1
|
Airoldi CA, Ferria J, Glover BJ. The cellular and genetic basis of structural colour in plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:81-87. [PMID: 30399605 DOI: 10.1016/j.pbi.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 05/23/2023]
Abstract
While the pathways that produce plant pigments have been well studied for decades, the use by plants of nanoscale structures to produce colour effects has only recently begun to be studied. A variety of plants from across the plant kingdom have been shown to use different mechanism to generate structural colours in tissues as diverse as leaves, flowers and fruits. In this review we explore the cellular mechanisms by which these nanoscale structures are built and discuss the first insights that have been published into the genetic pathways underpinning these traits.
Collapse
Affiliation(s)
- Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
2
|
Gruson H, Andraud C, Daney de Marcillac W, Berthier S, Elias M, Gomez D. Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory. Interface Focus 2018; 9:20180049. [PMID: 30603069 DOI: 10.1098/rsfs.2018.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 11/12/2022] Open
Abstract
Iridescent colours are colours that change with viewing or illumination geometry. While they are widespread in many living organisms, most evolutionary studies on iridescence do not take into account their full complexity. Few studies try to precisely characterize what makes iridescent colours special: their angular dependency. Yet, it is likely that this angular dependency has biological functions and is therefore submitted to evolutionary pressures. For this reason, evolutionary biologists need a repeatable method to measure iridescent colours as well as variables to precisely quantify the angular dependency. In this study, we use a theoretical approach to propose five variables that allow one to fully describe iridescent colours at every angle combination. Based on the results, we propose a new measurement protocol and statistical method to reliably characterize iridescence while minimizing the required number of time-consuming measurements. We use hummingbird iridescent feathers and butterfly iridescent wings as test cases to demonstrate the strengths of this new method. We show that our method is precise enough to be potentially used at intraspecific level while being also time-efficient enough to encompass large taxonomic scales.
Collapse
Affiliation(s)
- Hugo Gruson
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Christine Andraud
- CRC, MNHN, Ministère de la Culture et de la Communication, CNRS, Paris, France
| | | | | | - Marianne Elias
- ISYEB, CNRS, MNHN, EPHE, Sorbonne Université, Paris, France
| | - Doris Gomez
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.,INSP, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
3
|
Hegyi G, Laczi M, Kötél D, Csizmadia T, Lőw P, Rosivall B, Szöllősi E, Török J. Reflectance variation in the blue tit crown in relation to feather structure. ACTA ACUST UNITED AC 2018; 221:jeb.176727. [PMID: 29615523 DOI: 10.1242/jeb.176727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
Structural plumage colour is one of the most enigmatic sexually selected traits. The information content of structural colour variation is debated, and the heterogeneity of the findings is hard to explain because the proximate background of within-species colour differences is very scarcely studied. We combined measurements of feather macrostructure and nanostructure to explain within-population variability in blue tit crown reflectance. We found that sexual dichromatism in aspects of crown reflectance was explained only by feather macrostructure, whereas nanostructural predictors accounted for some of the age-related differences in reflectance. Moreover, we found that both mean reflectance and spectral shape traits reflected a combination of quantity and regularity aspects in macrostructure and nanostructure. This rich proximate background provides ample scope for reflectance to convey various types of information on individual quality.
Collapse
Affiliation(s)
- Gergely Hegyi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Miklós Laczi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.,The Barn Owl Foundation, Temesvári út 8, H-8744 Orosztony, Hungary
| | - Dóra Kötél
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Szöllősi
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.,Ecology Research Group of the Hungarian Academy of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|