1
|
Cammarota C, Dawney NS, Bellomio PM, Jüng M, Fletcher AG, Finegan TM, Bergstralh DT. The mechanical influence of densification on epithelial architecture. PLoS Comput Biol 2024; 20:e1012001. [PMID: 38557605 PMCID: PMC11008847 DOI: 10.1371/journal.pcbi.1012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Epithelial tissues are the most abundant tissue type in animals, lining body cavities and generating compartment barriers. The function of a monolayered epithelial tissue-whether protective, secretory, absorptive, or filtrative-relies on the side-by-side arrangement of its component cells. The mechanical parameters that determine the shape of epithelial cells in the apical-basal plane are not well-understood. Epithelial tissue architecture in culture is intimately connected to cell density, and cultured layers transition between architectures as they proliferate. This prompted us to ask to what extent epithelial architecture emerges from two mechanical considerations: A) the constraints of densification and B) cell-cell adhesion, a hallmark feature of epithelial cells. To address these questions, we developed a novel polyline cell-based computational model and used it to make theoretical predictions about epithelial architecture upon changes to density and cell-cell adhesion. We tested these predictions using cultured cell experiments. Our results show that the appearance of extended lateral cell-cell borders in culture arises as a consequence of crowding-independent of cell-cell adhesion. However, cadherin-mediated cell-cell adhesion is associated with a novel architectural transition. Our results suggest that this transition represents the initial appearance of a distinctive epithelial architecture. Together our work reveals the distinct mechanical roles of densification and adhesion to epithelial layer formation and provides a novel theoretical framework to understand the less well-studied apical-basal plane of epithelial tissues.
Collapse
Affiliation(s)
- Christian Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, United States of America
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Philip M. Bellomio
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Maren Jüng
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Dan T. Bergstralh
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, United States of America
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
2
|
Tinning PW, Schniete JK, Scrimgeour R, Kölln LS, Rooney LM, Bushell TJ, McConnell G. A simple image processing pipeline to sharpen topology maps in multi-wavelength interference microscopy. OPTICS LETTERS 2023; 48:1092-1095. [PMID: 36857221 DOI: 10.1364/ol.478402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Multi-wavelength standing wave (SW) microscopy and interference reflection microscopy (IRM) are powerful techniques that use optical interference to study topographical structure. However, the use of more than two wavelengths to image the complex cell surface results in complicated topographical maps, and it can be difficult to resolve the three-dimensional contours. We present a simple image processing method to reduce the thickness and spacing of antinodal fringes in multi-wavelength interference microscopy by up to a factor of two to produce clearer and more precise topographical maps of cellular structures. We first demonstrate this improvement using model non-biological specimens, and we subsequently demonstrate the benefit of our method for reducing the ambiguity of surface topography and revealing obscured features in live and fixed-cell specimens.
Collapse
|
3
|
Adiba S, Forget M, De Monte S. Evolving social behaviour through selection of single-cell adhesion in Dictyostelium discoideum. iScience 2022; 25:105006. [PMID: 36105585 PMCID: PMC9464967 DOI: 10.1016/j.isci.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization. Cooperative behavior evolved as a pleiotropic effect of selection for surface adhesion Multicellular development of evolved lines with the ancestor follows two different paths A metric of social behavior including clonal development differentiates these two paths
Collapse
Affiliation(s)
- Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Corresponding author
| | - Mathieu Forget
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Zhang H, Wang S, Lei C, Li G, Wang B. Experimental study of negative pressure wound therapy combined with platelet-rich fibrin for bone-exposed wounds. Regen Med 2021; 17:23-35. [PMID: 34905932 DOI: 10.2217/rme-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of negative pressure wound therapy (NPWT) combined with platelet-rich fibrin (PRF) in treating bone-exposed wounds and explore its possible mechanism. Materials & methods: A bone-exposed wound was created in a total of 32 healthy Sprague-Dawley rats, which were divided into either control group, NPWT group, PRF group or both (N + P group). The bone-exposed area, skin contraction rate and granulation coverage and the level of growth factors in granulation tissue were determined on days 4, 7 and 10. Results: The N + P group showed significantly higher wound closure rate than that achieved with others respectively. Four factors were significantly higher in N + P group than in the other three groups. Conclusion: Combination of NPWT and PRF can repair bone-exposed wounds effectively and accelerate wound healing.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China.,Department of Pediatric Surgery, Fujian Children's Hospital, Fuzhou Fujian, 350000, PR China.,Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou Fujian, 350000, PR China.,Fujian Maternity & Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Songyu Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Chen Lei
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Guanmin Li
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Biao Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| |
Collapse
|
5
|
Investigation of Shape Transformations of Vesicles, Induced by Their Adhesion to Flat Substrates Characterized by Different Adhesion Strength. Int J Mol Sci 2021; 22:ijms222413406. [PMID: 34948201 PMCID: PMC8706551 DOI: 10.3390/ijms222413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The adhesion of lipid vesicles to a rigid flat surface is investigated. We examine the influence of the membrane spontaneous curvature, adhesion strength, and the reduced volume on the stability and shape transformations of adhered vesicles. The minimal strength of the adhesion necessary to stabilize the shapes of adhered vesicles belonging to different shape classes is determined. It is shown that the budding of an adhered vesicle may be induced by the change of the adhesion strength. The importance of the free vesicle shape for its susceptibility to adhesion is discussed.
Collapse
|
6
|
Ward R, Ravindran S, R Otazo M, Cradock B, Avci E, Gillies G, Coker C, Williams MAK. Inside the ensemble: unlocking the potential of one-at-a-time experiments with lab-on-a-chip automation. LAB ON A CHIP 2021; 21:4401-4413. [PMID: 34633401 DOI: 10.1039/d1lc00601k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of technologies that allow the interactions of individual microscopic particles to be probed "one-at-a-time" has paved the way for new experimental avenues of enquiry in colloidal systems. For example, investigating whether a particular pair of colloidal particles isolated from a macroscopic sample might adhere to each other when brought into close proximity is certainly possible. However, given the probabilistic nature of the process (different particles within the ensemble may have slightly different surface charge distributions and asperities, and interaction energies involved can be close to thermal values), it is important that many hundreds or thousands of pairs of particles are tested under each set of experimental conditions of interest. Currently it is still an arduous task to perform such an experiment a sufficient number of times in order to acquire a data-set that truly represents the ensemble. Herein an automated particle collider for measuring particle-particle interactions has been realized by combining elements of microfluidics, holographic optical tweezers and image processing. Each individual measurement consists of confining two particles within a predetermined chemical micro-environment, and observing whether their interactions lead to aggregation. To automate the measurements, computer software consisting of LabVIEW and Red Tweezers with a custom plugin was used. Preliminary experiments carried out using 1 μm diameter polystyrene particles demonstrated that many hundreds of pairwise-interaction measurements could be carried out autonomously within a matter of hours. Further exemplar real-world experiments, designed to examine the stickiness of emulsion drops as a function of bulk measurements of the ζ-potential (zeta potential) of the sample, were then performed. It is envisaged that such robust approaches to the automation of "one-at-a-time" experiments will find applications in a large number of areas, and enable previously unthinkable experiments to be carried out in a timely fashion, thus allowing the focus to shift away from tedious experimental frustrations to more profound scientific questions.
Collapse
Affiliation(s)
- Rob Ward
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Sapna Ravindran
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Mariela R Otazo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Braden Cradock
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Graeme Gillies
- Fonterra Co-operative Group Ltd, Palmerston North, New Zealand
| | - Christina Coker
- Fonterra Co-operative Group Ltd, Palmerston North, New Zealand
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Hook KA, Yang Q, Campanello L, Losert W, Fisher HS. The social shape of sperm: using an integrative machine-learning approach to examine sperm ultrastructure and collective motility. Proc Biol Sci 2021; 288:20211553. [PMID: 34547913 PMCID: PMC8456146 DOI: 10.1098/rspb.2021.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Sperm is one of the most morphologically diverse cell types in nature, yet they also exhibit remarkable behavioural variation, including the formation of collective groups of cells that swim together for motility or transport through the female reproductive tract. Here, we take advantage of natural variation in sperm traits observed across Peromyscus mice to test the hypothesis that the morphology of the sperm head influences their sperm aggregation behaviour. Using both manual and automated morphometric approaches to quantify their complex shapes, and then statistical modelling and machine learning to analyse their features, we show that the aspect ratio of the sperm head is the most distinguishing morphological trait and statistically associates with collective sperm movements obtained from in vitro observations. We then successfully use neural network analysis to predict the size of sperm aggregates from sperm head morphology and show that species with relatively wider sperm heads form larger aggregates, which is consistent with the theoretical prediction that an adhesive region around the equatorial region of the sperm head mediates these unique gametic interactions. Together these findings advance our understanding of how even subtle variation in sperm design can drive differences in sperm function and performance.
Collapse
Affiliation(s)
- Kristin A. Hook
- Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Qixin Yang
- Department of Physics, University of Maryland, 1147 Physical Sciences Complex, College Park, MD 20742, USA
- Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
| | - Leonard Campanello
- Department of Physics, University of Maryland, 1147 Physical Sciences Complex, College Park, MD 20742, USA
- Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, 1147 Physical Sciences Complex, College Park, MD 20742, USA
- Institute of Physical Science and Technology, University of Maryland, 4254 Stadium Drive, College Park, MD 20742, USA
| | - Heidi S. Fisher
- Department of Biology, University of Maryland, 1200 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| |
Collapse
|
8
|
Karmakar R, Schich C, Kamprad N, Scheller V, Gutierrez E, Groisman A, Rappel WJ, Tarantola M. Novel micropatterning technique reveals dependence of cell-substrate adhesion and migration of social amoebas on parental strain, development, and fluorescent markers. PLoS One 2020; 15:e0236171. [PMID: 32702047 PMCID: PMC7377449 DOI: 10.1371/journal.pone.0236171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate adhesion of the social amoeba Dictyostelium discoideum, a model organism often used for the study of chemotaxis, is non-specific and does not involve focal adhesion complexes. Therefore, micropatterned substrates where adherent Dictyostelium cells are constrained to designated microscopic regions are difficult to make. Here we present a micropatterning technique for Dictyostelium cells that relies on coating the substrate with an ∼1μm thick layer of polyethylene glycol (PEG) gel. We show that, when plated on a substrate with narrow parallel stripes of PEG-gel and glass, Dictyostelium cells nearly exclusive adhere to and migrate along the glass stripes, thus providing a model system to study one-dimensional migration of amoeboid cells. Surprisingly, we find substantial differences in the adhesion to PEG-gel and glass stripes between vegetative and developed cells and between two different axenic laboratory strains of Dictyostelium, AX2 and AX4. Even more surprisingly, we find that the distribution of Dictyostelium cells between PEG-gel and glass stripes is significantly affected by the expression of several fluorescent protein markers of the cytoskeleton. We carry out atomic force microscopy based single cell force spectroscopy measurements that confirm that the force of adhesion to PEG-gel substrate can be significantly different between vegetative and developed cells, AX2 and AX4 cells, and cells with and without fluorescent markers. Thus, the choice of parental background, the degree of development, and the expression of fluorescent protein markers can all have a profound effect on cell-substrate adhesion and should be considered when comparing migration of cells and when designing micropatterned substrates.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | | | - Nadine Kamprad
- Institute for Dynamics of Complex Systems, Goettingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Goettingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| |
Collapse
|
9
|
Li YCE, Wang JH, Wang YH, Shao HJ, Young LC, Young TH. PCL-Blended Chitosan Substrates for Patterning the Heterotypic Cell Distribution in an Epithelial and Mesenchymal Coculture System. ACS Biomater Sci Eng 2020; 6:4225-4235. [PMID: 33463335 DOI: 10.1021/acsbiomaterials.0c00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell-cell and cell-substrate interactions in coculture systems are very important to the context of biomaterial scaffolds for tissue engineering applications. Understanding the cellular interactions and distribution of epithelial-mesenchymal microtissues on the controllable biomaterial surfaces is useful to study the organoid applications. The aim of the present study is to investigate the effects of chitosan/poly(ε-caprolactone) (PCL)-blended biomaterials on the distribution and spheroid formation of HaCaT and Hs68 cells in a coculture system. In this study, we demonstrated that the cocultured cells gradually changed their pattern from core/shell spheroid to monolayered morphology as the PCL content increased in the blended substrates. This indicates that the chitosan/PCL-blended substrates are able to regulate cell-substrate and cell-cell interactions to modify the distribution of HaCaT and Hs68 cells similar to various mesenchymal-epithelial organizations in biological tissues. Moreover, we also developed a two-dimension lattice model to elaborate the dependence of cell spheroid development on complex cell-cell interactions. This information may be helpful to develop appropriate biomaterials with appropriate properties to the applications of engineered epithelial-mesenchymal organoids.
Collapse
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, No. 100 Wenhwa Road, Seatwen District, Taichung 407, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, No.7, Chung Shan S. Road, Zhongzheng District, Taipei 100, Taiwan
| | - Yu-Hsin Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No1, Sec. 1, Jen-Ai Road, Zhongzheng District, Taipei 100, Taiwan
| | - Hung-Jen Shao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No1, Sec. 1, Jen-Ai Road, Zhongzheng District, Taipei 100, Taiwan
| | - Lu-Chieh Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No1, Sec. 1, Jen-Ai Road, Zhongzheng District, Taipei 100, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No1, Sec. 1, Jen-Ai Road, Zhongzheng District, Taipei 100, Taiwan
| |
Collapse
|
10
|
Yu M, Mahtabfar A, Beelen P, Demiryurek Y, Shreiber DI, Zahn JD, Foty RA, Liu L, Lin H. Coherent Timescales and Mechanical Structure of Multicellular Aggregates. Biophys J 2019; 114:2703-2716. [PMID: 29874619 DOI: 10.1016/j.bpj.2018.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Multicellular aggregates are an excellent model system to explore the role of tissue biomechanics in specifying multicellular reorganization during embryonic developments and malignant invasion. Tissue-like spheroids, when subjected to a compressive force, are known to exhibit liquid-like behaviors at long timescales (hours), largely because of cell rearrangements that serve to effectively dissipate the applied stress. At short timescales (seconds to minutes), before cell rearrangement, the mechanical behavior is strikingly different. The current work uses shape relaxation to investigate the structural characteristics of aggregates and discovers two coherent timescales: one on the order of seconds, the other tens of seconds. These timescales are universal, conserved across a variety of tested species, and persist despite great differences in other properties such as tissue surface tension and adhesion. A precise mathematical theory is used to correlate the timescales with mechanical properties and reveals that aggregates have a relatively strong envelope and an unusually "soft" interior (weak bulk elastic modulus). This characteristic is peculiar, considering that both layers consist of identical units (cells), but is consistent with the fact that this structure can engender both structural integrity and the flexibility required for remodeling. In addition, tissue surface tension, elastic modulus, and viscosity are proportional to each other. Considering that these tissue-level properties intrinsically derive from cellular-level properties, the proportionalities imply precise coregulation of the latter and in particular of the tension on the cell-medium and cell-cell interfaces.
Collapse
Affiliation(s)
- Miao Yu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Aria Mahtabfar
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Paul Beelen
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yasir Demiryurek
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David I Shreiber
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey
| | - Ramsey A Foty
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Liping Liu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
11
|
Kamprad N, Witt H, Schröder M, Kreis CT, Bäumchen O, Janshoff A, Tarantola M. Adhesion strategies of Dictyostelium discoideum- a force spectroscopy study. NANOSCALE 2018; 10:22504-22519. [PMID: 30480299 DOI: 10.1039/c8nr07107a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.
Collapse
Affiliation(s)
- Nadine Kamprad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Arbade GK, Jathar S, Tripathi V, Patro TU. Antibacterial, sustained drug release and biocompatibility studies of electrospun poly(
ε
-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac1a4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Andriotis OG, Desissaire S, Thurner PJ. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs. ACS NANO 2018; 12:3671-3680. [PMID: 29529373 DOI: 10.1021/acsnano.8b00837] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.
Collapse
Affiliation(s)
- Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Sylvia Desissaire
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| |
Collapse
|
14
|
Switching between individual and collective motility in B lymphocytes is controlled by cell-matrix adhesion and inter-cellular interactions. Sci Rep 2018; 8:5800. [PMID: 29643414 PMCID: PMC5895587 DOI: 10.1038/s41598-018-24222-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
Lymphocytes alternate between phases of individual migration across tissues and phases of clustering during activation and function. The range of lymphocyte motility behaviors and the identity of the factors that govern them remain elusive. To explore this point, we here collected unprecedented statistics pertaining to cell displacements, cell:matrix and cell:cell interactions using a model B cell line as well as primary human B lymphocytes. At low cell density, individual B lymphocytes displayed a high heterogeneity in their speed and diffusivity. Beyond this intrinsic variability, B lymphocytes adapted their motility to the composition of extra-cellular matrix, adopting slow persistent walks over collagen IV and quick Brownian walks over fibronectin. At high cell density, collagen IV favored the self-assembly of B lymphocytes into clusters endowed with collective coordination, while fibronectin stimulated individual motility. We show that this behavioral plasticity is controlled by acto-myosin dependent adhesive and Arp2/3-dependent protrusive actin pools, respectively. Our study reveals the adaptive nature of B lymphocyte motility and group dynamics, which are shaped by an interplay between and cell:matrix and cell:cell interactions.
Collapse
|
15
|
Silva AC, Ferreira IL, Hayden MR, Ferreiro E, Rego AC. Characterization of subventricular zone-derived progenitor cells from mild and late symptomatic YAC128 mouse model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:34-44. [PMID: 28939435 DOI: 10.1016/j.bbadis.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/02/2017] [Accepted: 09/12/2017] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6month-old (mo)) and late (10mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2+ and synaptophysin+cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10mo YAC128 SVZ-derived cells. Interestingly, 6mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.
Collapse
Affiliation(s)
- Ana C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
16
|
Boylan KL, Buchanan PC, Manion RD, Shukla DM, Braumberger K, Bruggemeyer C, Skubitz AP. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget 2017; 8:9717-9738. [PMID: 28038455 PMCID: PMC5354766 DOI: 10.18632/oncotarget.14206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
Abstract
The cell adhesion molecule Nectin-4 is overexpressed in epithelial cancers, including ovarian cancer. The objective of this study was to determine the biological significance of Nectin-4 in the adhesion, aggregation, migration, and proliferation of ovarian cancer cells. Nectin-4 and its binding partner Nectin-1 were detected in patients' primary tumors, omental metastases, and ascites cells. The human cell lines NIH:OVCAR5 and CAOV3 were genetically modified to alter Nectin-4 expression. Cells that overexpressed Nectin-4 adhered to Nectin-1 in a concentration and time-dependent manner, and adhesion was inhibited by antibodies to Nectin-4 and Nectin-1, as well as synthetic Nectin peptides. In functional assays, CAOV3 cells with Nectin-4 knock-down were unable to form spheroids and migrated more slowly than CAOV3 parental cells expressing Nectin-4. NIH:OVCAR5 parental cells proliferated more rapidly, migrated faster, and formed larger spheroids than either the Nectin-4 knock-down or over-expressing cells. Parental cell lines expressed higher levels of epithelial markers and lower levels of mesenchymal markers compared to Nectin-4 knock-down cells, suggesting a role for Nectin-4 in epithelial-mesenchymal transition. Our results demonstrate that Nectin-4 promotes cell-cell adhesion, migration, and proliferation. Understanding the biology of Nectin-4 in ovarian cancer progression is critical to facilitate its development as a novel therapeutic target.
Collapse
Affiliation(s)
- Kristin L.M. Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Petra C. Buchanan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Rory D. Manion
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Dip M. Shukla
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Braumberger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Cody Bruggemeyer
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Amy P.N. Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Ogawa Y, Kim MH, Kino-oka M. Migration-driven aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface direct differentiation toward a cardiomyogenic fate commitment. J Biosci Bioeng 2016; 122:627-632. [DOI: 10.1016/j.jbiosc.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 01/19/2023]
|
18
|
Fukujin F, Nakajima A, Shimada N, Sawai S. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell-substrate adhesion. J R Soc Interface 2016; 13:20160233. [PMID: 27358278 PMCID: PMC4938087 DOI: 10.1098/rsif.2016.0233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration.
Collapse
Affiliation(s)
- Fumihito Fukujin
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Akihiko Nakajima
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Nao Shimada
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|