1
|
Baranova I, Angelova A, Stransky J, Andreasson J, Angelov B. Hemoglobin-PEG Interactions Probed by Small-Angle X-ray Scattering: Insights for Crystallization and Diagnostics Applications. J Phys Chem B 2024; 128:9262-9273. [PMID: 39252421 PMCID: PMC11440596 DOI: 10.1021/acs.jpcb.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions, controlling protein aggregation in the solution phase, are crucial for the formulation of protein therapeutics and the use of proteins in diagnostic applications. Additives in the solution phase are factors that may enhance the protein's conformational stability or induce crystallization. Protein-PEG interactions do not always stabilize the native protein structure. Structural information is needed to validate excipients for protein stabilization in the development of protein therapeutics or use proteins in diagnostic assays. The present study investigates the impact of polyethylene glycol (PEG) molecular weight and concentration on the spatial structure of human hemoglobin (Hb) at neutral pH. Small-angle X-ray scattering (SAXS) in combination with size-exclusion chromatography is employed to characterize the Hb structure in solution without and with the addition of PEG. Our results evidence that human hemoglobin maintains a tetrameric conformation at neutral pH. The dummy atom model, reconstructed from the SAXS data, aligns closely with the known crystallographic structure of methemoglobin (metHb) from the Protein Data Bank. We established that the addition of short-chain PEG600, at concentrations of up to 10% (w/v), acts as a stabilizer for hemoglobin, preserving its spatial structure without significant alterations. By contrast, 5% (w/v) PEG with higher molecular weights of 2000 and 4000 leads to a slight reduction in the maximum particle dimension (Dmax), while the radius of gyration (Rg) remains essentially unchanged. This implies a reduced hydration shell around the protein due to the dehydrating effect of longer PEG chains. At a concentration of 10% (w/v), PEG2000 interacts with Hb to form a complex that does not distort the protein's spatial configuration. The obtained results provide a deeper understanding of PEG's influence on the Hb structure in solution and broader knowledge regarding protein-PEG interactions.
Collapse
Affiliation(s)
- Iuliia Baranova
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic
| | - Angelina Angelova
- Université
Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Jan Stransky
- Institute
of Biotechnology of the Czech Academy of Sciences, v.v.i., Prumyslová 595, Vestec 252 50, Czech Republic
| | - Jakob Andreasson
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Borislav Angelov
- Extreme
Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| |
Collapse
|
2
|
Platanić Arizanović L, Gligorijević N, Cvijetić I, Mijatović A, Ristivojević MK, Minić S, Kokić AN, Miljević Č, Nikolić M. Human Hemoglobin and Antipsychotics Clozapine, Ziprasidone and Sertindole: Friends or Foes? Int J Mol Sci 2023; 24:ijms24108921. [PMID: 37240267 DOI: 10.3390/ijms24108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Packed with hemoglobin, an essential protein for oxygen transport, human erythrocytes are a suitable model system for testing the pleiotropic effects of lipophilic drugs. Our study investigated the interaction between antipsychotic drugs clozapine, ziprasidone, sertindole, and human hemoglobin under simulated physiological conditions. Analysis of protein fluorescence quenching at different temperatures and data obtained from the van't Hoff diagram and molecular docking indicate that the interactions are static and that the tetrameric human hemoglobin has one binding site for all drugs in the central cavity near αβ interfaces and is dominantly mediated through hydrophobic forces. The association constants were lower-moderate strength (~104 M-1), the highest observed for clozapine (2.2 × 104 M-1 at 25 °C). The clozapine binding showed "friendly" effects: increased α-helical content, a higher melting point, and protein protection from free radical-mediated oxidation. On the other hand, bound ziprasidone and sertindole had a slightly pro-oxidative effect, increasing ferrihemoglobin content, a possible "foe". Since the interaction of proteins with drugs plays a vital role in their pharmacokinetic and pharmacodynamic properties, the physiological significance of the obtained findings is briefly discussed.
Collapse
Affiliation(s)
| | - Nikola Gligorijević
- Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ilija Cvijetić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Mijatović
- Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
| | | | - Simeon Minić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Čedo Miljević
- Institute of Mental Health, Palmotićeva 37, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Mathur S, Yadav SK, Yadav K, Bhatt S, Kundu S. A novel single sensor hemoglobin domain from the thermophilic cyanobacteria Thermosynechococcus elongatus BP-1 exhibits higher pH but lower thermal stability compared to globins from mesophilic organisms. Int J Biol Macromol 2023; 240:124471. [PMID: 37076076 DOI: 10.1016/j.ijbiomac.2023.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Thermosynechococcus elongatus-BP1 belongs to the class of photoautotrophic cyanobacterial organisms. The presence of chlorophyll a, carotenoids, and phycocyanobilin are the characteristics that categorize T. elongatus as a photosynthetic organism. Here, we report the structural and spectroscopic characteristics of novel hemoglobin (Hb) Synel Hb from T.elongatus, synonymous with Thermosynechococcus vestitus BP-1. The X-ray crystal structure (2.15 Å) of Synel Hb suggests the presence of a globin domain with a pre-A helix similar to the sensor domain (S) family of Hbs. The rich hydrophobic core accommodates heme in a penta-coordinated state and readily binds an extraneous ligand(imidazole). The absorption and circular dichroic spectral analysis of Synel Hb reiteratedthat the heme is in FeIII+ state with a predominantly α-helical structure similar to myoglobin. Synel Hb displays higher resistance to structural perturbations induced via external stresses like pH and guanidium hydrochloride, which is comparable to Synechocystis Hb. However, Synel Hb exhibited lower thermal stability compared to mesophilic hemoglobins. Overall, the data is suggestive of the structural sturdiness of Synel Hb, which probably corroborates its origin in extreme thermophilic conditions. The stable globin provides scope for further investigation and may lead to new insights with scope for engineering stability in hemoglobin-based oxygen carriers.
Collapse
Affiliation(s)
- Shruti Mathur
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Sanjeev Kumar Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Kajal Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India; Birla Institute of Technology and Science Pilani, K.K.Birla Goa Campus, Goa 403726, India.
| |
Collapse
|
4
|
Santos-Luna D, Sixto-López Y, Bravo-Alfaro D, Cano-Sarmiento C, García H, Correa-Basurto J. Design and simulation of a caprylic acid enzymatically modified phosphatidylcholine micelle using a coarse-grained molecular dynamics simulations approach. J Biomol Struct Dyn 2023; 41:13902-13913. [PMID: 36826442 DOI: 10.1080/07391102.2023.2180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Computationally simulated micelle models provide useful structural information on the molecular and biological sciences. One strategy to study the self-aggregation process of surfactant molecules that make up a micelle is through molecular dynamics (MD) simulations. In this study, a theoretical approach with a coarse-grained MD simulation (CG-MD) was employed to evaluate the critical micellar concentration (CMC), the micellization process, building a tridimensional (3D) model system of a micelle using data from the experimentally enzymatically modified phospholipids (PL) by phospholipase A1 (PA1). This required enzymatic interesterification of soybean phosphatidylcholine (PC) with caprylic acid, along with purification and characterization by chromatographic techniques to measure the esterified fatty acids and the corresponding PL composition. The number of molecules used in the CG-MD simulation system was determined from the experimental CMC data which was 0.025%. The molecular composition of the system is: 1 C 18:2, 2 C 8:0/8:0, 3 C 8:0/18:3n-9, 4 C 8:0/18:0, 5 C8:0/18:2n-6, 6 C8:0/18:1n-9, and 7 C 8:0/16:0. According to our theoretical results, the micelle model is structurally stable with an average Rg of 3.64 ± 0.10 Å, and might have an elliptical form with a radius of 24.6 Å. Regarding CMC value there was a relationship between the experimental data of the modified PLs and the theoretical analysis by GC-MD, which suggest that the enzymatic modification of PLs does not affect their self-aggregation properties. Finally, the micellar system obtained in the current research can be used as a simple and useful model to design optimal biocompatible nanoemulsions as possible vehicles for bioactive small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dalia Santos-Luna
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, Spain
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Diego Bravo-Alfaro
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Cynthia Cano-Sarmiento
- CONACyT-Unidad de Investigación y Desarrollo de Alimentos, Tecnologico Nacional de México/IT de Veracruz, Veracruz, México
| | - Hugo García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| |
Collapse
|
5
|
Karaca E, Prévost C, Sacquin-Mora S. Modeling the Dynamics of Protein-Protein Interfaces, How and Why? Molecules 2022; 27:1841. [PMID: 35335203 PMCID: PMC8950966 DOI: 10.3390/molecules27061841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/07/2022] Open
Abstract
Protein-protein assemblies act as a key component in numerous cellular processes. Their accurate modeling at the atomic level remains a challenge for structural biology. To address this challenge, several docking and a handful of deep learning methodologies focus on modeling protein-protein interfaces. Although the outcome of these methods has been assessed using static reference structures, more and more data point to the fact that the interaction stability and specificity is encoded in the dynamics of these interfaces. Therefore, this dynamics information must be taken into account when modeling and assessing protein interactions at the atomistic scale. Expanding on this, our review initially focuses on the recent computational strategies aiming at investigating protein-protein interfaces in a dynamic fashion using enhanced sampling, multi-scale modeling, and experimental data integration. Then, we discuss how interface dynamics report on the function of protein assemblies in globular complexes, in fuzzy complexes containing intrinsically disordered proteins, as well as in active complexes, where chemical reactions take place across the protein-protein interface.
Collapse
Affiliation(s)
- Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Chantal Prévost
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| | - Sophie Sacquin-Mora
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| |
Collapse
|
6
|
Koch Esteves N, Gibson OR, Khir AW, González‐Alonso J. Regional thermal hyperemia in the human leg: Evidence of the importance of thermosensitive mechanisms in the control of the peripheral circulation. Physiol Rep 2021; 9:e14953. [PMID: 34350727 PMCID: PMC8339537 DOI: 10.14814/phy2.14953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
Hyperthermia is thought to increase limb blood flow through the activation of thermosensitive mechanisms within the limb vasculature, but the precise vascular locus in which hyperthermia modulates perfusion remains elusive. We tested the hypothesis that local temperature-sensitive mechanisms alter limb hemodynamics by regulating microvascular blood flow. Temperature and oxygenation profiles and leg hemodynamics of the common (CFA), superficial (SFA) and profunda (PFA) femoral arteries, and popliteal artery (POA) of the experimental and control legs were measured in healthy participants during: (1) 3 h of whole leg heating (WLH) followed by 3 h of recovery (n = 9); (2) 1 h of upper leg heating (ULH) followed by 30 min of cooling and 1 h ULH bout (n = 8); and (3) 1 h of lower leg heating (LLH) (n = 8). WLH increased experimental leg temperature by 4.2 ± 1.2ºC and blood flow in CFA, SFA, PFA, and POA by ≥3-fold, while the core temperature essentially remained stable. Upper and lower leg blood flow increased exponentially in response to leg temperature and then declined during recovery. ULH and LLH similarly increased the corresponding segmental leg temperature, blood flow, and tissue oxygenation without affecting these responses in the non-heated leg segment, or perfusion pressure and conduit artery diameter across all vessels. Findings demonstrate that whole leg hyperthermia induces profound and sustained elevations in upper and lower limb blood flow and that segmental hyperthermia matches the regional thermal hyperemia without causing thermal or hemodynamic alterations in the non-heated limb segment. These observations support the notion that heat-activated thermosensitive mechanisms in microcirculation regulate limb tissue perfusion during hyperthermia.
Collapse
Affiliation(s)
- Nuno Koch Esteves
- Centre for Human Performance, Exercise and RehabilitationCollege of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and RehabilitationCollege of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
- Division of Sport, Health and Exercise SciencesDepartment of Life SciencesCollege of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| | - Ashraf W. Khir
- Department of Mechanical and Aerospace EngineeringCollege of Engineering, Design and Physical SciencesBrunel University LondonUxbridgeUK
| | - José González‐Alonso
- Centre for Human Performance, Exercise and RehabilitationCollege of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
- Division of Sport, Health and Exercise SciencesDepartment of Life SciencesCollege of Health, Medicine and Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
7
|
Abstract
We examine changes in the picosecond structural dynamics with irreversible photobleaching of red fluorescent proteins (RFP) mCherry, mOrange2 and TagRFP-T. Measurements of the protein dynamical transition using terahertz time-domain spectroscopy show in all cases an increase in the turn-on temperature in the bleached state. The result is surprising given that there is little change in the protein surface, and thus, the solvent dynamics held responsible for the transition should not change. A spectral analysis of the measurements guided by quasiharmonic calculations of the protein absorbance reveals that indeed the solvent dynamical turn-on temperature is independent of the thermal stability/photostate however the protein dynamical turn-on temperature shifts to higher temperatures. This is the first demonstration of switching the protein dynamical turn-on temperature with protein functional state. The observed shift in protein dynamical turn-on temperature relative to the solvent indicates an increase in the required mobile waters necessary for the protein picosecond motions, that is, these motions are more collective. Melting-point measurements reveal that the photobleached state is more thermally stable, and structural analysis of related RFP’s shows that there is an increase in internal water channels as well as a more uniform atomic root mean squared displacement. These observations are consistent with previous suggestions that water channels form with extended light excitation providing O2 access to the chromophore and subsequent fluorescence loss. We report that these same channels increase internal coupling enhancing thermal stability and collectivity of the picosecond protein motions. The terahertz spectroscopic characterization of the protein and solvent dynamical onsets can be applied generally to measure changes in collectivity of protein motions.
Collapse
|
8
|
Shou K, Sarter M, de Souza NR, de Campo L, Whitten AE, Kuchel PW, Garvey CJ, Stadler AM. Effect of red blood cell shape changes on haemoglobin interactions and dynamics: a neutron scattering study. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201507. [PMID: 33204483 PMCID: PMC7657910 DOI: 10.1098/rsos.201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
By using a combination of experimental neutron scattering techniques, it is possible to obtain a statistical perspective on red blood cell (RBC) shape in suspensions, and the inter-relationship with protein interactions and dynamics inside the confinement of the cell membrane. In this study, we examined the ultrastructure of RBC and protein-protein interactions of haemoglobin (Hb) in them using ultra-small-angle neutron scattering and small-angle neutron scattering (SANS). In addition, we used the neutron backscattering method to access Hb motion on the ns time scale and Å length scale. Quasi-elastic neutron scattering (QENS) experiments were performed to measure diffusive motion of Hb in RBCs and in an RBC lysate. By using QENS, we probed both internal Hb dynamics and global protein diffusion, on the accessible time scale and length scale by QENS. Shape changes of RBCs and variation of intracellular Hb concentration were induced by addition of the Na+-selective ionophore monensin and the K+-selective one, valinomycin. The experimental SANS and QENS results are discussed within the framework of crowded protein solutions, where free motion of Hb is obstructed by mutual interactions.
Collapse
Affiliation(s)
- Keyun Shou
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Mona Sarter
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany
| | - Nicolas R. de Souza
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Philip W. Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher J. Garvey
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- Biofilm—Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Lund Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
9
|
The molecular dynamics of bacterial spore and the role of calcium dipicolinate in core properties at the sub-nanosecond time-scale. Sci Rep 2020; 10:8265. [PMID: 32427943 PMCID: PMC7237433 DOI: 10.1038/s41598-020-65093-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial spores are among the most resistant forms of life on Earth. Their exceptional resistance properties rely on various strategies, among them the core singular structure, organization and hydration. By using elastic incoherent neutron scattering, we probed the dynamics of Bacillus subtilis spores to determine whether core macromolecular motions at the sub-nanosecond timescale could also contribute to their resistance to physical stresses. In addition, in order to better specify the role of the various spore components, we used different mutants lacking essential structure such as the coat (PS4150 mutant), or the calcium dipicolinic acid complex (CaDPA) located in the core (FB122 mutant). PS4150 allows to better probe the core’s dynamics, as proteins of the coat represent an important part of spore proteins, and FB122 gives information about the role of the large CaDPA depot for the mobility of core’s components. We show that core’s macromolecular mobility is not particularly constrained at the sub-nanosecond timescale in spite of its low water content as some dynamical characteristics as force constants are very close to those of vegetative bacteria such as Escherichia coli or to those of fully hydrated proteins. Although the force constants of the coatless mutant are similar to the wild-type’s ones, it has lower mean square displacements (MSDs) at high Q showing that core macromolecules are somewhat more constrained than the rest of spore components. However, no behavior reflecting the glassy state regularly evoked in the literature could be drawn from our data. As hydration and macromolecules’ mobility are highly correlated, the previous assumption, that core low water content might explain spores’ exceptional resistance properties seems unlikely. Thus, we confirm recent theories, suggesting that core water is mostly as free as bulk water and proteins/macromolecules are fully hydrated. The germination of spores leads to a much less stable system with a force constant of 0.1 N/m and MSDs ~2.5 times higher at low Q than in the dormant state. DPA has also an influence on core mobility with a slightly lower force constant for the DPA-less mutant than for the wild-type, and MSDs that are ~ 1.8 times higher on average than for the wild-type at low Q. At high Q, germinated and DPA-less spores were very similar to the wild-type ones, showing that DPA and core compact structure might influence large amplitude motions rather than local dynamics of macromolecules.
Collapse
|
10
|
Stadler AM, Schneidewind J, Zamponi M, Knieps-Grünhagen E, Gholami S, Schwaneberg U, Rivalta I, Garavelli M, Davari MD, Jaeger KE, Krauss U. Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics. J Phys Chem B 2019; 123:7372-7384. [PMID: 31380636 DOI: 10.1021/acs.jpcb.9b06608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interplay between protein dynamics and catalysis remains a fundamental question in enzymology. We here investigate the ns-timescale dynamics of a light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR), a photoenzyme crucial for chlorophyll synthesis. LPORs catalyze the light-triggered trans addition of a hydride and a proton across the C17═C18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). Because of the lack of an LPOR structure, the global structural and dynamic consequences of LPOR/Pchlide/NADPH ternary complex formation remain elusive. Moreover, photoactivation of LPORs by low-light preillumination is controversially discussed as unequivocal proof for this phenomenon is lacking. By employing quasielastic neutron spectroscopy (QENS), we show that the formation of the ternary holoprotein complex as well as photoactivation lead to progressive rigidification of the protein. These findings are supported by thermostability measurements, which reveal different melting behavior and thermostabilities for the apo- and holoprotein ternary complexes. Molecular dynamics simulations in good agreement with the experimental QENS results suggest that the increased flexibility observed for the apoprotein stems from structural fluctuations of the NADPH and Pchlide substrate binding sites of the enzyme. On the basis of our results, in conjunction with activity and stability measurements, we provide independent proof for LPOR photoactivation, defined as a process that modifies the protein structure and dynamics, resulting in an increased substrate turnover. Our findings advance the structural and dynamic understanding of LPORs and provide a first link between protein dynamics and catalysis for this enzyme class.
Collapse
Affiliation(s)
| | | | - Michaela Zamponi
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstr. 1 , 85748 Garching , Germany
| | | | - Samira Gholami
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany.,DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 , F-69342 Lyon , France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy.,École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, Université de Lyon , 46 Allée d'Italie , F-69364 Lyon Cedex 07 , France
| | - Mehdi D Davari
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Karl-Erich Jaeger
- IBG-1: Biotechnologie , Forschungszentrum Jülich GmbH , D-52425 Jülich , Germany
| | | |
Collapse
|
11
|
Mamontov E, Osti NC, Tyagi M. Temperature dependence of nanoscale dynamic processes measured in living millipedes by high resolution inelastic and elastic neutron scattering. Sci Rep 2019; 9:11646. [PMID: 31406234 PMCID: PMC6691110 DOI: 10.1038/s41598-019-48270-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
We have used high energy-resolution neutron scattering to probe nanoscale dynamic processes in living millipedes (Narceus americanus). We have measured the temperature dependence of the intensity of scattered neutrons that do not exchange energy with the living samples on the 1.5 ns time scale, thereby excluding the signal from the highly mobile intra- and extra-cellular bulk-like aqueous constituents in the sample. This measured “elastic” scattering intensity exhibits a non-monotonic temperature dependence, with a noticeable systematic decrease detected between 295 and 303 K on warming up from 283 to 310 K. This decrease demonstrates an excellent inverse correlation with the non-monotonic, as a function of temperature, increase in the slow diffusivity previously observed in planarian flatworms and housefly larvae. This correlation suggests the existence of a biological mechanism, possibly common between different classes (Insects and Myriapods) and even phyla (Arthropods and Platyhelminthes), that dampens the slow nanoscopic dynamics in ectothermic organisms in response to the temperature of the environment exceeding the physiologically optimal range.
Collapse
Affiliation(s)
- Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA.
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research and University of Maryland, Gaithersburg, Maryland, 20899, USA
| |
Collapse
|
12
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
13
|
Golub M, Guillon V, Gotthard G, Zeller D, Martinez N, Seydel T, Koza MM, Lafaye C, Clavel D, von Stetten D, Royant A, Peters J. Dynamics of a family of cyan fluorescent proteins probed by incoherent neutron scattering. J R Soc Interface 2019; 16:20180848. [PMID: 30836899 DOI: 10.1098/rsif.2018.0848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyan fluorescent proteins (CFPs) are variants of green fluorescent proteins in which the central tyrosine of the chromophore has been replaced by a tryptophan. The increased bulk of the chromophore within a compact protein and the change in the positioning of atoms capable of hydrogen bonding have made it difficult to optimize their fluorescence properties, which took approximately 15 years between the availability of the first useable CFP, enhanced cyan fluorescent protein (ECFP), and that of a variant with almost perfect fluorescence efficiency, mTurquoise2. To understand the molecular bases of the progressive improvement in between these two CFPs, we have studied by incoherent neutron scattering the dynamics of five different variants exhibiting progressively increased fluorescence efficiency along the evolution pathway. Our results correlate well with the analysis of the previously determined X-ray crystallographic structures, which show an increase in flexibility between ECFP and the second variant, Cerulean, which is then hindered in the three later variants, SCFP3A (Super Cyan Fluorescent Protein 3A), mTurquoise and mTurquoise2. This confirms that increasing the rigidity of the direct environment of the fluorescent chromophore is not the sole parameter leading to brighter fluorescent proteins and that increased flexibility in some cases may be helpful.
Collapse
Affiliation(s)
- Maksym Golub
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Virginia Guillon
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | | | - Dominik Zeller
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,4 Laboratoire Interdisciplinaire de Physique, Univ. Grenoble Alpes, CNRS , 38000 Grenoble , France
| | - Nicolas Martinez
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Tilo Seydel
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France
| | - Michael M Koza
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France
| | - Céline Lafaye
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | - Damien Clavel
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France
| | | | - Antoine Royant
- 2 Univ. Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale) , 38000 Grenoble , France.,3 European Synchrotron Radiation Facility , 38043 Grenoble , France
| | - Judith Peters
- 1 Institut Laue Langevin , 71 avenue des Martyrs, 38042 Grenoble Cedex 9 , France.,4 Laboratoire Interdisciplinaire de Physique, Univ. Grenoble Alpes, CNRS , 38000 Grenoble , France
| |
Collapse
|
14
|
Kalsi KK, Chiesa ST, Trangmar SJ, Ali L, Lotlikar MD, González-Alonso J. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells. Exp Physiol 2018; 102:228-244. [PMID: 27859767 PMCID: PMC5363389 DOI: 10.1113/ep085910] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022]
Abstract
New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release.
Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions.
Collapse
Affiliation(s)
- Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Leena Ali
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - Makrand D Lotlikar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| |
Collapse
|
15
|
Covaceuszach S, Bozzi M, Bigotti MG, Sciandra F, Konarev PV, Brancaccio A, Cassetta A. The effect of the pathological V72I, D109N and T190M missense mutations on the molecular structure of α-dystroglycan. PLoS One 2017; 12:e0186110. [PMID: 29036200 PMCID: PMC5643065 DOI: 10.1371/journal.pone.0186110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dystroglycan (DG) is a highly glycosylated protein complex that links the cytoskeleton with the extracellular matrix, mediating fundamental physiological functions such as mechanical stability of tissues, matrix organization and cell polarity. A crucial role in the glycosylation of the DG α subunit is played by its own N-terminal region that is required by the glycosyltransferase LARGE. Alteration in this O-glycosylation deeply impairs the high affinity binding to other extracellular matrix proteins such as laminins. Recently, three missense mutations in the gene encoding DG, mapped in the α-DG N-terminal region, were found to be responsible for hypoglycosylated states, causing congenital diseases of different severity referred as primary dystroglycanopaties.To gain insight on the molecular basis of these disorders, we investigated the crystallographic and solution structures of these pathological point mutants, namely V72I, D109N and T190M. Small Angle X-ray Scattering analysis reveals that these mutations affect the structures in solution, altering the distribution between compact and more elongated conformations. These results, supported by biochemical and biophysical assays, point to an altered structural flexibility of the mutant α-DG N-terminal region that may have repercussions on its interaction with LARGE and/or other DG-modifying enzymes, eventually reducing their catalytic efficiency.
Collapse
Affiliation(s)
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare—CNR c/o Università Cattolica del Sacro Cuore, Roma, Italy
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Alberto Cassetta
- Istituto di Cristallografia–CNR, Trieste Outstation, Trieste, Italy
| |
Collapse
|
16
|
Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Sci Rep 2017; 7:1858. [PMID: 28500341 PMCID: PMC5431840 DOI: 10.1038/s41598-017-02097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating the effect of pressure sheds light on the dynamics and plasticity of proteins, intrinsically correlated to functional efficiency. Here we detail the structural response to pressure of neuroglobin (Ngb), a hexacoordinate globin likely to be involved in neuroprotection. In murine Ngb, reversible coordination is achieved by repositioning the heme more deeply into a large internal cavity, the “heme sliding mechanism”. Combining high pressure crystallography and coarse-grain simulations on wild type Ngb as well as two mutants, one (V101F) with unaffected and another (F106W) with decreased affinity for CO, we show that Ngb hinges around a rigid mechanical nucleus of five hydrophobic residues (V68, I72, V109, L113, Y137) during its conformational transition induced by gaseous ligand, that the intrinsic flexibility of the F-G loop appears essential to drive the heme sliding mechanism, and that residue Val 101 may act as a sensor of the interaction disruption between the heme and the distal histidine.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie Univ., CERVOxy team, centre Cyceron, 14000, Caen, France.
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Giovanna Avella
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy.,BIOGEM Research Institute, Ariano Irpino, Italy
| | - Anne-Claire Dhaussy
- CRISTMAT UMR 6508 CNRS ENSICAEN UNICAEN Normandie Univ., 6 bd du Maréchal Juin, 14050, Caen, France
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, 4 avenue de l'Observatoire, 75270, Paris, France
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy
| | - Eric Girard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| |
Collapse
|
17
|
Zaccai G, Natali F, Peters J, Řihová M, Zimmerman E, Ollivier J, Combet J, Maurel MC, Bashan A, Yonath A. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering. Sci Rep 2016; 6:37138. [PMID: 27849042 PMCID: PMC5111069 DOI: 10.1038/srep37138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
Collapse
Affiliation(s)
- Giuseppe Zaccai
- Institut Laue Langevin, F-38042 Grenoble, France.,Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Francesca Natali
- Institut Laue Langevin, F-38042 Grenoble, France.,CNR-IOM, OGG, F-38042 Grenoble, France
| | - Judith Peters
- Institut Laue Langevin, F-38042 Grenoble, France.,Univ. Grenoble Alpes, LiPhy, F-38044 Grenoble, France
| | - Martina Řihová
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205- CNRS, MNHN, UPMC, EPHE UPMC, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Institute of Physics, Charles University, Faculty of Mathematics and Physics, CZ-121 16 Prague, Czech Republic
| | - Ella Zimmerman
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| | - J Ollivier
- Institut Laue Langevin, F-38042 Grenoble, France
| | - J Combet
- Institut Laue Langevin, F-38042 Grenoble, France.,Institut Charles Sadron, CNRS-UdS, 67034 Strasbourg Cedex 2, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205- CNRS, MNHN, UPMC, EPHE UPMC, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Anat Bashan
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| | - Ada Yonath
- Weizmann Institute, Department of Structural Biology, 76100 Rehovot, Israel
| |
Collapse
|
18
|
Sacquin-Mora S. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? J R Soc Interface 2016; 12:rsif.2015.0876. [PMID: 26577596 DOI: 10.1098/rsif.2015.0876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues' side chains form a tight interaction network within the protein's core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
19
|
Sacquin-Mora S. Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach. Methods Enzymol 2016; 578:227-48. [PMID: 27497169 DOI: 10.1016/bs.mie.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flexibility is a central aspect of protein function, and ligand binding in enzymes involves a wide range of structural changes, ranging from large-scale domain movements to small loop or side-chain rearrangements. In order to understand how the mechanical properties of enzymes, and the mechanical variations that are induced by ligand binding, relate to enzymatic activity, we carried out coarse-grain Brownian dynamics simulations on a set of enzymes whose structures in the unbound and ligand-bound forms are available in the Protein Data Bank. Our results show that enzymes are remarkably heterogeneous objects from a mechanical point of view and that the local rigidity of individual residues is tightly connected to their part in the protein's overall structure and function. The systematic comparison of the rigidity of enzymes in their unbound and bound forms highlights the fact that small conformational changes can induce large mechanical effects, leading to either more or less flexibility depending on the enzyme's architecture and the location of its ligand-biding site. These mechanical variations target a limited number of specific residues that occupy key locations for enzymatic activity, and our approach thus offers a mean to detect perturbation-sensitive sites in enzymes, where the addition or removal of a few interactions will lead to important changes in the proteins internal dynamics.
Collapse
Affiliation(s)
- S Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
20
|
Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy. Extremophiles 2015; 19:1099-107. [PMID: 26376634 DOI: 10.1007/s00792-015-0782-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Halobacterium salinarum is an extreme halophile archaeon with an absolute requirement for a multimolar salt environment. It accumulates molar concentrations of KCl in the cytosol to counterbalance the external osmotic pressure imposed by the molar NaCl. As a consequence, cytosolic proteins are permanently exposed to low water activity and highly ionic conditions. In non-adapted systems, such conditions would promote protein aggregation, precipitation, and denaturation. In contrast, in vitro studies showed that proteins from extreme halophilic cells are themselves obligate halophiles. In this paper, adaptation via dynamics to low-salt stress in H. salinarum cells was measured by neutron scattering experiments coupled with microbiological characterization. The molecular dynamic properties of a proteome represent a good indicator for environmental adaptation and the neutron/microbiology approach has been shown to be well tailored to characterize these modifications. In their natural setting, halophilic organisms often have to face important variations in environmental salt concentration. The results showed deleterious effects already occur in the H. salinarum proteome, even when the external salt concentration is still relatively high, suggesting the onset of survival mechanisms quite early when the environmental salt concentration decreases.
Collapse
|
21
|
Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 2015; 10:019014. [PMID: 25779088 DOI: 10.1116/1.4914948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 Å at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.
Collapse
|
22
|
Stadler AM, Koza MM, Fitter J. Determination of Conformational Entropy of Fully and Partially Folded Conformations of Holo- and Apomyoglobin. J Phys Chem B 2014; 119:72-82. [DOI: 10.1021/jp509732q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas M. Stadler
- Jülich
Centre for Neutron Science JCNS and Institute for Complex Systems
ICS, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | - Jörg Fitter
- Institute
of Complex Systems (ICS-5): Molecular Biophysics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- I.
Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse
14, 52074 Aachen, Germany
| |
Collapse
|
23
|
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014; 118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Oteri
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elisabeth Lojou
- Bioénergétique
et Ingénierie des Protéines, Institut de Microbiologie
de la Méditerranée, CNRS, Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
24
|
Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study. Biochim Biophys Acta Gen Subj 2014; 1840:2989-99. [DOI: 10.1016/j.bbagen.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022]
|
25
|
Stadler AM, Unruh T, Namba K, Samatey F, Zaccai G. Correlation between supercoiling and conformational motions of the bacterial flagellar filament. Biophys J 2014; 105:2157-65. [PMID: 24209861 DOI: 10.1016/j.bpj.2013.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022] Open
Abstract
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.
Collapse
Affiliation(s)
- Andreas M Stadler
- Jülich Centre for Neutron Science JCNS (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, Jülich, Germany.
| | | | | | | | | |
Collapse
|
26
|
Vaidehi N, Bhattacharya S, Larsen AB. Structure and dynamics of G-protein coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:37-54. [PMID: 24158800 DOI: 10.1007/978-94-007-7423-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500, E. Duarte Road, Duarte, CA, 91010, USA,
| | | | | |
Collapse
|
27
|
Sacquin-Mora S. Motions and mechanics: investigating conformational transitions in multi-domain proteins with coarse-grain simulations. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.843176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
28
|
Nickels JD, García Sakai V, Sokolov AP. Dynamics in Protein Powders on the Nanosecond–Picosecond Time Scale Are Dominated by Localized Motions. J Phys Chem B 2013; 117:11548-55. [DOI: 10.1021/jp4058884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan D. Nickels
- Joint
Institute for Neutron Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry, University of Tennessee, 552 Buehler Hall, Knoxville, Tennessee 37996, United States
| | - Victoria García Sakai
- ISIS Neutron and Muon Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Alexei P. Sokolov
- Joint
Institute for Neutron Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry, University of Tennessee, 552 Buehler Hall, Knoxville, Tennessee 37996, United States
| |
Collapse
|
29
|
Niesen MJM, Bhattacharya S, Grisshammer R, Tate CG, Vaidehi N. Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state. J Phys Chem B 2013; 117:7283-91. [PMID: 23697892 DOI: 10.1021/jp403207c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dynamic nature of GPCRs is a major hurdle in their purification and crystallization. Thermostabilization can facilitate GPCR structure determination, as has been shown by the structure of the thermostabilized β1-adrenergic receptor (β1AR) mutant, m23-β1AR, which has been thermostabilized in the inactive state. However, it is unclear from the structure how the six thermostabilizing mutations in m23-β1AR affect receptor dynamics. We have used molecular dynamics simulations in explicit solvent to compare the conformational ensembles for both wild type β1AR (wt-β1AR) and m23-β1AR. Thermostabilization results in an increase in the number of accessible microscopic conformational states within the inactive state ensemble, effectively increasing the side chain entropy of the inactive state at room temperature, while suppressing large-scale main chain conformational changes that lead to activation. We identified several diverse mechanisms of thermostabilization upon mutation. These include decrease of long-range correlated movement between residues in the G-protein coupling site to the extracellular region (Y227A(5.58), F338M(7.48)), formation of new hydrogen bonds (R68S), and reduction of local stress (Y227(5.58), F327(7.37), and F338(7.48)). This study provides insights into microscopic mechanisms underlying thermostability that leads to an understanding of the effect of these mutations on the structure of the receptor.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|