1
|
Gregar F, Gallo J, Milde D, Hegrová J, Kučerová P, Grepl J, Pluháček T. In vivo assessment of TiO 2 based wear nanoparticles in periprosthetic tissues. Anal Bioanal Chem 2024; 416:3785-3796. [PMID: 38724776 PMCID: PMC11180632 DOI: 10.1007/s00216-024-05320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
A multimodal approach combining inductively coupled plasma mass spectrometry (ICP-MS), single-particle ICP-MS (spICP-MS), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman spectroscopy enabled a deeper insight into the balance between total titanium (Ti), the soluble titanium fraction and titanium dioxide based particle fraction levels in periprosthetic tissues collected from patients undergoing revision surgery. Hydrofluoric acid usage in the sample digestion allowed for complete digestion of TiO2 particles, thus enabling accurate estimation of total Ti levels. The TiO2 fraction represents 38-94% of the titanium load in the six samples where particles were detected, and the fraction is present mainly in samples from patients with aseptically loosened total hip arthroplasty. Further attention was given to this fraction determining the elemental composition, particle count, particle size and modification of TiO2. The spICP-MS analysis confirmed the presence of the TiO2-derived (nano)particles (NPs) with a 39- to 187-nm median size and particle count up to 2.3 × 1011 particles per gram of tissue. On top of that, the SEM-EDS confirmed the presence of the TiO2 nanoparticles with 230-nm median size and an anatase crystal phase was determined by Raman spectroscopy. This study presents a novel multimodal approach for TiO2 particle determination and characterization in tissue samples and is the first in vivo study of this character.
Collapse
Affiliation(s)
- Filip Gregar
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jiří Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, 77520, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Division of Sustainable Transport and Transport Structures Diagnostics, Líšeňská 33a, Brno, 619 00, Czech Republic
| | - Pavla Kučerová
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jakub Grepl
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc, 771 46, Czech Republic
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc, 771 46, Czech Republic.
| |
Collapse
|
2
|
Kandaswamy E, Harsha M, Joshi VM. Titanium corrosion products from dental implants and their effect on cells and cytokine release: A review. J Trace Elem Med Biol 2024; 84:127464. [PMID: 38703537 DOI: 10.1016/j.jtemb.2024.127464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Titanium is considered to be an inert material owing to the ability of the material to form a passive titanium oxide layer. However, once the titanium oxide layer is lost, it can lead to exposure of the underlying titanium substructure and can undergo corrosion. SUMMARY The article explores the role of titanium ions and particles from dental implants on cells, cytokine release, and on the systemic redistribution of these particles as well as theories proposed to elucidate the effects of these particles on peri-implant inflammation based on evidence from in-vitro, human, and animal studies. Titanium particles and ions have a pro-inflammatory and cytotoxic effect on cells and promote the release of pro-inflammatory mediators like cytokines. Three theories to explain etiopathogenesis have been proposed, one based on microbial dysbiosis, the second based on titanium particles and ions and the third based on a synergistic effect between microbiome and titanium particles on the host. CONCLUSION There is clear evidence from in-vitro and limited human and animal studies that titanium particles released from dental implants have a detrimental effect on cells directly and through the release of pro-inflammatory cytokines. Future clinical and translational studies are required to clarify the role of titanium particles and ions in peri-implant inflammation and the etiopathogenesis of peri-implantitis.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA
| | - M Harsha
- Department of Oral Pathology & Microbiology, Yogita Dental College & Hospital, Naringi Riverside, At Post Tal Dist. SH104, Khed, Maharashtra 415709, India
| | - Vinayak M Joshi
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
3
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
4
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Ungureanu E, Vladescu (Dragomir) A, Parau AC, Mitran V, Cimpean A, Tarcolea M, Vranceanu DM, Cotrut CM. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5428. [PMID: 37570133 PMCID: PMC10419960 DOI: 10.3390/ma16155428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.
Collapse
Affiliation(s)
- Elena Ungureanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Mihai Tarcolea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| |
Collapse
|
6
|
Wang Z, Xiang Q, Tan X, Zhang Y, Zhu H, Pu J, Sun J, Sun M, Wang Y, Wei Q, Yu H. Functionalized Cortical Bone-Inspired Composites Adapt to the Mechanical and Biological Properties of the Edentulous Area to Resist Fretting Wear. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207255. [PMID: 36775879 PMCID: PMC10104646 DOI: 10.1002/advs.202207255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Dental implants with long-term success of osseointegration have always been the goal, however, difficulties exist. The accumulation of fretting damage at the implant-bone interface often gets overlooked. Commonly used titanium is approximately 7-fold harder and stiffer than cortical bone. Stress shielding caused by the mismatching of the elastic modulus aggravates fretting at the interface, which is accompanied by the risk of the formation of proinflammatory metal debris and implant loosening. Thus, the authors explore functionalized cortical bone-inspired composites (FCBIC) with a hierarchical structure at multiple scales, that exhibit good mechanical and biological adaptivity with cortical bone. The design is inspired by nature, combining brittle minerals with organic molecules to maintain machinability, which helps to acquire excellent energy-dissipating capability. It therefore has the comparable hardness and elastic modulus, strength, and elastic-plastic deformation to cortical bone. Meanwhile, this cortical bone analogy exhibits excellent osteoinduction and osseointegration abilities. These two properties also facilitate each other to resist fretting wear, and therefore improve the success rate of implantation. Based on these results, the biological-mechanical co-operation coefficient is proposed to describe the coupling between these two factors for designing the optimized dental implants.
Collapse
Affiliation(s)
- ZhongYi Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - QianRong Xiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Xin Tan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesCollege of StomatologyChongqing Medical UniversityChongqing400016China
| | - YaDong Zhang
- Research and Development DepartmentZhejiang PEKK‐X Advanced Materials Technology Co., Ltd.ShaoxingZhejiang312000China
| | - HaoQi Zhu
- Department of PhysicsCity University of Hong KongHong Kong Special Administrative Region of the People's Republic of ChinaKowloon999077China
| | - Jian Pu
- School of Mechanical EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - JiKui Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - ManLin Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - YingKai Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Qiang Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065China
| | - HaiYang Yu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| |
Collapse
|
7
|
Stricker A, Bergfeldt T, Fretwurst T, Addison O, Schmelzeisen R, Rothweiler R, Nelson K, Gross C. Impurities in commercial titanium dental implants - A mass and optical emission spectrometry elemental analysis. Dent Mater 2022; 38:1395-1403. [PMID: 35781168 DOI: 10.1016/j.dental.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Titanium (Ti) is considered bioinert and is still regarded as the "gold standard" material for dental implants. However, even 'commercial pure' Ti will contain minor fractions of elemental impurities. Evidence demonstrating the release of Ti ions and particles from 'passive' implant surfaces is increasing and has been attributed to biocorrosion processes which may provoke immunological reactions. However, Ti observed in peri-implant tissues has been shown to be co-located with elements considered impurities in biomedical alloys. Accordingly, this study aimed to quantify the composition of impurities in commercial Ti dental implants. METHODS Fifteen commercial titanium dental implant systems were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). RESULTS The elemental composition of implants manufactured from commercially pure grades of Ti, Ti-6Al-4V, and the TiZr alloy (Roxolid) conformed to the respective ISO/ASTM standards or manufacturers´ data (TiZr/Roxolid). However, all implants investigated included exogenous metal contaminants including Ni, Cr, Sb, and Nb to a variable extent. Other contaminants detected in a fraction of implants included As and the radionuclides U-238 and Th-232. SIGNIFICANCE Although all Ti implant studies conformed with their standard compositions, potentially allergenic, noxious metals and even radionuclides were detected. Since there are differences in the degree of contamination between the implant systems, a certain impurity fraction seems technically avoidable. The clinical relevance of these findings must be further investigated, and an adaptation of industry standards should be discussed.
Collapse
Affiliation(s)
- Andres Stricker
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| | - Thomas Bergfeldt
- Institute of Applied Materials - Applied Material Physics (IAM-AWP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Tobias Fretwurst
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| | - Owen Addison
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, SE1 9RT London, UK.
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| | - René Rothweiler
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| | - Katja Nelson
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
| |
Collapse
|
8
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
9
|
Kotsakis GA, Romanos GE. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000 2022; 88:52-63. [PMID: 35103318 DOI: 10.1111/prd.12410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Implant site preparation is a critical stage of implant surgery that may underpin various complications related to implant surgery. This review discusses the latest available scientific information on risk factors related to implant site preparation. The role of the drilling process in relation to the density of the available alveolar bone, the effects of insertion torque on peri-implant osseous healing, and implant-related variables such as macrodesign and implant-abutment connection are all factors that can influence implant success. Novel information that links osteotomy characteristics (including methods to improve implant initial stability, the impact of drilling speed, and increase of the implant insertion torque modifying the bone-implant interface) with the appropriate instrumentation techniques will be discussed, as well as interactions at the bone-biomaterial interface that may lead to biologic complications mediated by implant dissolution products.
Collapse
Affiliation(s)
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook, New York, USA.,Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Zhu W, Zhang R, Liu S, Tian J, Lv X, Yu F, Xin H. The effect of nanoparticles of cobalt-chromium on human aortic endothelial cells in vitro. J Appl Toxicol 2021; 41:1966-1979. [PMID: 33959985 DOI: 10.1002/jat.4177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) remains a main complication. The corrosion of cobalt-chromium (CoCr) alloy coronary stents has been identified to be associated with ISR, whereas its role in ISR has not been elucidated. In the current work, CoCr nanoparticles, simulated corrosion products of CoCr alloy, were used to investigate their effect on the endothelial cells. It has been demonstrated that the cell viability declines and the cell membrane is damaged, indicating the cytotoxicity of CoCr nanoparticles. The expression of GRP78, CHOP, and cleaved-caspase12 proteins has increased when exposed to CoCr nanoparticles, suggesting that CoCr nanoparticles induced cell apoptosis through endoplasmic reticulum (ER) stress-mediated apoptotic pathway. An increased release of adhesion and inflammatory mediators was also induced by CoCr nanoparticles, including ICAM-1, VCAM-1, IL-1β, IL-6, and TNF-α. Our results demonstrated that CoCr nanoparticles could trigger apoptosis, adhesion, and inflammation. These findings indicated potential damaging effects of CoCr nanoparticles on the vascular endothelium, which suggested corrosion of CoCr alloy may promote the progression and development of ISR.
Collapse
Affiliation(s)
- Wenxiu Zhu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiawei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaobing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Johansson ML, Calon TGA, Omar O, Shah FA, Trobos M, Thomsen P, Stokroos RJ, Palmquist A. Multimodal Analysis of the Tissue Response to a Bone-Anchored Hearing Implant: Presentation of a Two-Year Case Report of a Patient With Recurrent Pain, Inflammation, and Infection, Including a Systematic Literature Review. Front Cell Infect Microbiol 2021; 11:640899. [PMID: 33859952 PMCID: PMC8042154 DOI: 10.3389/fcimb.2021.640899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Osseointegration is a well-established concept used in applications including the percutaneous Bone-Anchored Hearing System (BAHS) and auricular rehabilitation. To date, few retrieved implants have been described. A systematic review including cases where percutaneous bone-anchored implants inserted in the temporal bone were retrieved and analyzed was performed. We also present the case of a patient who received a BAHS for mixed hearing loss. After the initial surgery, several episodes of soft tissue inflammation accompanied by pain were observed, leading to elective abutment removal 14 months post-surgery. Two years post-implantation, the implant was removed due to pain and subjected to a multiscale and multimodal analysis: microbial DNA using molecular fingerprinting, gene expression using quantitative real-time polymerase chain reaction (qPCR), X-ray microcomputed tomography (micro-CT), histology, histomorphometry, backscattered scanning electron microscopy (BSE-SEM), Raman spectroscopy, and fluorescence in situ hybridization (FISH). Evidence of osseointegration was provided via micro-CT, histology, BSE-SEM, and Raman spectroscopy. Polymicrobial colonization in the periabutment area and on the implant, including that with Staphylococcus aureus and Staphylococcus epidermidis, was determined using a molecular analysis via a 16S-23S rDNA interspace [IS]-region-based profiling method (IS-Pro). The histology suggested bacterial colonization in the skin and in the peri-implant bone. FISH confirmed the localization of S. aureus and coagulase-negative staphylococci in the skin. Ten articles (54 implants, 47 patients) met the inclusion criteria for the literature search. The analyzed samples were either BAHS (35 implants) or bone-anchored aural epitheses (19 implants) in situ between 2 weeks and 8 years. The main reasons for elective removal were nonuse/changes in treatment, pain, or skin reactions. Most samples were evaluated using histology, demonstrating osseointegration, but with the absence of bone under the implants’ proximal flange. Taken together, the literature and this case report show clear evidence of osseointegration, despite prominent complications. Nevertheless, despite implant osseointegration, chronic pain related to the BAHS may be associated with a chronic bacterial infection and raised inflammatory response in the absence of macroscopic signs of infection. It is suggested that a multimodal analysis of peri-implant health provides possibilities for device improvements and to guide diagnostic and therapeutic strategies to alleviate the impact of complications.
Collapse
Affiliation(s)
- Martin L Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Research and Technology, Oticon Medical AB, Askim, Sweden
| | - Tim G A Calon
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Stokroos
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Fragkioudakis I, Tseleki G, Doufexi AE, Sakellari D. Current Concepts on the Pathogenesis of Peri-implantitis: A Narrative Review. Eur J Dent 2021; 15:379-387. [PMID: 33742426 PMCID: PMC8184306 DOI: 10.1055/s-0040-1721903] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As implant treatment has been integrated in contemporary dental practice, complications with the forms of peri-implant mucositis and peri-implantitis have also increased in prevalence. Peri-implantitis is the more severe biological complication and is defined as an inflammatory disease affecting peri-implant tissues resulting in bone and eventually implant loss. In addition, the treatment of peri-implantitis has currently become a substantial global economic burden. In the current study, a search was conducted in several electronic databases using specific keywords relevant to the article's main topic. An increasing number of scientific reports have investigated the etiopathology of peri-implant diseases, focusing mainly on peri-implantitis. Microbial biofilm consists an important etiological factor of peri-implant pathology analogous to periodontal diseases. Although several data confirm that peri-implant infections are dominated by gram-negative bacteria, similar to periodontal infections, there is evidence that some cases may harbor a distinct microbiota, including opportunistic microorganisms and/or uncultivable species. Additionally, data support that several parameters, such as genetic predisposition of individual patients, occlusal overload, and local factors such as titanium particles and excess cement, may be implicated in peri-implantitis pathogenesis. Simultaneously, the release of titanium metal particles and their biological consequences or the presence of excess cement in the adjacent peri-implant tissues have also been suggested as factors that contribute to peri-implant pathology. A specific line of research also indicates the role of foreign body response to implant installation. This narrative review aims to discuss the current concepts of etiopathogenetic factors implicated in peri-implantitis.
Collapse
Affiliation(s)
- Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tseleki
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini-Elisavet Doufexi
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin Oral Investig 2021; 25:1627-1640. [PMID: 33616805 DOI: 10.1007/s00784-021-03785-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This integrative review aimed to report the toxic effect of submicron and nano-scale commercially pure titanium (cp Ti) debris on cells of peri-implant tissues. MATERIALS AND METHODS A systematic search was carried out on the PubMed electronic platform using the following key terms: Ti "OR" titanium "AND" dental implants "AND" nanoparticles "OR" nano-scale debris "OR" nanometric debris "AND" osteoblasts "OR "cytotoxicity" OR "macrophage" OR "mutagenic" OR "peri-implantitis". The inclusion criteria involved articles published in the English language, until December 26, 2020, reporting the effect of nano-scale titanium particles as released from dental implants on the toxicity and damage of osteoblasts. RESULTS Of 258 articles identified, 14 articles were selected for this integrative review. Submicron and nano-scale cp Ti particles altered the behavior of cells in culture medium. An inflammatory response was triggered by macrophages, fibroblasts, osteoblasts, mesenchymal cells, and odontoblasts as indicated by the detection of several inflammatory mediators such as IL-6, IL-1β, TNF-α, and PGE2. The formation of a bioactive complex composed of calcium and phosphorus on titanium nanoparticles allowed their binding to proteins leading to the cell internalization phenomenon. The nanoparticles induced mutagenic and carcinogenic effects into the cells. CONCLUSIONS The cytotoxic effect of debris released from dental implants depends on the size, concentration, and chemical composition of the particles. A high concentration of particles on nanometric scale intensifies the inflammatory responses with mutagenic potential of the surrounding cells. CLINICAL RELEVANCE Titanium ions and debris have been detected in peri-implant tissues with different size, concentration, and forms. The presence of metallic debris at peri-implant tissues also stimulates the migration of immune cells and inflammatory reactions. Cp Ti and TiO2 micro- and nano-scale particles can reach the bloodstream, accumulating in lungs, liver, spleen, and bone marrow.
Collapse
|
14
|
Abstract
ABSTRACT Dendritic cells (DCs) are considered a multifunctional cell population that links the innate and adaptive immune systems. Dendritic cells have a capacity for antigen capture and presentation to T cells, which initiates a cascade of inflammatory reactions. On contrary to its importance in immunology, DCs have not been known well in peri-implantitis.A scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy examination was used to examine a fixture that failed due to peri-implantitis, and a transmission electron microscopy was used to examine the peri-implant inflamed soft tissue. The presence of a DC was suggested in both scanning electron microscopy and transmission electron microscopy images. Titanium elements were also detected in the fixture-attached bone with energy-dispersive X-ray spectroscopy analysis. These findings suggested a link between Ti particles and DCs activation. The correlation between the presence of Ti particles and DCs will help to elucidate the detailed mechanism of peri-implantitis.
Collapse
|
15
|
Nelson K, Hesse B, Addison O, Morrell AP, Gross C, Lagrange A, Suárez VI, Kohal R, Fretwurst T. Distribution and Chemical Speciation of Exogenous Micro- and Nanoparticles in Inflamed Soft Tissue Adjacent to Titanium and Ceramic Dental Implants. Anal Chem 2020; 92:14432-14443. [PMID: 32970419 DOI: 10.1021/acs.analchem.0c02416] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Degradation of the implant surface and particle release/formation as an inflammation catalyst mechanism is an emerging concept in dental medicine that may help explain the pathogenesis of peri-implantitis. The aim of the present study was a synchrotron-based characterization of micro- and nanosized implant-related particles in inflamed human tissues around titanium and ceramic dental implants that exhibited signs of peri-implantitis. Size, distribution, and chemical speciation of the exogenous micro- and nanosized particle content were evaluated using synchrotron μ-X-ray fluorescence spectroscopy (XRF), nano-XRF, and μ-X-ray absorption near-edge structure (XANES). Titanium particles, with variable speciation, were detected in all tissue sections associated with titanium implants. Ceramic particles were found in five out of eight tissue samples associated with ceramic implants. Particles ranged in size from micro- to nanoscale. The local density of both titanium and ceramic particles was calculated to be as high as ∼40 million particles/mm3. μ-XANES identified titanium in predominantly two different chemistries, including metallic and titanium dioxide (TiO2). The findings highlight the propensity for particle accumulation in the inflamed tissues around dental implants and will help in guiding toxicological studies to determine the biological significance of such exposures.
Collapse
Affiliation(s)
- Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Bernhard Hesse
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany.,European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble, France
| | - Owen Addison
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, SE1 9RT London, U.K
| | - Alexander P Morrell
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, Great Maze Pond, SE1 9RT London, U.K
| | - Christian Gross
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Adrien Lagrange
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625 Berlin, Germany
| | - Vanessa I Suárez
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble, France
| | - Ralf Kohal
- Department of Prosthetic Dentistry, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
16
|
Mammalian cell response and bacterial adhesion on titanium healing abutments: effect of multiple implantation and sterilization cycles. Clin Oral Investig 2020; 25:2633-2644. [PMID: 32944837 DOI: 10.1007/s00784-020-03574-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Multiple implantations of the implant healing abutment (IHA) could adversely impact its surface properties in vivo. Furthermore, the effect of sterilization and reuse of the IHA on soft tissue viability and bacterial contamination has not been extensively studied. The goal of this study was to perform an in vitro analysis of mammalian cell viability and bacterial adhesion on the surfaces of retrieved IHA after single and multiple implantations and repetitive cycles of sterilization. MATERIALS AND METHODS IHA surface morphology was studied using optical microscopy. Cell viability of gingival fibroblasts (HGF-1) and oral keratinocytes (HOKg) in indirect contact with IHAs was assessed for 3 and 7 days. Immersion in bacterial culture was performed with a polyculture of Streptococcus species for 3 days and Streptococcus species with Fusobacterium nucleatum for 7 days. RESULTS IHAs exhibited signs of surface damage even after a single exposure to the oral cavity. Fibroblasts did not show a significant preference towards control IHAs over used IHAs, whereas keratinocytes exhibited a significant decrease in viability when exposed to IHAs after multiple implantation cycles as compared with controls. Adherent bacterial count increased with increasing number of IHA implantations for both polycultures. CONCLUSIONS Reusing of IHAs in vivo promoted surface degradation in addition to adversely impacting host cell viability and oral bacterial attachment in vitro. These findings show IHA reuse might potentially affect its clinical performance. CLINICAL RELEVANCE Careful consideration should be taken when reusing IHAs in patients because this practice can result in permanent surface changes that might affect soft tissue integration during the healing period and promote bacterial colonization.
Collapse
|
17
|
Barrak FN, Li S, Muntane AM, Jones JR. Particle release from implantoplasty of dental implants and impact on cells. Int J Implant Dent 2020; 6:50. [PMID: 32918144 PMCID: PMC7486360 DOI: 10.1186/s40729-020-00247-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. Materials and methods Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. Results Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. Conclusion There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Fadi N Barrak
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Albert M Muntane
- School of Dentistry, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Wang W, Wang Z, Fu Y, Dunne N, Liang C, Luo X, Liu K, Li X, Pang X, Lu K. Improved osteogenic differentiation of human amniotic mesenchymal stem cells on gradient nanostructured Ti surface. J Biomed Mater Res A 2020; 108:1824-1833. [PMID: 32388898 DOI: 10.1002/jbm.a.36948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/15/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
Abstract
Titanium (Ti) and Ti-based alloys are widely used in the manufacture of dental and orthopedic implants. However, how to improve their osteogenic differentiation ability is still a key issue to be resolved. In this study, gradient nanostructured surface (GNS) samples were prepared by surface mechanical grinding treatment, and coarse-grained (CG) samples were obtained by recrystallization annealing, making sure that the two kinds of specimens had similar roughness. Then, human amniotic mesenchymal stem cells (hAMSCs) were cocultured with the two kinds of Ti to investigate the material effects on the cellular functions. The results demonstrated that the grains with size ~56 nm were formed on the surface of the GNS Ti, and the grain size gradually increases from the sample surface to interior. Compared to the CG samples, the GNS ones could make the adhesion effect of the hAMSCs better, and promote the cell proliferation and osteogenic differentiation more significantly, the preliminary mechanism of which might be due to their specific nanostructure, the thicker oxide layer formed on their surface and the enhanced hardness. Our results indicated that the gradient nanostructured Ti materials could enhance both osteogenic differentiation and mechanical properties, which may possess broader applications in bone tissue engineering and clinical implanting.
Collapse
Affiliation(s)
- Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhenbo Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Yating Fu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Chen Liang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xue Luo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Keda Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xining Pang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Key Laboratory of Cell Biology, China Medical University, Shenyang, China
| | - Ke Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
19
|
Alternating current oxidation of Ti–6Al–4V alloy in oxalic acid for corrosion resistant surface finishing. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Trincă LC, Mareci D, Solcan C, Fantanariu M, Burtan L, Vulpe V, Hriţcu LD, Souto RM. RETRACTED: In vitro corrosion resistance and in vivo osseointegration testing of new multifunctional beta-type quaternary TiMoZrTa alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110485. [PMID: 31924054 DOI: 10.1016/j.msec.2019.110485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/26/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of authors. Due to communication issues between Professor dr. Lucia Carmen Trincă and Professor dr. Vizureanu Petrica and Assist. dr. Bălţatu Simona, the first author was not aware that the specimens processed by corrosion by Assoc. Professor dr. Daniel Mareci and evaluated in the aforementioned article would be included by Assistant dr. Bălţatu Simona in her PhD thesis that was defended in June 2017 and then in an international patent application (Indonesia) No: PI 2019006569, in November 2019. The authors understand and respect the intellectual property rights of the international (Indonesia) patent application holders no: PI 2019006569/2019 and thus request the retraction of the article.
Collapse
Affiliation(s)
- Lucia Carmen Trincă
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Exact Sciences Department, 700490, Iasi, Romania.
| | - Daniel Mareci
- "Gheorghe Asachi" Technical University of Iasi, Department of Chemical Engineering, 700050, Iasi, Romania
| | - Carmen Solcan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Preclinics Department, 700489, Iasi, Romania
| | - Mircea Fantanariu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Liviu Burtan
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania.
| | - Vasile Vulpe
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Luminiţa-Diana Hriţcu
- "Ion Ionescu de la Brad" University of Agricultural Science and Veterinary Medicine, Clinics Department, 700489, Iasi, Romania
| | - Ricardo Manuel Souto
- Department of Chemistry, Universidad de La Laguna, Avda. Astrofisico Sanchez s/n, 38205 La Laguna, Tenerife (Canary Islands), Spain; Instituto Universitario de Materiales y Nanotecnologias, Universidad de La Laguna, P.O. Box 456, 38200 La Laguna, Tenerife (Canary Islands), Spain.
| |
Collapse
|
21
|
Morrell AP, Floyd H, W Mosselmans JF, Grover LM, Castillo-Michel H, Davis ET, Parker JE, Martin RA, Addison O. Improving our understanding of metal implant failures: Multiscale chemical imaging of exogenous metals in ex-vivo biological tissues. Acta Biomater 2019; 98:284-293. [PMID: 31173961 DOI: 10.1016/j.actbio.2019.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Biological exposures to micro- and nano-scale exogenous metal particles generated as a consequence of in-service degradation of orthopaedic prosthetics can result in severe adverse tissues reactions. However, individual reactions are highly variable and are not easily predicted, due to in part a lack of understanding of the speciation of the metal-stimuli which dictates cellular interactions and toxicity. Investigating the chemistry of implant derived metallic particles in biological tissue samples is complicated by small feature sizes, low concentrations and often a heterogeneous speciation and distribution. These challenges were addressed by developing a multi-scale two-dimensional X-ray absorption spectroscopic (XAS) mapping approach to discriminate sub-micron changes in particulate chemistry within ex-vivo tissues associated with failed CoCrMo total hip replacements (THRs). As a result, in the context of THRs, we demonstrate much greater variation in Cr chemistry within tissues compared with previous reports. Cr compounds including phosphate, hydroxide, oxide, metal and organic complexes were observed and correlated with Co and Mo distributions. This variability may help explain the lack of agreement between biological responses observed in experimental exposure models and clinical outcomes. The multi-scale 2D XAS mapping approach presents an essential tool in discriminating the chemistry in dilute biological systems where speciation heterogeneity is expected. SIGNIFICANCE: Metal implants are routinely used in healthcare but may fail following degradation in the body. Although specific implants can be identified as 'high-risk', our analysis of failures is limited by a lack of understanding of the chemistry of implant metals within the peri-prosthetic milieu. A new approach to identify the speciation and variability in speciation at sub-micron resolution, of dilute exogenous metals within biological tissues is reported; applied to understanding the failure of metallic (CoCrMo) total-hip-replacements widely used in orthopedic surgery. Much greater variation in Cr chemistry was observed compared with previous reports and included phosphate, hydroxide, oxide, metal and organic complexes. This variability may explain lack of agreement between biological responses observed in experimental exposure models and clinical outcomes.
Collapse
Affiliation(s)
| | - Hayley Floyd
- University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | - Owen Addison
- University of Birmingham, Birmingham B15 2TT, UK; University of Alberta, Edmonton, AB T6G, Canada.
| |
Collapse
|
22
|
Ly NTK, Shin H, Gupta KC, Kang IK, Yu W. Bioactive Antibacterial Modification of Orthodontic Microimplants Using Chitosan Biopolymer. Macromol Res 2019. [DOI: 10.1007/s13233-019-7069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Bahraminasab M, Bozorg M, Ghaffari S, Kavakebian F. Corrosion of Al 2O 3-Ti composites under inflammatory condition in simulated physiological solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:200-211. [PMID: 31146991 DOI: 10.1016/j.msec.2019.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/12/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
Abstract
Alumina-titanium composites have shown good mechanical properties which makes them promising for orthopedic applications. The placement of an orthopedic implant involves an invasive procedure which stimulates a localized inflammatory response causing an acidic environment around the implant. This makes the study on corrosion more critical. Therefore, the aim of the present paper was to study the corrosion behavior of the composites with 75 vol% and 50 vol% Ti content (with alumina balance) fabricated by Spark Plasma Sintering under acidic condition representing inflammation and in two elapsed times (1 h and 1-day) using polarization and electrochemical impedance spectroscopy tests. For comparison, the experiments were also conducted in normal physiological solution after 1 h, and pure Ti (100vol%Ti) was fabricated by the same process and analyzed, similarly. Furthermore, behavior of the samples was studied after 48 days of immersion in the acidic and normal solutions using SEM, ATR-FTIR, AFM, and ICP-OES. The results of corrosion tests showed very good passivation behavior of 100vol%Ti and the composite containing 75vol.%Ti. The superiority of the 75vol.%Ti composite in corrosion characteristics in both solutions was also found. Its corrosion resistance was 20.3 MΩcm2 under the inflammatory condition after 1-day, which was 39% higher than that of 100vol.%Ti under the same condition. The results of SEM indicated both corroded and mineral deposition zones on all materials' surfaces and the ATR-FTIR results revealed additional adsorbed bands related to water adsorption, OH and carbonate groups after immersion. The AFM analysis showed rougher morphology, particularly for 75 vol% Ti where the Rq was increased about 50 nm, and the ICP-OES results indicated 65.87% and 61.94% deposition of solution calcium on 75vol.%Ti and 50vol.%Ti, respectively. The acidic/inflammatory condition influenced the corrosion processes of all materials. Lower pH caused the passivation to occur sooner and the corrosion resistance to be higher.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mansoor Bozorg
- Department of Chemical & Materials Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Somaye Ghaffari
- Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787316, Karaj, Alborz, Iran
| | - Fatemeh Kavakebian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
24
|
Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. Int J Implant Dent 2019; 5:10. [PMID: 30854575 PMCID: PMC6409289 DOI: 10.1186/s40729-019-0162-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Background Titanium is a commonly used inert bio-implant material within the medical and dental fields. Although the use of titanium is thought to be safe with a high success rate, in some cases, there are rare reports of problems caused by titanium. In most of these problematic reports, only individual reports are dominant and comprehensive reporting has not been performed. This comprehensive article has been prepared to review the toxicity of titanium materials within the medical and dental fields. Methods We used online searching tools including MEDLINE (PubMed), Embase, Cochrane Library, and Google Scholar by combining keywords such as “titanium implant toxicity,” “titanium implant corrosion,” “titanium implant allergy,” and “yellow nail syndrome.” Recently updated data has been collected and compiled into one of four categories: “the toxicity of titanium,” “the toxicity of titanium alloys,” “the toxicity of titanium implants,” and “diseases related to titanium.” Results Recent studies with regard to titanium toxicity have been increasing and have now expanded to the medical field in addition to the fields of environmental research and basic science. Problems that may arise in titanium-based dental implants include the generation of titanium and titanium alloy particles and ions deposited into surrounding tissues due to the corrosion and wear of implants, resulting in bone loss due to inflammatory reactions, which may lead to osseointegration failure of the dental implant. These titanium ions and particles are systemically deposited and can lead to toxic reactions in other tissues such as yellow nail syndrome. Additionally, implant failure and allergic reactions can occur due to hypersensitivity reactions. Zirconia implants can be considered as an alternative; however, limitations still exist due to a lack of long-term clinical data. Conclusions Clinicians should pay attention to the use of titanium dental implants and need to be aware of the problems that may arise from the use of titanium implants and should be able to diagnose them, in spite of very rare occurrence. Within the limitation of this study, it was suggested that we should be aware the rare problems of titanium toxicity.
Collapse
Affiliation(s)
- Kyeong Tae Kim
- Department of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Truc Thi Hoang Nguyen
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soung Min Kim
- Department of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea. .,Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea. .,Oral and Maxillofacial Microvascular Reconstruction LAB, Ghana Health Service, Regional Hospital, P.O. Box 27, Sunyani, Brong Ahafo, Ghana.
| |
Collapse
|
25
|
ArRejaie AS, Al-Hamdan RS, Basunbul GI, Abduljabbar T, Al-Aali KA, Labban N. Clinical performance of one-piece zirconia dental implants: A systematic review. JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY 2018; 10:e12384. [PMID: 30588750 DOI: 10.1111/jicd.12384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/28/2018] [Indexed: 01/11/2023]
Abstract
The aim of the present review was to evaluate the clinical and radiographic performance of one-piece zirconia implants (O-PZI). This review followed the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines that addressed the following focused question: What is the overall clinical and radiographic performance of O-PZI? The MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Cochrane Oral Health Group Trials Register databases were searched. Six clinical studies were included. For studies evaluating O-PZI compared with one-piece titanium implants, zirconia implants showed higher crestal bone loss (CBL) in both the studies. However, one study demonstrated a high failure rate compared to titanium dental implants, while one study demonstrated comparable survival rates between zirconia and titanium dental implants. For studies evaluating O-PZI for the restoration of single crown and fixed dental prostheses, O-PZI showed comparable bone loss and survival rates for single crowns and fixed dental prostheses. Two studies were included that compared O-PZI with two-piece zirconia (T-PZI). One study showed a higher CBL and low survival rate for O-PZI compared to T-PZI, whereas the other study demonstrated comparable CBL and survival rates between O-PZI and T-PZI. It is still debatable whether O-PZI demonstrate better clinical performance when compared with titanium implants or two-piece design.
Collapse
Affiliation(s)
- Aws S ArRejaie
- Department of Prosthetic Dental Science, King Saud University, Riyadh, Saudi Arabia
| | - Rana S Al-Hamdan
- Department of Restorative Dental Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghadeer I Basunbul
- Department of Oral and Maxillofacial Rehabilitation, Faculty of Dentistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, King Saud University, Riyadh, Saudi Arabia
| | - Khulud A Al-Aali
- Department of Prosthodontics, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Labban
- Department of Prosthetic Dental Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Delgado-Ruiz R, Romanos G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int J Mol Sci 2018; 19:E3585. [PMID: 30428596 PMCID: PMC6274707 DOI: 10.3390/ijms19113585] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/03/2023] Open
Abstract
Implant surface characteristics, as well as physical and mechanical properties, are responsible for the positive interaction between the dental implant, the bone and the surrounding soft tissues. Unfortunately, the dental implant surface does not remain unaltered and changes over time during the life of the implant. If changes occur at the implant surface, mucositis and peri-implantitis processes could be initiated; implant osseointegration might be disrupted and bone resorption phenomena (osteolysis) may lead to implant loss. This systematic review compiled the information related to the potential sources of titanium particle and ions in implant dentistry. Research questions were structured in the Population, Intervention, Comparison, Outcome (PICO) framework. PICO questionnaires were developed and an exhaustive search was performed for all the relevant studies published between 1980 and 2018 involving titanium particles and ions related to implant dentistry procedures. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for the selection and inclusion of the manuscripts in this review. Titanium particle and ions are released during the implant bed preparation, during the implant insertion and during the implant decontamination. In addition, the implant surfaces and restorations are exposed to the saliva, bacteria and chemicals that can potentially dissolve the titanium oxide layer and, therefore, corrosion cycles can be initiated. Mechanical factors, the micro-gap and fluorides can also influence the proportion of metal particles and ions released from implants and restorations.
Collapse
Affiliation(s)
- Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
| | - Georgios Romanos
- Department of Periodontics, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
- Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, 60323 Frankfurt, Germany.
| |
Collapse
|
27
|
Gostin PF, Addison O, Morrell AP, Zhang Y, Cook AJMC, Liens A, Stoica M, Ignatyev K, Street SR, Wu J, Chiu YL, Davenport AJ. In Situ Synchrotron X-Ray Diffraction Characterization of Corrosion Products of a Ti-Based Metallic Glass for Implant Applications. Adv Healthc Mater 2018; 7:e1800338. [PMID: 30221474 DOI: 10.1002/adhm.201800338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/03/2018] [Indexed: 11/11/2022]
Abstract
Ti-based bulk metallic glasses are under consideration for implants due to their high yield strength and biocompatibility. In this work, in situ synchrotron X-ray diffraction (XRD) is used to investigate the corrosion products formed from corrosion of Ti40 Zr10 Cu34 Pd14 Sn2 bulk metallic glass in artificial corrosion pits in physiological saline (NaCl). It is found that Pd nanoparticles form in the interior of the pits during electrochemical dissolution. At a low pit growth potential, the change in lattice parameter of the Pd nanoparticles is consistent with the formation of palladium hydride. In addition, a salt layer very close to the dissolving interface is found to contain CuCl, PdCl2 , ZrOCl2 ∙8H2 O, Cu, Cu2 O, and several unidentified phases. The formation of Pd nanoparticles (16 ± 10 nm at 0.7 V vs Ag/AgCl) containing small amounts of the other alloying elements is confirmed by transmission electron microscopy. The addition of albumin and/or H2 O2 does not significantly influence the nature of the corrosion products. When considering the biological compatibility of the alloy, the biological reactivity of the corrosion products identified should be explored.
Collapse
Affiliation(s)
- Petre Flaviu Gostin
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Owen Addison
- School of Dentistry; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | | | - Yue Zhang
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Angus J. M. C. Cook
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alethea Liens
- Université de Lyon; INSA-Lyon; Laboratoire MATEIS; UMR CNRS 5510; 20 Avenue Albert Einstein 69621 Villeurbanne Cedex France
| | - Mihai Stoica
- Laboratory of Metal Physics and Technology; Department of Materials; ETH Zürich; 8093 Zürich Switzerland
| | - Konstantin Ignatyev
- Diamond Light Source; Harwell Science and Innovation Campus; Didcot Oxfordshire OX11 0DE UK
| | - Steven R. Street
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Jing Wu
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Yu-Lung Chiu
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alison J. Davenport
- School of Metallurgy and Materials; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
28
|
Morrell AP, Mosselmans JFW, Geraki K, Ignatyev K, Castillo-Michel H, Monksfield P, Warfield AT, Febbraio M, Roberts HM, Addison O, Martin RA. Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1719-1726. [PMID: 30407182 DOI: 10.1107/s160057751801247x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Synchrotron radiation X-ray fluorescence microscopy is frequently used to investigate the spatial distribution of elements within a wide range of samples. Interrogation of heterogeneous samples that contain large concentration ranges has the potential to produce image artefacts due to the profile of the X-ray beam. The presence of these artefacts and the distribution of flux within the beam profile can significantly affect qualitative and quantitative analyses. Two distinct correction methods have been generated by referencing the beam profile itself or by employing an adaptive-thresholding procedure. Both methods significantly improve qualitative imaging by removing the artefacts without compromising the low-intensity features. The beam-profile correction method improves quantitative results but requires accurate two-dimensional characterization of the X-ray beam profile.
Collapse
Affiliation(s)
- Alexander P Morrell
- Aston Institute of Materials Research, School of Engineering, University of Aston, Birmingham B4 7ET, UK
| | | | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE, UK
| | - Konstantin Ignatyev
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0DE, UK
| | | | - Peter Monksfield
- University Hospitals Birmingham, NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK
| | - Adrian T Warfield
- University Hospitals Birmingham, NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK
| | - Maria Febbraio
- School of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 1C9
| | - Helen M Roberts
- School of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 1C9
| | - Owen Addison
- School of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 1C9
| | - Richard A Martin
- Aston Institute of Materials Research, School of Engineering, University of Aston, Birmingham B4 7ET, UK
| |
Collapse
|
29
|
Xia C, Cai D, Tan J, Li K, Qiao Y, Liu X. Synergistic Effects of N/Cu Dual Ions Implantation on Stimulating Antibacterial Ability and Angiogenic Activity of Titanium. ACS Biomater Sci Eng 2018; 4:3185-3193. [DOI: 10.1021/acsbiomaterials.8b00501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chao Xia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingsen Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunqiang Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
30
|
|
31
|
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2018; 73:22-40. [PMID: 28000277 DOI: 10.1111/prd.12179] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone loss and should therefore be monitored and studied in greater detail.
Collapse
|
32
|
Swiatkowska I, Mosselmans JFW, Geraki T, Wyles CC, Maleszewski JJ, Henckel J, Sampson B, Potter DB, Osman I, Trousdale RT, Hart AJ. Synchrotron analysis of human organ tissue exposed to implant material. J Trace Elem Med Biol 2018; 46:128-137. [PMID: 29413102 DOI: 10.1016/j.jtemb.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Orthopaedic implants made of cobalt-chromium alloy undergo wear and corrosion that can lead to deposition of cobalt and chromium in vital organs. Elevated cardiac tissue cobalt levels are associated with myocardial injury while chromium is a well-established genotoxin. Though metal composition of tissues surrounding hip implants has been established, few investigators attempted to characterize the metal deposits in systemic tissues of total joint arthroplasty patients. METHODS We report the first use of micro-X-ray fluorescence coupled with micro-X-ray absorption spectroscopy to probe distribution and chemical form of cobalt, chromium and titanium in postmortem samples of splenic, hepatic and cardiac tissue of patients with metal-on-polyethylene hip implants (n = 5). RESULTS Majority of the cobalt was in the 2+ oxidation state, while titanium was present exclusively as titanium dioxide, in either rutile or anatase crystal structure. Chromium was found in a range of forms including a highly oxidised, carcinogenic species (CrV/VI), which has never been identified in human tissue before. CONCLUSIONS Carcinogenic forms of chromium might arise in vital organs of total joint arthroplasty patients. Further studies are warranted with patients with metal-on-metal implants, which tend to have an increased release of cobalt and chromium compared to metal-on-polyethylene hips.
Collapse
Affiliation(s)
- Ilona Swiatkowska
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP Stanmore, UK.
| | - J Fred W Mosselmans
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Tina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Cody C Wyles
- Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | | | - Johann Henckel
- Royal National Orthopaedic Hospital, HA7 4LP Stanmore, UK
| | - Barry Sampson
- Trace Element Laboratory, Department of Clinical Chemistry, Charing Cross Hospital, Imperial College NHS Healthcare Trust, W6 8RF London, UK
| | - Dominic B Potter
- Departament of Chemistry, University College London, WC1H 0AJ London, UK
| | - Ibtisam Osman
- Trace Element Laboratory, Department of Clinical Chemistry, Charing Cross Hospital, Imperial College NHS Healthcare Trust, W6 8RF London, UK
| | | | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP Stanmore, UK; Royal National Orthopaedic Hospital, HA7 4LP Stanmore, UK
| |
Collapse
|
33
|
Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H 2O 2 and Albumin. Sci Rep 2018; 8:3185. [PMID: 29453366 PMCID: PMC5816596 DOI: 10.1038/s41598-018-21332-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/01/2018] [Indexed: 01/27/2023] Open
Abstract
There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H2O2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H2O2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H2O2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H2O2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm2) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.
Collapse
|
34
|
Balmer M, Spies BC, Vach K, Kohal RJ, Hämmerle CHF, Jung RE. Three-year analysis of zirconia implants used for single-tooth replacement and three-unit fixed dental prostheses: A prospective multicenter study. Clin Oral Implants Res 2018; 29:290-299. [PMID: 29330869 DOI: 10.1111/clr.13115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 12/24/2022]
Abstract
AIM The aim of the present investigation was to evaluate clinically and radiographically the outcome of zirconia oral implants after 3 years in function. MATERIALS AND METHODS In 60 patients in need of either a single-tooth replacement or a three-unit fixed dental prosthesis (FDP), a total of 71 one-piece zirconia implants were placed and immediately restored with temporary fixed prostheses. After a period of at least 2 months in the mandible and at least 4 months in the maxilla, zirconia-based reconstructions were cemented. The implants were clinically and radiologically examined at implant insertion, prosthetic delivery, at 6 months and then yearly up to 3 years. A linear mixed model was used to analyze statistically the influence of prognostic factors on changes in the marginal bone level. RESULTS Seventy-one implants (48 in the mandible, 23 in the maxilla) inserted in 60 patients were restored with 49 crowns and 11 FDP. One patient lost his implant after 5 weeks. Five patients with one implant each could not be evaluated after 3 years. Based on 55 patients with a total of 66 implants, the mean survival rate was 98.5% after 3 years in function. A statistically significant mean marginal bone loss (0.70 mm ± 0.72 mm) has been detected from implant insertion to the 3-year follow-up. The largest marginal bone loss occurred between implantation and prosthetic delivery (0.67 mm ± 0.56 mm). After delivery, no statistically significant bone level change was observed (0.02 mm ± 0.59 mm). None of the investigated prognostic factors had a significant influence on changes in the marginal bone level. CONCLUSIONS After 3 years in function, the investigated one-piece zirconia implant showed a high survival rate and a low marginal bone loss. The implant system was successful for single-tooth replacement and three-unit FDPs. Further investigations with long-term data are needed to confirm these findings.
Collapse
Affiliation(s)
- Marc Balmer
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Berlin, Germany
| | - Kirstin Vach
- Center for Medical Biometry and Medical Informatics, Institute for Medical Biometry and Statistics, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf-Joachim Kohal
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph H F Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ronald E Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Di Laura A, Quinn PD, Panagiotopoulou VC, Hothi HS, Henckel J, Powell JJ, Berisha F, Amary F, Mosselmans JFW, Skinner JA, Hart AJ. The Chemical Form of Metal Species Released from Corroded Taper Junctions of Hip Implants: Synchrotron Analysis of Patient Tissue. Sci Rep 2017; 7:10952. [PMID: 28887488 PMCID: PMC5591307 DOI: 10.1038/s41598-017-11225-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanisms of metal release from the articulation at the head cup bearing and the tapered junctions of orthopaedic hip implants are known to differ and the debris generated varies in size, shape and volume. Significantly less metal is lost from the taper junction between Cobalt-Chromium-Molybdenum (CoCrMo) and Titanium (Ti) components (fretting-corrosion dominant mechanism), when compared to the CoCrMo bearing surfaces (wear-corrosion dominant mechanism). Corrosion particles from the taper junction can lead to Adverse Reactions to Metal Debris (ARMD) similar to those seen with CoCrMo bearings. We used synchrotron methods to understand the modes underlying clinically significant tissue reactions to Co, Cr and Ti by analysing viable peri-prosthetic tissue. Cr was present as Cr2O3 in the corroded group in addition to CrPO4 found in the metal-on-metal (MoM) group. Interestingly, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form. The metal species were co-localized in the same micron-scale particles as result of corrosion processes and in one cell type, the phagocytes. This work gives new insights into the degradation products from metal devices as well as guidance for toxicological studies in humans.
Collapse
Affiliation(s)
- Anna Di Laura
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom.
| | - Paul D Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Vasiliki C Panagiotopoulou
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Harry S Hothi
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Johann Henckel
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Jonathan J Powell
- Biomineral Research Group, Dept Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fitim Berisha
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Fernanda Amary
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - J Fred W Mosselmans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - John A Skinner
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London and the Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| |
Collapse
|
36
|
Díaz I, Pacha-Olivenza MÁ, Tejero R, Anitua E, González-Martín ML, Escudero ML, García-Alonso MC. Corrosion behavior of surface modifications on titanium dental implant. In situ bacteria monitoring by electrochemical techniques. J Biomed Mater Res B Appl Biomater 2017; 106:997-1009. [PMID: 28480611 DOI: 10.1002/jbm.b.33906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022]
Abstract
The effects of surface modifications and bacteria on the corrosion behavior of titanium have been studied. Five surface modifications were analyzed: two acid etchings (op V, op N), acid etching + anodic oxidation (op NT), sandblasting + acid etching (SLA), and machined surfaces (mach). The corrosion behavior of the surface modifications was evaluated by following the standard ANSI/AAMI/ISO 10993-15:2000. Cyclic potentiodynamic and potentiostatic anodic polarization tests and ion release by ICP-OES after immersion for 7 days in 0.9% NaCl were carried out. Microbiologically induced corrosion (MIC) of low and high roughness (mach, op V) was assessed in situ by electrochemical techniques. Streptococcus mutans bacteria were resuspended in PBS at a concentration of 3 × 108 bacteria mL-1 and maintained at 37°C. MIC was measured through the open circuit potential, Eoc , and electrochemical impedance spectroscopy from 2 to 28 days. Potentiodynamic curves showed the typical passive behavior for all the surface modifications. The titanium ion release after immersion was below 3 ppb. In situ bacteria monitoring showed the decrease in Eoc from -0.065 (SD 0.067) Vvs. Ag/AgCl in mach and -0.115 (SD 0.084) Vvs. Ag/AgCl in op V, to -0.333 (SD 0.147) Vvs. Ag/AgCl in mach and -0.263 (SD 0.005) Vvs. Ag/AgCl in op V, after 2 and 28 days, respectively. A reduction of the oxide film resistance, especially in op V (54 MΩ cm2 and 6 MΩ cm2 , after 2 and 28 days, respectively) could be seen. Streptococcus mutans negatively affected the corrosion resistance of titanium. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 997-1009, 2018.
Collapse
Affiliation(s)
- Ivan Díaz
- National Centre for Metallurgical Research, CENIM (CSIC), Madrid, 28040, Spain
| | - Miguel Ángel Pacha-Olivenza
- Networking Research Center on Bioengineering, Biomaterial and Biomedicine (CIBER-BBN), Spain.,Department of Applied Physics, Faculty of Science-UEx, Badajoz, Spain
| | | | - Eduardo Anitua
- Biotechnology Institute (BTI), Vitoria, Spain.,Private Practice in Implantology and Oral Rehabilitation in Vitoria, Spain
| | - Maria Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterial and Biomedicine (CIBER-BBN), Spain.,Department of Applied Physics, Faculty of Science-UEx, Badajoz, Spain
| | | | | |
Collapse
|
37
|
|
38
|
Frydman GH, Marini RP, Bakthavatchalu V, Biddle KE, Muthupalani S, Vanderburg CR, Lai B, Bendapudi PK, Tompkins RG, Fox JG. Local and Systemic Changes Associated with Long-term, Percutaneous, Static Implantation of Titanium Alloys in Rhesus Macaques ( Macaca mulatta). Comp Med 2017; 67:165-175. [PMID: 28381317 PMCID: PMC5402736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 06/07/2023]
Abstract
Metal alloys are frequently used as implant materials in veterinary medicine. Recent studies suggest that many alloys induce both local and systemic inflammatory responses. In this study, 37 rhesus macaques with long-term skull-anchored percutaneous titanium alloy implants (duration, 0 to 14 y) were evaluated for changes in their hematology, coagulation, and serum chemistry profiles. Negative controls (n = 28) did not have implants. Macaques with implants had higher plasma D-dimer and lower antithrombin III concentrations than nonimplanted animals. In addition, animals with implants had higher globulin and lower albumin and calcium concentrations compared with nonimplanted macaques. Many of these changes were positively correlated with duration of implantation and the number of implants. Chronic bacterial infection of the skin was present around many of the implant sites and within deeper tissues. Representative histopathology around the implant site of 2 macaques revealed chronic suppurative to pyogranulomatous inflammation extending from the skin to the dura mater. X-ray fluorescence microscopy of tissue biopsies from the implant site of the same 2 animals revealed significantly higher levels of free metal ions in the tissue, including titanium and iron. The higher levels of free metal ions persisted in the tissues for as long as 6 mo after explantation. These results suggest that long-term skull-anchored percutaneous titanium alloy implants can be associated with localized inflammation, chronic infection, and leaching of metal ions into local tissues.
Collapse
Affiliation(s)
- Galit H Frydman
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Division of Surgery, Science, and Bioengineering, Advanced Tissue Resource Center, Massachusetts General Hospital, Boston, Massachusetts;,
| | - Robert P Marini
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charles R Vanderburg
- Advanced Tissue Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Barry Lai
- X-ray Science Division, Argonne National Laboratory, US Department of Energy, Argonne, Illinois
| | - Pavan K Bendapudi
- Harvard Medical School, Division of Hematology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ronald G Tompkins
- Division of Surgery, Science, and Bioengineering, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
39
|
Jones KE, Batchler KL, Zalouk C, Valentine AM. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. Inorg Chem 2017; 56:1264-1272. [DOI: 10.1021/acs.inorgchem.6b02399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kayleigh E. Jones
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Kathleen L. Batchler
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Célia Zalouk
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| |
Collapse
|
40
|
Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, Farina M, Anselme K, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Werckmann J, Granjeiro JM. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells. Sci Rep 2016; 6:23615. [PMID: 27021687 PMCID: PMC4810327 DOI: 10.1038/srep23615] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.
Collapse
Affiliation(s)
- A R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - S Gemini-Piperni
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil
| | - R Travassos
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - L Lemgruber
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Welcome Trust Centre for Molecular Parasitology, University of Glasgow, United Kingdom
| | - R C Silva
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - A L Rossi
- Brazilian Center for Research in Physics-Rio de Janeiro, Brazil
| | - M Farina
- Biomineralization laboratory, Institute of Biomedical Sciences, University Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - K Anselme
- Institut de Science des Materiaux de Mulhouse-CNRS UMR7391, Universite de Haute-Alsace, Mulhouse, France
| | - T Shokuhfar
- Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Department of Bioengineering, University of Illinois at Chicago, Chicago 60607, United States
| | - R Shahbazian-Yassar
- Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 60607, United States
| | - R Borojevic
- Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Center of Regenerative Medicine, Faculty of Medicine-FASE, Petrópolis, Brasil
| | - L A Rocha
- Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Physics Department, University Estadual Paulista, Bauru, São Paulo, Brazil
| | - J Werckmann
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil
| | - J M Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), University Estadual Paulista, Faculty of Sciences, Bauru, São Paulo, Brazil.,Dental School, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
41
|
Liu B, Xiao GY, Jiang CC, Zheng YZ, Wang LL, Lu YP. Formation initiation and structural changes of phosphate conversion coating on titanium induced by galvanic coupling and Fe2+ ions. RSC Adv 2016. [DOI: 10.1039/c6ra16847g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A scholzite coating was precipitated on Ti by a galvanically coupled approach and addition of iron ions in the bath.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Gui-yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Cong-cong Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Yong-zhen Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Ling-ling Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Yu-peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| |
Collapse
|
42
|
Pozhitkov AE, Daubert D, Brochwicz Donimirski A, Goodgion D, Vagin MY, Leroux BG, Hunter CM, Flemmig TF, Noble PA, Bryers JD. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion. PLoS One 2015; 10:e0140393. [PMID: 26461491 PMCID: PMC4604158 DOI: 10.1371/journal.pone.0140393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/24/2015] [Indexed: 01/30/2023] Open
Abstract
Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient’s mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4–5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.
Collapse
Affiliation(s)
- Alex E. Pozhitkov
- Department of Oral Health Sciences, University of Washington, Box 357444, Seattle, Washington, United States of America
- * E-mail:
| | - Diane Daubert
- Department of Periodontics, University of Washington, Box 357444, Seattle, Washington, United States of America
| | - Ashley Brochwicz Donimirski
- Department of Oral Health Sciences, University of Washington, Box 357444, Seattle, Washington, United States of America
| | - Douglas Goodgion
- Department of Oral Health Sciences, University of Washington, Box 357444, Seattle, Washington, United States of America
| | - Mikhail Y. Vagin
- Department of Physics, Chemistry and Biology (IFM) Linköping University, SE-581 83, LINKÖPING, Sweden
| | - Brian G. Leroux
- Department of Oral Health Sciences, University of Washington, Box 357444, Seattle, Washington, United States of America
| | - Colby M. Hunter
- PhD Program in Microbiology, Alabama State University, Montgomery, Alabama, United States of America
| | - Thomas F. Flemmig
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, Peoples’ Republic of China
| | - Peter A. Noble
- PhD Program in Microbiology, Alabama State University, Montgomery, Alabama, United States of America
| | - James D. Bryers
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, Washington, United States of America
| |
Collapse
|
43
|
Yu F, Addison O, Davenport AJ. A synergistic effect of albumin and H₂O₂ accelerates corrosion of Ti6Al4V. Acta Biomater 2015; 26:355-65. [PMID: 26238758 DOI: 10.1016/j.actbio.2015.07.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
The synergistic effect of albumin and H2O2 on corrosion of titanium alloy Ti6Al4V in physiological saline was investigated with long-term immersion tests and electrochemical methods. It was found that in the presence of both albumin and H2O2, the rate of metal release in immersion tests was far higher than in the presence of either species alone. Electrochemical polarisation curves and potentiostatic tests showed that H2O2 increased both the rates of the anodic and cathodic reactions, whilst albumin significantly decreased the rate of the cathodic reaction and slightly decreased the rate of the anodic reaction. The synergistic effect of albumin and H2O2 during immersion tests was attributed to the effect of adsorption of albumin in lowering the rate of the cathodic reaction and thus lowering the open circuit potential into the active region of titanium where complexation by H2O2 increased the corrosion rate. The corrosion attack was found to be greater in the β-phase of the alloy. The findings suggest that current standard tests in physiological or phosphate-buffered saline may underestimate the rate of corrosion in the peri-implant environment, in which albumin is the predominant protein, and reactive oxygen species such as H2O2 can occur as a result of inflammatory reactions in response to surgery, infection, or implant corrosion products. STATEMENT OF SIGNIFICANCE Corrosion of many biomedical implant materials occurs in the body leading to adverse biological responses. Several components of the environment into which a metal implant is placed including proteins and products of cellular physiology, been shown to modify corrosion resistance. Previously all studies on such components including the common protein albumin and the inflammatory product H2O2 have considered the effects of these species in isolation. For the first time we report a synergistic interaction between albumin and H2O2 significantly accelerating corrosion of Ti6Al4V at physiological pH and temperature. This is attributed to an increased rate of the anodic reaction caused by H2O2 complexation of Ti, suppression of cathodic reaction by albumin adsorption shifting OCP to the active region of Ti6Al4V.
Collapse
|
44
|
Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. Int J Oral Sci 2015; 7:179-86. [PMID: 25634122 PMCID: PMC4582556 DOI: 10.1038/ijos.2014.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 11/08/2022] Open
Abstract
Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.
Collapse
|
45
|
Zhang X, Xiao GY, Zhao XC, He K, Xu WH, Lu YP. Rapid early formation and crystal refinement of chemical conversion hopeite coatings induced by substrate sandblasting. NEW J CHEM 2015. [DOI: 10.1039/c5nj01386k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A relatively uniform banded structure is exhibited on the crystal surface of a coating on sandblasted substrates.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| | - Gui-yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| | - Xing-chuan Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| | - Kun He
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| | - Wen-hua Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| | - Yu-peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan
- China
| |
Collapse
|
46
|
|
47
|
Calcium and zinc containing bactericidal glass coatings for biomedical metallic substrates. Int J Mol Sci 2014; 15:13030-44. [PMID: 25056542 PMCID: PMC4139889 DOI: 10.3390/ijms150713030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/16/2023] Open
Abstract
The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versusEscherichia coli (>4 log).
Collapse
|
48
|
Soto-Alvaredo J, Blanco E, Bettmer J, Hevia D, Sainz RM, López Cháves C, Sánchez C, Llopis J, Sanz-Medel A, Montes-Bayón M. Evaluation of the biological effect of Ti generated debris from metal implants: ions and nanoparticles. Metallomics 2014; 6:1702-8. [DOI: 10.1039/c4mt00133h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallic implants placed in humans exhibit wear and corrosion that result in the liberation of metal-containing by-products.
Collapse
Affiliation(s)
- J. Soto-Alvaredo
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo, Spain
| | - E. Blanco
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo, Spain
| | - J. Bettmer
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo, Spain
| | - D. Hevia
- Department of Morphology and Cell Biology
- Faculty of Medicine
- Cancer Research Institute of Principado de Asturias (IUOPA)
- University of Oviedo
- 33006 Oviedo, Spain
| | - R. M. Sainz
- Department of Morphology and Cell Biology
- Faculty of Medicine
- Cancer Research Institute of Principado de Asturias (IUOPA)
- University of Oviedo
- 33006 Oviedo, Spain
| | - C. López Cháves
- Department of Physiology
- Faculty of Pharmacy
- University of Granada
- Campus de Cartuja
- 18071 Granada, Spain
| | - C. Sánchez
- Department of Physiology
- Faculty of Pharmacy
- University of Granada
- Campus de Cartuja
- 18071 Granada, Spain
| | - J. Llopis
- Department of Physiology
- Faculty of Pharmacy
- University of Granada
- Campus de Cartuja
- 18071 Granada, Spain
| | - A. Sanz-Medel
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo, Spain
| | - M. Montes-Bayón
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo, Spain
| |
Collapse
|
49
|
Bolat G, Mareci D, Chelariu R, Izquierdo J, González S, Souto R. Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Ao H, Xie Y, Tan H, Yang S, Li K, Wu X, Zheng X, Tang T. Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings. J R Soc Interface 2013; 10:20130070. [PMID: 23635490 DOI: 10.1098/rsif.2013.0070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.
Collapse
Affiliation(s)
- Haiyong Ao
- Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|