA and PHT was examined after correction for age, sex, BMI, and presence of diabetes mellitus. Results After adjustment for BMI and diabetes mellitus significant association between adrenal steroids and metabolites - 18 in PPGL, 15 in CS, and 23 in PA - were revealed. In PPGL, the majority of metabolite associations were linked to catecholamine excess, whereas in PA, only one metabolite was associated with aldosterone. In contrast, cortisone (16 metabolites), cortisol (6 metabolites), and DHEA (8 metabolites) had the highest number of associated metabolites in PA. In CS, 18-hydroxycortisol significantly influenced 5 metabolites, cortisol affected 4, and cortisone, 11-deoxycortisol, and DHEA each were linked to 3 metabolites. Discussions Our study indicates cortisol, cortisone, and catecholamine excess are significantly associated with metabolomic variances in EHT versus PHT patients. Notably, catecholamine excess is key to PPGL's metabolomic changes, whereas in PA, other non-defining adrenal steroids mainly account for metabolomic differences. In CS, cortisol, alongside other non-defining adrenal hormones, contributes to these differences, suggesting that metabolic disorders and cardiovascular morbidity in these conditions could also be affected by various adrenal steroids.
Collapse
Affiliation(s)
- Robin Knuchel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Zoran Erlic
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Sven Gruber
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
| | - Laurence Amar
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Centre de référence en maladies rares de la surrénale, Hôpital Européen Georges Pompidou, Paris, France
| | - Casper K. Larsen
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Christina Pamporaki
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Katharina Langton
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filippo Ceccato
- Unita' Operativa Complessa (UOC) Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Livia Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Michael Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Jaap Deinum
- Department of Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emily Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d’Investigations Cliniques, Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, Paris Cardiovascular Research Center (PARCC), L'Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France
| | - Graeme Eisenhofer
- Medical Clinic III, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| |
Collapse
|
2
|
Nethathe GD, Lipman J, Anderson R, Fuller PJ, Feldman C. Glucocorticoids with or without fludrocortisone in septic shock: a narrative review from a biochemical and molecular perspective. Br J Anaesth 2024; 132:53-65. [PMID: 38030548 PMCID: PMC10797514 DOI: 10.1016/j.bja.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Two randomised controlled trials have reported a reduction in mortality when adjunctive hydrocortisone is administered in combination with fludrocortisone compared with placebo in septic shock. A third trial did not support this finding when hydrocortisone administered in combination with fludrocortisone was compared with hydrocortisone alone. The underlying mechanisms for this mortality benefit remain poorly understood. We review the clinical implications and potential mechanisms derived from laboratory and clinical data underlying the beneficial role of adjunctive fludrocortisone with hydrocortisone supplementation in septic shock. Factors including distinct biological effects of glucocorticoids and mineralocorticoids, tissue-specific and mineralocorticoid receptor-independent effects of mineralocorticoids, and differences in downstream signalling pathways between mineralocorticoid and glucocorticoid binding at the mineralocorticoid receptor could contribute to this interaction. Furthermore, pharmacokinetic and pharmacodynamic disparities exist between aldosterone and its synthetic counterpart fludrocortisone, potentially influencing their effects. Pending publication of well-designed, randomised controlled trials, a molecular perspective offers valuable insights and guidance to help inform clinical strategies.
Collapse
Affiliation(s)
- Gladness D Nethathe
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Jeffrey Lipman
- Academy of Critical Care, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Brisbane, 4029, QLD, Australia; Nimes University Hospital, University of Montpellier, Nimes, France
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Peter J Fuller
- Endocrinology Unit, Monash Health, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Charles Feldman
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Chin JSR, Phan TAN, Albert LT, Keene AC, Duboué ER. Long lasting anxiety following early life stress is dependent on glucocorticoid signaling in zebrafish. Sci Rep 2022; 12:12826. [PMID: 35896563 PMCID: PMC9329305 DOI: 10.1038/s41598-022-16257-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic adversity in early childhood is associated with increased anxiety and a propensity for substance abuse later in adulthood, yet the effects of early life stress (ELS) on brain development remain poorly understood. The zebrafish, Danio rerio, is a powerful model for studying neurodevelopment and stress. Here, we describe a zebrafish model of ELS and identify a role for glucocorticoid signaling during a critical window in development that leads to long-term changes in brain function. Larval fish subjected to chronic stress in early development exhibited increased anxiety-like behavior and elevated glucocorticoid levels later in life. Increased stress-like behavior was only observed when fish were subjected to ELS within a precise time window in early development, revealing a temporal critical window of sensitivity. Moreover, enhanced anxiety-like behavior only emerges after two months post-ELS, revealing a developmentally specified delay in the effects of ELS. ELS leads to increased levels of baseline cortisol, and resulted in a dysregulation of cortisol receptors' mRNA expression, suggesting long-term effects on cortisol signaling. Together, these findings reveal a 'critical window' for ELS to affect developmental reprogramming of the glucocorticoid receptor pathway, resulting in chronic elevated stress.
Collapse
Affiliation(s)
- Jacqueline S R Chin
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Tram-Anh N Phan
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Lydia T Albert
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA
| | - Alex C Keene
- College of Arts and Sciences, Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33407, USA.
| |
Collapse
|
4
|
Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. J Neuromuscul Dis 2021; 8:39-52. [PMID: 33104035 PMCID: PMC7902991 DOI: 10.3233/jnd-200556] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid steroids are widely used as immunomodulatory agents in acute and chronic conditions. Glucocorticoid steroids such as prednisone and deflazacort are recommended for treating Duchenne Muscular Dystrophy where their use prolongs ambulation and life expectancy. Despite this benefit, glucocorticoid use in Duchenne Muscular Dystrophy is also associated with significant adverse consequences including adrenal suppression, growth impairment, poor bone health and metabolic syndrome. For other forms of muscular dystrophy like the limb girdle dystrophies, glucocorticoids are not typically used. Here we review the experimental evidence supporting multiple mechanisms of glucocorticoid action in dystrophic muscle including their role in dampening inflammation and myofiber injury. We also discuss alternative dosing strategies as well as novel steroid agents that are in development and testing, with the goal to reduce adverse consequences of prolonged glucocorticoid exposure while maximizing beneficial outcomes.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julie A Fischer
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Abstract
The recent demonstration of the significant reduction in mortality in patients with septic shock treated with adjunctive glucocorticoids combined with fludrocortisone and the effectiveness of angiotensin II in treating vasodilatory shock have renewed interest in the role of the mineralocorticoid axis in critical illness. Glucocorticoids have variable interactions at the mineralocorticoid receptor. Similarly, mineralocorticoid receptor-aldosterone interactions differ from mineralocorticoid receptor-glucocorticoid interactions and predicate receptor-ligand interactions that differ with respect to cellular effects. Hyperreninemic hypoaldosteronism or selective hypoaldosteronism, an impaired adrenal response to increasing renin levels, occurs in a subgroup of hemodynamically unstable critically ill patients. The suggestion is that there is a defect at the level of the adrenal zona glomerulosa associated with a high mortality rate that may represent an adaptive response aimed at increasing cortisol levels. Furthermore, cross-talk exists between angiotensin II and aldosterone, which needs to be considered when employing therapeutic strategies.
Collapse
|
6
|
The circadian phase of antenatal glucocorticoid treatment affects the risk of behavioral disorders. Nat Commun 2020; 11:3593. [PMID: 32681096 PMCID: PMC7367845 DOI: 10.1038/s41467-020-17429-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
During pregnancy, maternal endocrine signals drive fetal development and program the offspring's physiology. A disruption of maternal glucocorticoid (GC) homeostasis increases the child's risk of developing psychiatric disorders later in life. We here show in mice, that the time of day of antenatal GC exposure predicts the behavioral phenotype of the adult offspring. Offspring of mothers receiving GCs out-of-phase compared to their endogenous circadian GC rhythm show elevated anxiety, impaired stress coping, and dysfunctional stress-axis regulation. The fetal circadian clock determines the vulnerability of the stress axis to GC treatment by controlling GC receptor (GR) availability in the hypothalamus. Similarly, a retrospective observational study indicates poorer stress compensatory capacity in 5-year old preterm infants whose mothers received antenatal GCs towards the evening. Our findings offer insights into the circadian physiology of feto-maternal crosstalk and assign a role to the fetal clock as a temporal gatekeeper of GC sensitivity.
Collapse
|
7
|
Dey KK, Ghosh M. Determination of the correlation between the structure and dynamics of deflazacort by solid state NMR measurements. NEW J CHEM 2020. [DOI: 10.1039/d0nj03418e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation between the structure and dynamics of glucocorticoid deflazacort is determined by a 2DPASS CP-MAS SSNMR experiment and 13C spin–lattice relaxation time by a Torchia CP experiment.
Collapse
Affiliation(s)
- Krishna Kishor Dey
- Department of Physics
- Dr Harisingh Gour Central University
- Sagar-470003
- India
| | - Manasi Ghosh
- Physics Section
- MMV
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
8
|
Tükenmez H, Edström I, Kalsum S, Braian C, Ummanni R, Fick SB, Sundin C, Lerm M, Elofsson M, Larsson C. Corticosteroids protect infected cells against mycobacterial killing in vitro. Biochem Biophys Res Commun 2019; 511:117-121. [PMID: 30773257 DOI: 10.1016/j.bbrc.2019.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
The effect of corticosteroids on human physiology is complex and their use in tuberculosis patients remains controversial. In a high-throughput screening approach designed to discover virulence inhibitors, several corticosteroids were found to prevent cytolysis of fibroblasts infected with mycobacteria. Further experiments with Mycobacterium tuberculosis showed anti-cytolytic activity in the 10 nM range, but no effect on bacterial growth or survival in the absence of host cells at 20 μM. The results from a panel of corticosteroids with various affinities to the glucocorticoid- and mineralocorticoid receptors indicate that the inhibition of cytolysis most likely is mediated through the glucocorticoid receptor. Using live-imaging of M. tuberculosis-infected human monocyte-derived macrophages, we also show that corticosteroids to some extent control intracellular bacteria. In vitro systems with reduced complexity are to further study and understand the interactions between bacterial infection, immune defense and cell signaling.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Isabel Edström
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Sadaf Kalsum
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Clara Braian
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
| | - Stina Berglund Fick
- Chemical Biology Consortium Sweden (CBCS), Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Charlotta Sundin
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Christer Larsson
- Infectious Diseases Clinic, Umeå University Hospital, SE-901 85, Umeå, Sweden.
| |
Collapse
|
9
|
Patricio-Gómez JM, Valdez RA, Veloz A, Aguilar-Vega L, Zurabian R, Romano MC. The synthesis of steroids by Taenia crassiceps WFU cysticerci and tapeworms is related to the developmental stages of the parasites. Gen Comp Endocrinol 2018; 259:154-160. [PMID: 29174867 DOI: 10.1016/j.ygcen.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
Abstract
Taeniids tapeworms are hermaphroditic helminths that gradually develop testis and ovaries in their reproductive units. The larval stage of the tapeworms named cysticercus is a vesicle that contains the scolex and proliferates asexually in the abdominal cavity of mice. Once in the host, they evaginate, attach to the gut and develop into an adult organism, the tapeworm. We have previously reported reported that T. crassiceps ORF and solium cysticerci transform steroid precursors to androgens and estrogens. Taenia crassiceps WFU cysticerci can also synthesize corticosteroids. The aim of the present work is to investigate the relationship between steroid synthesis ability and the developmental stage of the parasite T. crassiceps WFU. To this purpose, cysticerci were obtained from the abdominal cavity of female mice, manually separated in invaginated (IC) and evaginated parasites (EC) and preincubated for 24 h in DMEM plus antibiotics/antimycotics. Next step consisted in incubation for different periods in the fresh media added with tritiated androstenedione (3H-A4) or progesterone (3H-P4) and incubated for different periods. Taenia crassiceps WFU tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were pre-cultured in DMEM plus FBS and antibiotics, and then incubated without FBS for different time periods, in the presence of 3H-A4 or 3H-P4. At the end of the experiments the media from cysticerci and tapeworms were analyzed by thin layer chromatography. Results showed that testosterone synthesis was significantly higher in the evaginated cysticerci and increased with time in culture. The invaginated and evaginated cysticerci also synthesized small quantities of 17ß-estradiol (E2) and estrone. The evaginated cysticerci synthesized twice more 3H-deoxycorticosterone (3H-DOC) than the invaginated parasites, the production increased significantly with time in culture. Taenia crassiceps WFU tapeworms synthesized significant quantities of 3H-testosterone and small amounts of estrone after only 3 h of culture in the presence of 3H-A4. The tapeworms also transformed 3H-P4 to 3H-DOC and increased its synthesis after 24 h in culture. In summary, our data show the pathways that T. crassiceps WFU cysticerci use to synthesize sexual steroids in both larval developmental stages and reveals the steroidogenic capacity of the tapeworms.
Collapse
Affiliation(s)
- J M Patricio-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - R A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - A Veloz
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - L Aguilar-Vega
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, México CdMx, Mexico
| | - R Zurabian
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, México CdMx, Mexico
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico.
| |
Collapse
|
10
|
Valdez RA, Jiménez P, Fernández Presas AM, Aguilar L, Willms K, Romano MC. Taenia solium tapeworms synthesize corticosteroids and sex steroids in vitro. Gen Comp Endocrinol 2014; 205:62-7. [PMID: 24793221 DOI: 10.1016/j.ygcen.2014.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022]
Abstract
Cysticercosis is a disease caused by the larval stage of Taenia solium cestodes that belongs to the family Taeniidae that affects a number of hosts including humans. Taeniids tapeworms are hermaphroditic organisms that have reproductive units called proglottids that gradually mature to develop testis and ovaries. Cysticerci, the larval stage of these parasites synthesize steroids. To our knowledge there is no information about the capacity of T. solium tapeworms to metabolize progesterone or other precursors to steroid hormones. Therefore, the aim of this paper was to investigate if T. solium tapeworms were able to transform steroid precursors to corticosteroids and sex steroids. T. solium tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were cultured in the presence of tritiated progesterone or androstenedione. At the end of the experiments the culture media were analyzed by thin layer chromatography. The experiments described here showed that small amounts of testosterone were synthesized from (3)H-progesterone by complete or segmented tapeworms whereas the incubation of segmented tapeworms with (3)H-androstenedione, instead of (3)H-progesterone, improved their capacity to synthesize testosterone. In addition, the incubation of the parasites with (3)H-progesterone yielded corticosteroids, mainly deoxicorticosterone (DOC) and 11-deoxicortisol. In summary, the results described here, demonstrate that T. solium tapeworms synthesize corticosteroid and sex steroid like metabolites. The capacity of T. solium tapeworms to synthesize steroid hormones may contribute to the physiological functions of the parasite and also to their interaction with the host.
Collapse
Affiliation(s)
- R A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., Apdo. Postal 14-745, 07360 México, D.F., Mexico
| | - P Jiménez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., Apdo. Postal 14-745, 07360 México, D.F., Mexico
| | - A M Fernández Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Ciudad Universitaria, México 04510, D.F., Mexico
| | - L Aguilar
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Ciudad Universitaria, México 04510, D.F., Mexico
| | - K Willms
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Ciudad Universitaria, México 04510, D.F., Mexico
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., Apdo. Postal 14-745, 07360 México, D.F., Mexico.
| |
Collapse
|
11
|
Shum D, Bhinder B, Radu C, Farazi T, Landthaler M, Tuschl T, Calder P, Ramirez CN, Djaballah H. An image-based biosensor assay strategy to screen for modulators of the microRNA 21 biogenesis pathway. Comb Chem High Throughput Screen 2013; 15:529-41. [PMID: 22540737 DOI: 10.2174/138620712801619131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/12/2011] [Accepted: 04/13/2012] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are evolutionary conserved, small endogenous non-coding, RNA molecules. Although their mode of action has been extensively studied, little is known about their biogenesis. As their altered expression has been implicated in many diseases, small molecules that would modulate their expression are sought after. They are generated through the concerted action of several complexes which promote their transcription, maturation, export, trafficking, and loading of mature miRNA into silencing complexes. An increasing number of studies have suggested that each of these steps serves as a regulatory junction in the process, and therefore provides an intervention point. For this purpose, we have developed a simple image-based assay strategy to screen for such modulators. Here, we describe its successful implementation which combines the use of a microRNA 21 (miR-21) synthetic mimic together with an EGFP based reporter cell line, where its expression is under the control of miR-21, to monitor EGFP expression in a format suitable for HTS. The strategy was further validated using a small panel of known gene modulators of the miRNA pathway. A screen was performed in duplicate against a library of 6,912 compounds and identified 48 initial positives exhibiting enhanced EGFP fluorescence intensity. 42 compounds were found to be inherently fluorescent in the green channel leaving the remaining 6 as potential inhibitors and with a positive rate of 0.09%. Taken together, this validated strategy offers the opportunity to discover novel and specific inhibitors of the pathway through the screening of diverse chemical libraries.
Collapse
Affiliation(s)
- David Shum
- HTS Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|