1
|
Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus. Proc Natl Acad Sci U S A 2021; 118:2018653118. [PMID: 33875591 DOI: 10.1073/pnas.2018653118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.
Collapse
|
2
|
Wang J, Lapinski N, Zhang X, Jagota A. Adhesive contact between cylindrical (Ebola) and spherical (SARS-CoV-2) viral particles and a cell membrane. MECHANICS OF SOFT MATERIALS 2020; 2:11. [PMID: 33511329 PMCID: PMC7453191 DOI: 10.1007/s42558-020-00026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
A critical event during the process of cell infection by a viral particle is attachment, which is driven by adhesive interactions and resisted by bending and tension. The biophysics of this process has been studied extensively, but the additional role of externally applied force or displacement has generally been neglected. In this work, we study the adhesive force-displacement response of viral particles against a cell membrane. We have built two models: one in which the viral particle is cylindrical (say, representative of a filamentous virus such as Ebola) and another in which it is spherical (such as SARS-CoV-2 and Zika). Our interest is in initial adhesion, in which case deformations are small, and the mathematical model for the system can be simplified considerably. The parameters that characterize the process combine into two dimensionless groups that represent normalized membrane bending stiffness and tension. In the limit where bending dominates, for sufficiently large values of normalized bending stiffness, there is no adhesion between viral particles and the cell membrane without applied force. (The zero external force contact width and pull-off force are both zero.) For large values of normalized membrane tension, the adhesion between virus and cell membrane is weak but stable. (The contact width at zero external force has a small value.) Our results for pull-off force and zero force contact width help to quantify conditions that could aid the development of therapies based on denying the virus entry into the cell by blocking its initial adhesion.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
| | - Nicole Lapinski
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA USA
| | - Xiaohui Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA USA
| | - Anand Jagota
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA USA
| |
Collapse
|
3
|
Abstract
Biological transmission of vesicular content occurs by opening of a fusion pore. Recent experimental observations have illustrated that fusion pores between vesicles that are docked by an extended flat contact zone are located at the edge (vertex) of this zone. We modeled this experimentally observed scenario by coarse-grained molecular simulations and elastic theory. This revealed that fusion pores experience a direct attraction toward the vertex. The size adopted by the resulting vertex pore strongly depends on the apparent contact angle between the adhered vesicles even in the absence of membrane surface tension. Larger contact angles substantially increase the equilibrium size of the vertex pore. Because the cellular membrane fusion machinery actively docks membranes, it facilitates a collective expansion of the contact zone and increases the contact angle. In this way, the fusion machinery can drive expansion of the fusion pore by free energy equivalents of multiple tens of kBT from a distance and not only through the fusion proteins that reside within the fusion pore.
Collapse
Affiliation(s)
- Edgar M Blokhuis
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , 80138 Naples , Italy
| | - Andreas Mayer
- Département de Biochimie , Université de Lausanne , CH-1015 Epalinges , Switzerland
| | - H Jelger Risselada
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
- Department of Theoretical Physics , Georg-August University of Goettingen , 37077 Goettingen , Germany
| |
Collapse
|
4
|
Shen Z, Ye H, Yi X, Li Y. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. ACS NANO 2019; 13:215-228. [PMID: 30557506 DOI: 10.1021/acsnano.8b05340] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Using coarse-grained molecular dynamics simulations, we systematically investigate the receptor-mediated endocytosis of elastic nanoparticles (NPs) with different sizes, ranging from 25 to 100 nm, and shapes, including sphere-like, oblate-like, and prolate-like. Simulation results provide clear evidence that the membrane wrapping efficiency of NPs during endocytosis is a result of competition between receptor diffusion kinetics and thermodynamic driving force. The receptor diffusion kinetics refer to the kinetics of receptor recruitment that are affected by the contact edge length between the NP and membrane. The thermodynamic driving force represents the amount of required free energy to drive NPs into a cell. Under the volume constraint of elastic NPs, the soft spherical NPs are found to have similar contact edge lengths to rigid ones and to less efficiently be fully wrapped due to their elastic deformation. Moreover, the difference in wrapping efficiency between soft and rigid spherical NPs increases with their sizes, due to the increment of their elastic energy change. Furthermore, because of its prominent large contact edge length, the oblate ellipsoid is found to be the least sensitive geometry to the variation in NP's elasticity among the spherical, prolate, and oblate shapes during the membrane wrapping. In addition, simulation results indicate that conflicting experimental observations on the efficiency of cellular uptake of elastic NPs could be caused by their different mechanical properties. Our simulations provide a detailed mechanistic understanding about the influence of NPs' size, shape, and elasticity on their membrane wrapping efficiency, which serves as a rational guidance for the design of NP-based drug carriers.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Huilin Ye
- Department of Mechanical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, and Beijing Innovation Center for Engineering Science and Advanced Technology , Peking University , Beijing 100871 , China
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
5
|
D'Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A. SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 2018; 37:embj.201899193. [PMID: 30120144 DOI: 10.15252/embj.201899193] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Göttingen, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura J Endter
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
6
|
Singh P, Hui CY. Hydrodynamics govern the pre-fusion docking time of synaptic vesicles. J R Soc Interface 2018; 15:rsif.2017.0818. [PMID: 29386403 DOI: 10.1098/rsif.2017.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
Synaptic vesicle fusion is a crucial step in the neurotransmission process. Neurotransmitter-filled vesicles are pre-docked at the synapse by the mediation of ribbon structures and SNARE proteins at the ribbon synapses. An electrical impulse triggers the fusion process of pre-docked vesicles, leading to the formation of a fusion pore and subsequently resulting in the release of neurotransmitter into the synaptic cleft. In this study, a continuum model of lipid membrane along with lubrication theory is used to determine the traverse time of the synaptic vesicle under the influence of hydrodynamic forces. We find that the traverse time is strongly dependent on how fast the driving force decays or grows with closure of the gap between the vesicle and the plasma membrane. If the correct behaviour is chosen, the traverse time obtained is of the order of a few hundred milliseconds and lies within the experimentally obtained value of approximately 250 ms (Zenisek D, Steyer JA, Almers W. 2000 Nature406, 849-854 (doi:10.1038/35022500)). We hypothesize that there are two different force behaviours, which complies with the experimental findings of pre-fusion docking of synaptic vesicles at the ribbon synapses. The common theme in the proposed force models is that the driving force has to very rapidly increase or decrease with the amount of clamping.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
| | - Chung-Yuen Hui
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Silva AJD, Floquet S, Santos DOC. Statistical crossover and nonextensive behavior of neuronal short-term depression. J Biol Phys 2017; 44:37-50. [PMID: 29027614 DOI: 10.1007/s10867-017-9474-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The theoretical basis of neuronal coding, associated with short-term degradation in synaptic transmission, is a matter of debate in the literature. In fact, electrophysiological signals are commonly characterized as inversely proportional to stimulus intensity. Among theoretical descriptions of this phenomenon, models based on 1/f-dependency are employed to investigate the biophysical properties of short-term synaptic depression. In this work, we formulate a model based on a paradigmatic q-differential equation to obtain a generalized formalism useful for investigation of nonextensivity in this specific type of synaptic plasticity. Our analysis reveals nonextensivity in data from electrophysiological recordings and also a statistical crossover in neurotransmission. In particular, statistical transitions provide additional support to the hypothesis of heterogeneous release probability of neurotransmitters. On the other hand, the simple vesicle model agrees with data only at low-frequency stimulations. Thus, the present work presents a method to demonstrate that short-term depression is not only governed by random mechanisms but also by nonextensive behavior. Our findings also conciliate morphological and electrophysiological investigations into a coherent biophysical scenario.
Collapse
Affiliation(s)
- A J da Silva
- Centro de Formação em Ciências e Tecnologias Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Bahia. CEP 45613-204, Brazil.
| | - S Floquet
- Colegiado de Engenharia Civil, Universidade Federal do Vale do São Francisco, Juazeiro, Bahia. CEP 48902-300, Brazil
| | - D O C Santos
- Centro de Formação em Ciências e Tecnologias Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Bahia. CEP 45613-204, Brazil
| |
Collapse
|
8
|
A stochastic model of active zone material mediated synaptic vesicle docking and priming at resting active zones. Sci Rep 2017; 7:278. [PMID: 28325932 PMCID: PMC5428245 DOI: 10.1038/s41598-017-00360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) at specialized regions called active zones for synaptic transmission. SVs are associated with dense aggregates of macromolecules called active zone material (AZM) that has been thought to be involved in SV release. However, its role has recently begun to be elucidated. Several morphological studies proposed distinctively different AZM mediated SV docking and priming models: sequential and concurrent SV docking/priming. To explore ways to reconcile the contradictory models we develop a stochastic AZM mediated SV docking and priming model. We assume that the position of each connection site of the AZM macromolecules on their SV, directly linking the SV with the PM, varies by random shortening and lengthening of the macromolecules at resting active zones. We also perform computer simulations of SVs near the PM at resting active zones, and the results show that the distribution of the AZM connection sites can significantly affect the SV's docking efficiency and distribution of its contact area with the PM, thus priming and that the area correlates with the shape of the SVs providing a way to account for seemingly irreconcilable observations reported about the spatial relationship of SVs with the PM at active zones.
Collapse
|
9
|
Fortoul N, Singh P, Hui CY, Bykhovskaia M, Jagota A. Coarse-Grained Model of SNARE-Mediated Docking. Biophys J 2016; 108:2258-69. [PMID: 25954883 DOI: 10.1016/j.bpj.2015.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼ 3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4-6 SNAREs actually increases the equilibrium distance.
Collapse
Affiliation(s)
- Nicole Fortoul
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Pankaj Singh
- Department of Mechanical & Aerospace Engineering, Cornell University, Ithaca, New York
| | - Chung-Yuen Hui
- Department of Mechanical & Aerospace Engineering, Cornell University, Ithaca, New York
| | - Maria Bykhovskaia
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - Anand Jagota
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
10
|
Liu T, Singh P, Jenkins JT, Jagota A, Bykhovskaia M, Hui CY. A continuum model of docking of synaptic vesicle to plasma membrane. J R Soc Interface 2015; 12:20141119. [PMID: 25551140 DOI: 10.1098/rsif.2014.1119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotransmitter release from neuronal terminals is governed by synaptic vesicle fusion. Vesicles filled with transmitters are docked at the neuronal membrane by means of the SNARE machinery. After a series of events leading up to the fusion pore formation, neurotransmitters are released into the synaptic cleft. In this paper, we study the mechanics of the docking process. A continuum model is used to determine the deformation of a spherical vesicle and a plasma membrane, under the influence of SNARE-machinery forces and electrostatic repulsion. Our analysis provides information on the variation of in-plane stress in the membranes, which is known to affect fusion. Also, a simple model is proposed to study hemifusion.
Collapse
|
11
|
Oleinick A, Lemaître F, Collignon MG, Svir I, Amatore C. Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores. Faraday Discuss 2013; 164:33-55. [DOI: 10.1039/c3fd00028a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|