1
|
Arif S. A stochastic mathematical model for coupling the cytosolic and sarcoplasmic calcium movements in diseased cardiac myocytes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:545-554. [PMID: 36117233 PMCID: PMC9675677 DOI: 10.1007/s00249-022-01617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Several computational studies have been undertaken to explore the Ca2+-induced Ca2+ release (CICR) events in cardiac myocytes and along with experimental studies it has given us invaluable insight into the mechanism of CICR from spark/blink initiation to termination and regulation, and their interplay under normal and pathological conditions. The computational modelling of this mechanism has mainly been investigated using coupled differential equations (DEs). However, there is a lack of computational investigation into (1) how the different formulation of coupled DEs capture the Ca2+ movement in the cytosol and sarcoplasmic reticulum (SR), (2) the buffer and dye inclusion in both compartments, and (3) the effect of buffer and dye properties on the calcium behaviour. This work is set out to explore (1) the effect of different coupled formulation of DEs on spark/blink occurrence, (2) the inclusion of improved sarcoplasmic buffering properties, and (3) the effects of cytosolic and sarcoplasmic dye and buffer properties on Ca2+ movement. The simulation results show large discrepancies between different formulations of the governing equations. Additionally, extension of the model to include sarcoplasmic buffering properties show normalised fluorescent dye profiles to be in good agreement with experimental and amongst its one- and two-dimensional representations.
Collapse
Affiliation(s)
- Serife Arif
- Academic Section, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
2
|
Hoang-Trong MT, Ullah A, Lederer WJ, Jafri MS. Cardiac Alternans Occurs through the Synergy of Voltage- and Calcium-Dependent Mechanisms. MEMBRANES 2021; 11:794. [PMID: 34677560 PMCID: PMC8539281 DOI: 10.3390/membranes11100794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
Cardiac alternans is characterized by alternating weak and strong beats of the heart. This signaling at the cellular level may appear as alternating long and short action potentials (APs) that occur in synchrony with alternating large and small calcium transients, respectively. Previous studies have suggested that alternans manifests itself through either a voltage dependent mechanism based upon action potential restitution or as a calcium dependent mechanism based on refractoriness of calcium release. We use a novel model of cardiac excitation-contraction (EC) coupling in the rat ventricular myocyte that includes 20,000 calcium release units (CRU) each with 49 ryanodine receptors (RyR2s) and 7 L-type calcium channels that are all stochastically gated. The model suggests that at the cellular level in the case of alternans produced by rapid pacing, the mechanism requires a synergy of voltage- and calcium-dependent mechanisms. The rapid pacing reduces AP duration and magnitude reducing the number of L-type calcium channels activating individual CRUs during each AP and thus increases the population of CRUs that can be recruited stochastically. Elevated myoplasmic and sarcoplasmic reticulum (SR) calcium, [Ca2+]myo and [Ca2+]SR respectively, increases ryanodine receptor open probability (Po) according to our model used in this simulation and this increased the probability of activating additional CRUs. A CRU that opens in one beat is less likely to open the subsequent beat due to refractoriness caused by incomplete refilling of the junctional sarcoplasmic reticulum (jSR). Furthermore, the model includes estimates of changes in Na+ fluxes and [Na+]i and thus provides insight into how changes in electrical activity, [Na+]i and sodium-calcium exchanger activity can modulate alternans. The model thus tracks critical elements that can account for rate-dependent changes in [Na+]i and [Ca2+]myo and how they contribute to the generation of Ca2+ signaling alternans in the heart.
Collapse
Affiliation(s)
- Minh Tuan Hoang-Trong
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
| | - Aman Ullah
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
| | - William Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Mohsin Saleet Jafri
- Krasnow Institute for Advanced Study and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (M.T.H.-T.); (A.U.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
3
|
Arif S, Lai CH, Ramesh NI. Estimation of stochastic behaviour in cardiac myocytes: I. Ca 2+ movements inside the cytosol and sarcoplasmic reticulum on curvilinear domains. JRSM Cardiovasc Dis 2019; 8:2048004018822428. [PMID: 30643637 PMCID: PMC6322098 DOI: 10.1177/2048004018822428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/06/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022] Open
Abstract
Since the discovery of Ca2+ sparks and their stochastic behaviour in cardiac myocytes, models have focused on the inclusion of stochasticity in their studies. While most models pay much attention to the stochastic modelling of cytosolic Ca2+ concentration the coupling of Ca2+ sparks and blinks in a stochastic model has not been explored fully. The cell morphology in in silico studies in the past is assumed to be Cartesian, spherical or cylindrical. The application on curvilinear grids can easily address certain restrictions posed by such grid set up and provide more realistic cell morphology. In this paper, we present a stochastic reaction-diffusion model that couples Ca2+ sparks and blinks in realistic shapes of cells in curvilinear domains. Methodology: Transformation of the model was performed to the curvilinear coordinate system. The set of equations is used to produce Ca2+ waves initiated from sparks and blinks. A non-buffered and non-dyed version as well as a buffered and dyed version of these equations were studied in light of observing the dynamics on the two different systems. For comparison, results for both the Cartesian and curvilinear grids are provided. Results and conclusions: A successful demonstration of the application of curvilinear grids serving as basis for future developments.
Collapse
Affiliation(s)
- Serife Arif
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| | - Choi-Hong Lai
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| | - Nadarajah I Ramesh
- Department of Mathematical Sciences, Faculty of Architecture, Computing and Humanities University of Greenwich, London, UK
| |
Collapse
|
4
|
Chen X, Feng Y, Huo Y, Tan W. The Interplay of Rogue and Clustered Ryanodine Receptors Regulates Ca2+ Waves in Cardiac Myocytes. Front Physiol 2018; 9:393. [PMID: 29755362 PMCID: PMC5932313 DOI: 10.3389/fphys.2018.00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xudong Chen
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yundi Feng
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yunlong Huo
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- *Correspondence: Yunlong Huo
| | - Wenchang Tan
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Wenchang Tan
| |
Collapse
|
5
|
Chen X, Feng Y, Huo Y, Tan W. Effects of rogue ryanodine receptors on Ca 2+ sparks in cardiac myocytes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171462. [PMID: 29515864 PMCID: PMC5830753 DOI: 10.1098/rsos.171462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 06/15/2023]
Abstract
Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca2+ release units (CRUs) of clustered RyRs are regulated by free Ca2+ concentration in the JSR lumen (i.e. [Ca2+]lumen). The frequency of spontaneous Ca2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca2+]lumen, but not at low [Ca2+]lumen. Hence, the opening of rogue RyRs contributes to the formation of Ca2+ sparks at high [Ca2+]lumen. The interplay of Ca2+ sparks and Ca2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca2+ release mechanisms in cardiac myocytes.
Collapse
Affiliation(s)
- Xudong Chen
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yundi Feng
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yunlong Huo
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, People's Republic of China
| | - Wenchang Tan
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, People's Republic of China
- Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
Maleckar MM, Edwards AG, Louch WE, Lines GT. Studying dyadic structure-function relationships: a review of current modeling approaches and new insights into Ca 2+ (mis)handling. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698602. [PMID: 28469494 PMCID: PMC5392018 DOI: 10.1177/1179546817698602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Excitation–contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation–contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells’ calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation–contraction coupling have been increasingly employed to probe these structure–function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| | - Andrew G Edwards
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway.,University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (IEMR), Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Glenn T Lines
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Lysaker, Norway
| |
Collapse
|
7
|
Arif S, Natkunam K, Buyandelger B, Lai CH, Knöll R. An inverse problem approach to identify the internal force of a mechanosensation process in a cardiac myocyte. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Sayyid F, Kalvala S. On the importance of modelling the internal spatial dynamics of biological cells. Biosystems 2016; 145:53-66. [PMID: 27262415 DOI: 10.1016/j.biosystems.2016.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022]
Abstract
Spatial effects such as cell shape have very often been considered negligible in models of cellular pathways, and many existing simulation infrastructures do not take such effects into consideration. Recent experimental results are reversing this judgement by showing that very small spatial variations can make a big difference in the fate of a cell. This is particularly the case when considering eukaryotic cells, which have a complex physical structure and many subtle control mechanisms, but bacteria are also interesting for the huge variation in shape both between species and in different phases of their lifecycle. In this work we perform simulations that measure the effect of three common bacterial shapes on the behaviour of model cellular pathways. To perform these experiments we develop ReDi-Cell, a highly scalable GPGPU cell simulation infrastructure for the modelling of cellular pathways in spatially detailed environments. ReDi-Cell is validated against known-good simulations, prior to its use in new work. We then use ReDi-Cell to conduct novel experiments that demonstrate the effect that three common bacterial shapes (Cocci, Bacilli and Spirilli) have on the behaviour of model cellular pathways. Pathway wavefront shape, pathway concentration gradients, and chemical species distribution are measured in the three different shapes. We also quantify the impact of internal cellular clutter on the same pathways. Through this work we show that variations in the shape or configuration of these common cell shapes alter model cell behaviour.
Collapse
Affiliation(s)
- Faiz Sayyid
- Department of Computer Science, University of Warwick, Coventry, West Midlands, United Kingdom.
| | - Sara Kalvala
- Department of Computer Science, University of Warwick, Coventry, West Midlands, United Kingdom.
| |
Collapse
|
9
|
Huo Y, Kassab GS. Remodeling of left circumflex coronary arterial tree in pacing-induced heart failure. J Appl Physiol (1985) 2015; 119:404-11. [PMID: 26159756 DOI: 10.1152/japplphysiol.00262.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Congestive heart failure (CHF) is a very serious heart disease that manifests an imbalance between left ventricle supply and demand. Although the mechanical demand of the failing heart has been well characterized, the systematic remodeling of the entire coronary arterial tree that constitutes the supply of the myocardium is lacking. We hypothesize that the well-known increase in ventricle wall stress during CHF causes coronary vascular rarefaction to increase the vascular flow resistance, which in turn compromises the perfusion of the heart. Morphometric (diameters, length, and numbers) data of the swine left circumflex (LCx) arterial tree were measured in both CHF (n = 6) and control (n = 6) groups, from which a computer reconstruction of the entire LCx tree was implemented down to the capillary level to enable a hemodynamic analysis of coronary circulation. The vascular flow resistance was increased by ∼75% due to a significant decrease of vessel numbers (∼45%) and diameters in the first capillary segments (∼10%) of the LCx arterial tree after 3-4 wk of pacing. The structural remodeling significantly changed the wall shear stress in vessel segments of the entire LCx arterial tree of CHF animals. This study enhances our knowledge of coronary arterial tree remodeling in heart failure, which provides a deeper understanding of the deterioration of supply-demand relation in left ventricle.
Collapse
Affiliation(s)
- Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China; State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China; College of Medicine, Hebei University, Baoding, China; and
| | | |
Collapse
|