1
|
de Block T, De Baetselier I, Van den Bossche D, Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, Vanbaelen T, Claes N, Vandelannoote K, Kenyon C, Harrison O, Santhini Manoharan-Basil S. Genomic oropharyngeal Neisseria surveillance detects MALDI-TOF MS species misidentifications and reveals a novel Neisseria cinerea clade. J Med Microbiol 2024; 73. [PMID: 39212029 DOI: 10.1099/jmm.0.001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nathalie Claes
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Koen Vandelannoote
- Bacterial Phylogenomics group, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Odile Harrison
- Nuffield Department of Population Health, Infectious Diseases Epidemiology Unit, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Kanesaka I, Ohno A, Morita M, Katsuse AK, Morihana T, Ito T, Takahashi H, Kobayashi I. Epigenetic effects of ceftriaxone-resistant Neisseria gonorrhoeae FC428 mosaic-like sequences found in PenA sequences unique to Neisseria subflava and related species. J Antimicrob Chemother 2023; 78:2683-2690. [PMID: 37769185 DOI: 10.1093/jac/dkad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES The aim of this study was to explore the origin of the PenA mosaic amino acid sequence in the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone. METHODS The penA sequences of 27 Neisseria subflava pharyngeal isolates were determined by the Sanger method and penA sequences of 52 isolates from nine Neisseria species were obtained from the NCBI database. Comparative analysis of each PenA sequence was performed by multiple sequence alignment using ClustalW. In vitro resistance acquisition experiments were conducted to investigate the possibility of selection pressure by cefixime-induced amino acid substitution mutations in PenA. RESULTS All N. subflava strains, including two with low susceptibility to expanded-spectrum cephalosporins (ESCs), possessed the majority of the PenA FC428 sequence. Furthermore, a number of strains, but not all, of closely related species of N. subflava showed similar results. PenA FC428 sequences were also found in some strains of distantly related species. No new mutations in the penA sequence were observed in colonies with increased MIC in in vitro resistance acquisition experiments. CONCLUSIONS This study provides strong evidence that the FC428 PenA mosaic sequence originated from N. subflava and related species among oral commensal Neisseria species. The results of in vitro resistance acquisition experiments also suggested that one of the PenA FC428-like sequence gene polymorphisms resulted in the expression of ESC resistance. Furthermore, many of the PenA FC428 mosaic sequences were thought to be involved in the so-called epistasis effect that regulates the expression of resistance, without directly contributing to the resistance level itself.
Collapse
Affiliation(s)
- Izumo Kanesaka
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akira Ohno
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Masahiro Morita
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Takefumi Morihana
- Morihana Dental Clinic, 48, Dojocho-dojo, Kita-ku, Kobe-shi, Hyogo 651-1501, Japan
| | - Takamitsu Ito
- Department of Clinical Laboratory, Higashiosaka City Medical Center, 3-4-5, Nishiiwata, Higashiosaka-shi, Osaka 578-8588, Japan
| | - Hiroshi Takahashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| |
Collapse
|
3
|
Ikhimiukor OO, Souza SSR, Marcovici MM, Nye GJ, Gibson R, Andam CP. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun Biol 2023; 6:482. [PMID: 37137974 PMCID: PMC10156822 DOI: 10.1038/s42003-023-04877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Michael M Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Griffin J Nye
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Robert Gibson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
4
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
5
|
Orazi G, Collins AJ, Whitaker RJ. Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal Neisseria Species. mSystems 2022; 7:e0008322. [PMID: 35418239 PMCID: PMC9238386 DOI: 10.1128/msystems.00083-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one another, primarily via transformation and homologous recombination and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified, and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1,302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from prophages and other MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE Drug-resistant Neisseria gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) are known to infect Neisseria species. In this study, we identified a large number of candidate phages integrated in the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.
Collapse
Affiliation(s)
- Giulia Orazi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alan J. Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Raisman JC, Fiore MA, Tomin L, Adjei JKO, Aswad VX, Chu J, Domondon CJ, Donahue BA, Masciotti CA, McGrath CG, Melita J, Podbielski PA, Schreiner MR, Trumpore LJ, Wengert PC, Wrightstone EA, Hudson AO, Wadsworth CB. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications. PLoS One 2022; 17:e0262370. [PMID: 35025928 PMCID: PMC8758062 DOI: 10.1371/journal.pone.0262370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.
Collapse
Affiliation(s)
- Jordan C. Raisman
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Michael A. Fiore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lucille Tomin
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Joseph K. O. Adjei
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Virginia X. Aswad
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jonathan Chu
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Christina J. Domondon
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Ben A. Donahue
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Claudia A. Masciotti
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Connor G. McGrath
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jo Melita
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Paul A. Podbielski
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Madelyn R. Schreiner
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lauren J. Trumpore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Peter C. Wengert
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Emalee A. Wrightstone
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
7
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|
8
|
Arnold B, Sohail M, Wadsworth C, Corander J, Hanage WP, Sunyaev S, Grad YH. Fine-Scale Haplotype Structure Reveals Strong Signatures of Positive Selection in a Recombining Bacterial Pathogen. Mol Biol Evol 2020; 37:417-428. [PMID: 31589312 PMCID: PMC6993868 DOI: 10.1093/molbev/msz225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identifying genetic variation in bacteria that has been shaped by ecological differences remains an important challenge. For recombining bacteria, the sign and strength of linkage provide a unique lens into ongoing selection. We show that derived alleles <300 bp apart in Neisseria gonorrhoeae exhibit more coupling linkage than repulsion linkage, a pattern that cannot be explained by limited recombination or neutrality as these couplings are significantly stronger for nonsynonymous alleles than synonymous alleles. This general pattern is driven by a small fraction of highly diverse genes, many of which exhibit evidence of interspecies horizontal gene transfer and an excess of intermediate frequency alleles. Extensive simulations show that two distinct forms of positive selection can create these patterns of genetic variation: directional selection on horizontally transferred alleles or balancing selection that maintains distinct haplotypes in the presence of recombination. Our results establish a framework for identifying patterns of selection in fine-scale haplotype structure that indicate specific ecological processes in species that recombine with distantly related lineages or possess coexisting adaptive haplotypes.
Collapse
Affiliation(s)
- Brian Arnold
- Division of Informatics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Mashaal Sohail
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Crista Wadsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Shamil Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018; 9:mBio.01419-18. [PMID: 30087172 PMCID: PMC6083905 DOI: 10.1128/mbio.01419-18] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mosaic interspecifically acquired alleles of the multiple transferable resistance (mtr) efflux pump operon correlate with increased resistance to azithromycin in Neisseria gonorrhoeae in epidemiological studies. However, whether and how these alleles cause resistance is unclear. Here, we use population genomics, transformations, and transcriptional analyses to dissect the relationship between variant mtr alleles and azithromycin resistance. We find that the locus encompassing the mtrR transcriptional repressor and the mtrCDE pump is a hot spot of interspecific recombination introducing alleles from Neisseria meningitidis and Neisseria lactamica into N. gonorrhoeae, with multiple rare haplotypes in linkage disequilibrium at mtrD and the mtr promoter region. Transformations demonstrate that resistance to azithromycin, as well as to other antimicrobial compounds such as polymyxin B and crystal violet, is mediated through epistasis between these two loci and that the full-length mosaic mtrD allele is required. Gene expression profiling reveals the mechanism of resistance in mosaics couples novel mtrD alleles with promoter mutations that increase expression of the pump. Overall, our results demonstrate that epistatic interactions at mtr gained from multiple neisserial species has contributed to increased gonococcal resistance to diverse antimicrobial agents.IMPORTANCENeisseria gonorrhoeae is the sexually transmitted bacterial pathogen responsible for more than 100 million cases of gonorrhea worldwide each year. The incidence of resistance to the macrolide azithromycin has increased in the past decade; however, a large proportion of the genetic basis of resistance remains unexplained. This study is the first to conclusively demonstrate the acquisition of macrolide resistance through mtr alleles from other Neisseria species, demonstrating that commensal Neisseria bacteria are a reservoir for antibiotic resistance to macrolides, extending the role of interspecies mosaicism in resistance beyond what has been previously described for cephalosporins. Ultimately, our results emphasize that future fine-mapping of genome-wide interspecies mosaicism may be valuable in understanding the pathways to antimicrobial resistance. Our results also have implications for diagnostics and public health surveillance and control, as they can be used to inform the development of sequence-based tools to monitor and control the spread of antibiotic-resistant gonorrhea.
Collapse
|
10
|
Whittles LK, White PJ, Paul J, Didelot X. Epidemiological Trends of Antibiotic Resistant Gonorrhoea in the United Kingdom. Antibiotics (Basel) 2018; 7:antibiotics7030060. [PMID: 30011825 PMCID: PMC6165062 DOI: 10.3390/antibiotics7030060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
Gonorrhoea is one of the most common sexually-transmitted bacterial infections, globally and in the United Kingdom. The levels of antibiotic resistance in gonorrhoea reported in recent years represent a critical public health issue. From penicillins to cefixime, the gonococcus has become resistant to all antibiotics that have been previously used against it, in each case only a matter of years after introduction as a first-line therapy. After each instance of resistance emergence, the treatment recommendations have required revision, to the point that only a few antibiotics can reliably be prescribed to treat infected individuals. Most countries, including the UK, now recommend that gonorrhoea be treated with a dual therapy combining ceftriaxone and azithromycin. While this treatment is still currently effective for the vast majority of cases, there are concerning signs that this will not always remain the case, and there is no readily apparent alternative. Here, we review the use of antibiotics and epidemiological trends of antibiotic resistance in gonorrhoea from surveillance data over the past 15 years in the UK and describe how surveillance could be improved.
Collapse
Affiliation(s)
- Lilith K Whittles
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK.
| | - Peter J White
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK.
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London W2 1PG, UK.
- NIHR Health Protection Research Unit in Modelling Methodology, School of Public Health, Imperial College London, London W2 1PG, UK.
- Modelling and Economics Unit, National Infection Service, Public Health England, London NW9 5EQ, UK.
| | - John Paul
- Department of Microbiology, Public Health England Collaborative Centre, Royal Sussex County Hospital, Brighton BN2 5BE, UK.
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PH, UK.
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
11
|
Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces. Mol Phylogenet Evol 2016; 102:246-54. [DOI: 10.1016/j.ympev.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023]
|
12
|
Guzman Prieto AM, van Schaik W, Rogers MRC, Coque TM, Baquero F, Corander J, Willems RJL. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front Microbiol 2016; 7:788. [PMID: 27303380 PMCID: PMC4880559 DOI: 10.3389/fmicb.2016.00788] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis.
Collapse
Affiliation(s)
- Ana M Guzman Prieto
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Teresa M Coque
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Fernando Baquero
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
13
|
Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729-41. [DOI: 10.1016/j.resmic.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
|
14
|
Lu H, Qian G, Ren Z, Zhang C, Zhang H, Xu W, Ye P, Yang Y, Li L. Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia. BMC Infect Dis 2015; 15:239. [PMID: 26099252 PMCID: PMC4477430 DOI: 10.1186/s12879-015-0977-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. METHODS Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. RESULTS Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). CONCLUSIONS Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Guirong Qian
- Tonglu First People's Hospital, 338 Xuesheng Road, Tonglu, Hangzhou, 311500, People's Republic of China.
| | - Zhigang Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Chunxia Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Wei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections.
Collapse
|
16
|
Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet 2014; 46:1321-6. [PMID: 25383970 DOI: 10.1038/ng.3145] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), a major cause of infectious diarrhea, produce heat-stable and/or heat-labile enterotoxins and at least 25 different colonization factors that target the intestinal mucosa. The genes encoding the enterotoxins and most of the colonization factors are located on plasmids found across diverse E. coli serogroups. Whole-genome sequencing of a representative collection of ETEC isolated between 1980 and 2011 identified globally distributed lineages characterized by distinct colonization factor and enterotoxin profiles. Contrary to current notions, these relatively recently emerged lineages might harbor chromosome and plasmid combinations that optimize fitness and transmissibility. These data have implications for understanding, tracking and possibly preventing ETEC disease.
Collapse
|
17
|
Hernández-López A, Chabrol O, Royer-Carenzi M, Merhej V, Pontarotti P, Raoult D. To tree or not to tree? Genome-wide quantification of recombination and reticulate evolution during the diversification of strict intracellular bacteria. Genome Biol Evol 2014; 5:2305-17. [PMID: 24259310 PMCID: PMC3879967 DOI: 10.1093/gbe/evt178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is well known that horizontal gene transfer (HGT) is a major force in the evolution of prokaryotes. During the adaptation of a bacterial population to a new ecological niche, and particularly for intracellular bacteria, selective pressures are shifted and ecological niches reduced, resulting in a lower rate of genetic connectivity. HGT and positive selection are therefore two important evolutionary forces in microbial pathogens that drive adaptation to new hosts. In this study, we use genomic distance analyses, phylogenomic networks, tree topology comparisons, and Bayesian inference methods to investigate to what extent HGT has occurred during the evolution of the genus Rickettsia, the effect of the use of different genomic regions in estimating reticulate evolution and HGT events, and the link of these to host range. We show that ecological specialization restricts recombination occurrence in Rickettsia, but other evolutionary processes and genome architecture are also important for the occurrence of HGT. We found that recombination, genomic rearrangements, and genome conservation all show evidence of network-like evolution at whole-genome scale. We show that reticulation occurred mainly, but not only, during the early Rickettsia radiation, and that core proteome genes of every major functional category have experienced reticulated evolution and possibly HGT. Overall, the evolution of Rickettsia bacteria has been tree-like, with evidence of HGT and reticulated evolution for around 10–25% of the core Rickettsia genome. We present evidence of extensive recombination/incomplete lineage sorting (ILS) during the radiation of the genus, probably linked with the emergence of intracellularity in a wide range of hosts.
Collapse
Affiliation(s)
- Antonio Hernández-López
- Aix-Marseille Université, LATP UMR - CNRS 7353, Evolution Biologique et Modélisation, Marseille, France
| | | | | | | | | | | |
Collapse
|
18
|
Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F, Goldblatt D, Corander J, Parkhill J, Turner P, Bentley SD. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 2014; 46:305-309. [PMID: 24509479 PMCID: PMC3970364 DOI: 10.1038/ng.2895] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/15/2014] [Indexed: 11/24/2022]
Abstract
Evasion of clinical interventions by Streptococcus pneumoniae occurs through selection of non-susceptible genomic variants. We report whole-genome sequencing of 3,085 pneumococcal carriage isolates from a 2.4-km(2) refugee camp. This sequencing provides unprecedented resolution of the process of recombination and its impact on population evolution. Genomic recombination hotspots show remarkable consistency between lineages, indicating common selective pressures acting at certain loci, particularly those associated with antibiotic resistance. Temporal changes in antibiotic consumption are reflected in changes in recombination trends, demonstrating rapid spread of resistance when selective pressure is high. The highest frequencies of receipt and donation of recombined DNA fragments were observed in non-encapsulated lineages, implying that this largely overlooked pneumococcal group, which is beyond the reach of current vaccines, may have a major role in genetic exchange and the adaptation of the species as a whole. These findings advance understanding of pneumococcal population dynamics and provide information for the design of future intervention strategies.
Collapse
Affiliation(s)
- Claire Chewapreecha
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon R Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary’s Hospital, London, W2 1PG, UK
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot 63110, Thailand
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
| | - Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, 00076, Finland
| | - Lu Cheng
- Department of Mathematics and Statistics, University of Helsinki, 00014, Finland
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, 00014, Finland
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary’s Hospital, London, W2 1PG, UK
| | - Alison E Mather
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew J Page
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Susannah J. Salter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot 63110, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
| | - David Goldblatt
- Immunobiology Unit, Institute of Child Health, University College London, WC1N 1EH, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, 00014, Finland
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Maesot 63110, Thailand
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LJ, UK
| | - Stephen D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
19
|
Jääskinen V, Xiong J, Corander J, Koski T. Sparse Markov Chains for Sequence Data. Scand Stat Theory Appl 2013. [DOI: 10.1111/sjos.12053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Väinö Jääskinen
- Department of Mathematics and Statistics; University of Helsinki
| | - Jie Xiong
- Department of Mathematics and Statistics; University of Helsinki
| | - Jukka Corander
- Department of Mathematics and Statistics; University of Helsinki
- Department of Mathematics; Åbo Akademi University
| | - Timo Koski
- Department of Mathematics; KTH Royal Institute of Technology
| |
Collapse
|
20
|
Prevalence of autotransporters in Escherichia coli: what is the impact of phylogeny and pathotype? Int J Med Microbiol 2013; 304:243-56. [PMID: 24239047 DOI: 10.1016/j.ijmm.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/30/2013] [Accepted: 10/13/2013] [Indexed: 11/23/2022] Open
Abstract
Autotransporter (AT) proteins are widespread surface-exposed or secreted factors in Escherichia coli. Several ATs have been correlated with pathogenesis or specific phylogenetic lineages. Therefore, an application as biomarkers for individual extraintestinal pathogenic E.coli (ExPEC) or intestinal pathogenic E.coli (IPEC) has been proposed. To put this assumption on a solid foundation, we analyzed 111 publicly available E. coli genome sequences and screened them bioinformatically for the presence of 18 ATs. We determined the highest AT prevalence per strain in phylogroup B2 isolates and showed that AT distribution correlates rather with phylogenetic lineages than with pathotypes. Although a strict dependence between AT prevalence and pathotype was not observed, EspP, EhaA, and EhaG cluster with IPEC of phylogroup B1 and E, respectively, whereas UpaH is predominantly present in ExPEC of phylogroup B2. Furthermore, PicU, SepA, UpaB, UpaI, and UpaJ were associated with phylogroup B2. We detected UpaI and its positional ortholog EhaC in 93% of the E.coli strains tested. This AT variant is thus the most prevalent in E.coli irrespective of pathotype or phylogenetic background. Compared with the ATs UpaB, UpaC, and UpaJ of uropathogenic E.coli strain 536, UpaI had redundant functions, contributing to autoaggregation, biofilm formation, and binding to extracellular matrix proteins. The functional redundancy and wide distribution of ATs among pathogenic and non-pathogenic E.coli indicates that ATs cannot generally be regarded as specific biomarkers and virulence factors. Our results demonstrate that phylogeny has a bigger impact on the distribution of AT variants in E.coli than initially thought, especially in ExPEC.
Collapse
|
21
|
McNally A, Cheng L, Harris SR, Corander J. The evolutionary path to extraintestinal pathogenic, drug-resistant Escherichia coli is marked by drastic reduction in detectable recombination within the core genome. Genome Biol Evol 2013; 5:699-710. [PMID: 23493634 PMCID: PMC3641635 DOI: 10.1093/gbe/evt038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is a highly diverse group of pathogens ranging from commensal of the intestinal tract, through to intestinal pathogen, and extraintestinal pathogen. Here, we present data on the population diversity of E. coli, using Bayesian analysis to identify 13 distinct clusters within the population from multilocus sequence typing data, which map onto a whole-genome-derived phylogeny based on 62 genome sequences. Bayesian analysis of recombination within the core genome identified reduction in detectable core genome recombination as one moves from the commensals, through the intestinal pathogens down to the multidrug-resistant extraintestinal pathogenic clone E. coli ST131. Our data show that the emergence of a multidrug-resistant, extraintestinal pathogenic lineage of E. coli is marked by substantial reduction in detectable core genome recombination, resulting in a lineage which is phylogenetically distinct and sexually isolated in terms of core genome recombination.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 2013; 50:488-503. [PMID: 23706818 DOI: 10.1016/j.molcel.2013.05.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/26/2022]
Abstract
CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5' ends formed by transcription and not by processing. Although crRNA 3' end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis.
Collapse
|
23
|
Yahara K, Furuta Y, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Chromosome painting in silico in a bacterial species reveals fine population structure. Mol Biol Evol 2013; 30:1454-64. [PMID: 23505045 PMCID: PMC3649679 DOI: 10.1093/molbev/mst055] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identifying population structure forms an important basis for genetic and evolutionary studies. Most current methods to identify population structure have limitations in analyzing haplotypes and recombination across the genome. Recently, a method of chromosome painting in silico has been developed to overcome these shortcomings and has been applied to multiple human genome sequences. This method detects the genome-wide transfer of DNA sequence chunks through homologous recombination. Here, we apply it to the frequently recombining bacterial species Helicobacter pylori that has infected Homo sapiens since their birth in Africa and shows wide phylogeographic divergence. Multiple complete genome sequences were analyzed including sequences from Okinawa, Japan, that we recently sequenced. The newer method revealed a finer population structure than revealed by a previous method that examines only MLST housekeeping genes or a phylogenetic network analysis of the core genome. Novel subgroups were found in Europe, Amerind, and East Asia groups. Examination of genetic flux showed some singleton strains to be hybrids of subgroups and revealed evident signs of population admixture in Africa, Europe, and parts of Asia. We expect this approach to further our understanding of intraspecific bacterial evolution by revealing population structure at a finer scale.
Collapse
Affiliation(s)
- Koji Yahara
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaru Yoshida
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
| | - Takeshi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
24
|
Affiliation(s)
- William P Hanage
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 2013; 30:1224-8. [PMID: 23408797 PMCID: PMC3670731 DOI: 10.1093/molbev/mst028] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phylogeographical analyses have become commonplace for a myriad of organisms with the advent of cheap DNA sequencing technologies. Bayesian model-based clustering is a powerful tool for detecting important patterns in such data and can be used to decipher even quite subtle signals of systematic differences in molecular variation. Here, we introduce two upgrades to the Bayesian Analysis of Population Structure (BAPS) software, which enable 1) spatially explicit modeling of variation in DNA sequences and 2) hierarchical clustering of DNA sequence data to reveal nested genetic population structures. We provide a direct interface to map the results from spatial clustering with Google Maps using the portal http://www.spatialepidemiology.net/ and illustrate this approach using sequence data from Borrelia burgdorferi. The usefulness of hierarchical clustering is demonstrated through an analysis of the metapopulation structure within a bacterial population experiencing a high level of local horizontal gene transfer. The tools that are introduced are freely available at http://www.helsinki.fi/bsg/software/BAPS/.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 2012; 7:1283-1296. [PMID: 23075447 PMCID: PMC3996552 DOI: 10.2217/fmb.12.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Josephine Bryant
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Claire Chewapreecha
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Stephen D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
27
|
Sihvonen LM, Jalkanen K, Huovinen E, Toivonen S, Corander J, Kuusi M, Skurnik M, Siitonen A, Haukka K. Clinical isolates of Yersinia enterocolitica biotype 1A represent two phylogenetic lineages with differing pathogenicity-related properties. BMC Microbiol 2012; 12:208. [PMID: 22985268 PMCID: PMC3512526 DOI: 10.1186/1471-2180-12-208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 12/04/2022] Open
Abstract
Background Y. enterocolitica biotype (BT) 1A strains are often isolated from human clinical samples but their contribution to disease has remained a controversial topic. Variation and the population structure among the clinical Y. enterocolitica BT 1A isolates have been poorly characterized. We used multi-locus sequence typing (MLST), 16S rRNA gene sequencing, PCR for ystA and ystB, lipopolysaccharide analysis, phage typing, human serum complement killing assay and analysis of the symptoms of the patients to characterize 298 clinical Y. enterocolitica BT 1A isolates in order to evaluate their relatedness and pathogenic potential. Results A subset of 71 BT 1A strains, selected based on their varying LPS patterns, were subjected to detailed genetic analyses. The MLST on seven house-keeping genes (adk, argA, aroA, glnA, gyrB, thrA, trpE) conducted on 43 of the strains discriminated them into 39 MLST-types. By Bayesian analysis of the population structure (BAPS) the strains clustered conclusively into two distinct lineages, i.e. Genetic groups 1 and 2. The strains of Genetic group 1 were more closely related (97% similarity) to the pathogenic bio/serotype 4/O:3 strains than Genetic group 2 strains (95% similarity). Further comparison of the 16S rRNA genes of the BT 1A strains indicated that altogether 17 of the 71 strains belong to Genetic group 2. On the 16S rRNA analysis, these 17 strains were only 98% similar to the previously identified subspecies of Y. enterocolitica. The strains of Genetic group 2 were uniform in their pathogenecity-related properties: they lacked the ystB gene, belonged to the same LPS subtype or were of rough type, were all resistant to the five tested yersiniophages, were largely resistant to serum complement and did not ferment fucose. The 54 strains in Genetic group 1 showed much more variation in these properties. The most commonly detected LPS types were similar to the LPS types of reference strains with serotypes O:6,30 and O:6,31 (37%), O:7,8 (19%) and O:5 (15%). Conclusions The results of the present study strengthen the assertion that strains classified as Y. enterocolitica BT 1A represent more than one subspecies. Especially the BT 1A strains in our Genetic group 2 commonly showed resistance to human serum complement killing, which may indicate pathogenic potential for these strains. However, their virulence mechanisms remain unknown.
Collapse
Affiliation(s)
- Leila M Sihvonen
- Bacteriology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen.
Collapse
|