1
|
Song J, Chen C, Cheney JA, Usherwood JR, Bomphrey RJ. Investigation of models to estimate flight performance of gliding birds from wakes. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2024; 36:091912. [PMID: 39319010 PMCID: PMC11417957 DOI: 10.1063/5.0226182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Mathematical models based on inviscid flow theory are effective at predicting the aerodynamic forces on large-scale aircraft. Avian flight, however, is characterized by smaller sizes, slower speeds, and increased influence of viscous effects associated with lower Reynolds numbers. Therefore, inviscid mathematical models of avian flight should be used with caution. The assumptions used in such models, such as thin wings and streamlined bodies, may be violated by birds, potentially introducing additional error. To investigate the applicability of the existing models to calculate the aerodynamic performance of bird flight, we compared predictions using simulated wakes with those calculated directly from forces on the bird surface, both derived from computational fluid dynamics of a high-fidelity barn owl geometry in free gliding flight. Two lift models and two drag models are assessed. We show that the generalized Kutta-Joukowski model, corrected by the streamwise velocity, can predict not only the lift but also span loading well. Drag was predicted best by a drag model based on the conservation of fluid momentum in a control volume. Finally, we estimated force production for three raptor species across nine gliding flights by applying the best lift model to wake flow fields measured with particle tracking velocimetry.
Collapse
Affiliation(s)
- Jialei Song
- Author to whom any correspondence should be addressed:
| | - Changyao Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Jorn A. Cheney
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James R. Usherwood
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hatfield AL9 7TA, United Kingdom
| | - Richard J. Bomphrey
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hatfield AL9 7TA, United Kingdom
| |
Collapse
|
2
|
Isakhani H, Xiong C, Chen W, Yue S. Towards locust-inspired gliding wing prototypes for micro aerial vehicle applications. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202253. [PMID: 34234953 PMCID: PMC8242835 DOI: 10.1098/rsos.202253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
In aviation, gliding is the most economical mode of flight explicitly appreciated by natural fliers. They achieve it by high-performance wing structures evolved over millions of years in nature. Among other prehistoric beings, locust is a perfect example of such natural glider capable of endured transatlantic flights that could inspire a practical solution to achieve similar capabilities on micro aerial vehicles. An investigation in this study demonstrates the effects of haemolymph on the flexibility of several flying insect wings proving that many species exist with further simplistic yet well-designed wing structures. However, biomimicry of such aerodynamic and structural properties is hindered by the limitations of modern as well as conventional fabrication technologies in terms of availability and precision, respectively. Therefore, here we adopt finite-element analysis to investigate the manufacturing-worthiness of a three-dimensional digitally reconstructed locust wing, and propose novel combinations of economical and readily available manufacturing methods to develop the model into prototypes that are structurally similar to their counterparts in nature while maintaining the optimum gliding ratio previously obtained in the aerodynamic simulations. The former is assessed here via an experimental analysis of the flexural stiffness and maximum deformation rate as EI s = 1.34 × 10-4 Nm2, EI c = 5.67 × 10-6 Nm2 and greater than 148.2%, respectively. Ultimately, a comparative study of the mechanical properties reveals the feasibility of each prototype for gliding micro aerial vehicle applications.
Collapse
Affiliation(s)
- Hamid Isakhani
- The Computational Intelligence Lab (CIL), School of Computer Science, University of Lincoln, LN6 7TS Lincoln, UK
| | - Caihua Xiong
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Wenbin Chen
- The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shigang Yue
- The Computational Intelligence Lab (CIL), School of Computer Science, University of Lincoln, LN6 7TS Lincoln, UK
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
3
|
Warfvinge K, Johansson LC, Hedenström A. Hovering flight in hummingbird hawkmoths: kinematics, wake dynamics and aerodynamic power. J Exp Biol 2021; 224:268389. [PMID: 34042974 DOI: 10.1242/jeb.230920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Hovering insects are divided into two categories: 'normal' hoverers that move the wing symmetrically in a horizontal stroke plane, and those with an inclined stroke plane. Normal hoverers have been suggested to support their weight during both downstroke and upstroke, shedding vortex rings each half-stroke. Insects with an inclined stroke plane should, according to theory, produce flight forces only during downstroke, and only generate one set of vortices. The type of hovering is thus linked to the power required to hover. Previous efforts to characterize the wake of hovering insects have used low-resolution experimental techniques or simulated the flow using computational fluid dynamics, and so it remains to be determined whether insect wakes can be represented by any of the suggested models. Here, we used tomographic particle image velocimetry, with a horizontal measurement volume placed below the animals, to show that the wake shed by hovering hawkmoths is best described as a series of bilateral, stacked vortex 'rings'. While the upstroke is aerodynamically active, despite an inclined stroke plane, it produces weaker vortices than the downstroke. In addition, compared with the near wake, the far wake lacks structure and is less concentrated. Both near and far wakes are clearly affected by vortex interactions, suggesting caution is required when interpreting wake topologies. We also estimated induced power (Pind) from downwash velocities in the wake. Standard models predicted a Pind more than double that from our wake measurements. Our results thus question some model assumptions and we propose a reevaluation of the model parameters.
Collapse
Affiliation(s)
- Kajsa Warfvinge
- Department of Biology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | | | - Anders Hedenström
- Department of Biology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
4
|
Shepherd S, Jackson CW, Sharkh SM, Aonuma H, Oliveira EE, Newland PL. Extremely Low-Frequency Electromagnetic Fields Entrain Locust Wingbeats. Bioelectromagnetics 2021; 42:296-308. [PMID: 33822398 DOI: 10.1002/bem.22336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Extremely low-frequency electromagnetic fields (ELF EMFs) have been shown to impact the behavior and physiology of insects. Recent studies have highlighted the need for more research to determine more specifically how they affect flying insects. Here, we ask how locust flight is affected by acute exposure to 50 Hz EMFs. We analyzed the flights of individual locusts tethered between a pair of copper wire coils generating EMFs of various frequency using high-speed video recording. The mean wingbeat frequency of tethered locusts was 18.92 ± 0.27 Hz. We found that acute exposure to 50 Hz EMFs significantly increased absolute change in wingbeat frequency in a field strength-dependent manner, with greater field strengths causing greater changes in wingbeat frequency. The effect of EMFs on wingbeat frequency depended on the initial wingbeat frequency of a locust, with locusts flying at a frequency lower than 20 Hz increasing their wingbeat frequency, while locusts flying with a wingbeat frequency higher than 20 Hz decreasing their wingbeat frequency. During the application of 50 Hz EMF, the wingbeat frequency was entrained to a 2:5 ratio (two wingbeat cycles to five EMF cycles) of the applied EMF. We then applied a range of ELF EMFs that were close to normal wingbeat frequency and found that locusts entrained to the exact frequency of the applied EMF. These results show that exposure to ELF EMFs lead to small but significant changes in wingbeat frequency in locusts. We discuss the biological implications of the coordination of insect flight in response to electromagnetic stimuli. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Sebastian Shepherd
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | | | - Suleiman M Sharkh
- Mechatronics, Mechanical Engineering, University of Southampton, Highfield Campus, Southampton, UK
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Philip L Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| |
Collapse
|
5
|
Johansson LC, Maeda M, Henningsson P, Hedenström A. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds. J R Soc Interface 2019; 15:rsif.2017.0814. [PMID: 29386402 DOI: 10.1098/rsif.2017.0814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
How aerodynamic power required for animal flight varies with flight speed determines optimal speeds during foraging and migratory flight. Despite its relevance, aerodynamic power provides an elusive quantity to measure directly in animal flight. Here, we determine the aerodynamic power from wake velocity fields, measured using tomographical particle image velocimetry, of pied flycatchers flying freely in a wind tunnel. We find a shallow U-shaped power curve, which is flatter than expected by theory. Based on how the birds vary body angle with speed, we speculate that the shallow curve results from increased body drag coefficient and body frontal area at lower flight speeds. Including modulation of body drag in the model results in a more reasonable fit with data than the traditional model. From the wake structure, we also find a single starting vortex generated from the two wings during the downstroke across flight speeds (1-9 m s-1). This is accomplished by the arm wings interacting at the beginning of the downstroke, generating a unified starting vortex above the body of the bird. We interpret this as a mechanism resulting in a rather uniform downwash and low induced power, which can help explain the higher aerodynamic performance in birds compared with bats.
Collapse
Affiliation(s)
| | - Masateru Maeda
- Department of Biology, Lund University, Ecology Building, 22362, Lund, Sweden
| | - Per Henningsson
- Department of Biology, Lund University, Ecology Building, 22362, Lund, Sweden
| | - Anders Hedenström
- Department of Biology, Lund University, Ecology Building, 22362, Lund, Sweden
| |
Collapse
|
6
|
Liu Y, Roll J, Van Kooten S, Deng X. Schlieren photography on freely flying hawkmoth. Biol Lett 2019; 14:rsbl.2018.0198. [PMID: 29769300 DOI: 10.1098/rsbl.2018.0198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 11/12/2022] Open
Abstract
The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren, a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth (Manduca). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects.
Collapse
Affiliation(s)
- Yun Liu
- Department of Mechanical and Civil Engineering, Purdue University Northwest, Westville, IN 46391, USA
| | - Jesse Roll
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47906, USA
| | - Stephen Van Kooten
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47906, USA
| | - Xinyan Deng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47906, USA
| |
Collapse
|
7
|
Bomphrey RJ, Godoy-Diana R. Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control. CURRENT OPINION IN INSECT SCIENCE 2018; 30:26-32. [PMID: 30410869 PMCID: PMC6218012 DOI: 10.1016/j.cois.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flying insects impress by their versatility and have been a recurrent source of inspiration for engineering devices. A large body of literature has focused on various aspects of insect flight, with an essential part dedicated to the dynamics of flapping wings and their intrinsically unsteady aerodynamic mechanisms. Insect wings flex during flight and a better understanding of structural mechanics and aeroelasticity is emerging. Most recently, insights from solid and fluid mechanics have been integrated with physiological measurements from visual and mechanosensors in the context of flight control in steady airs and through turbulent conditions. We review the key recent advances concerning flight in unsteady environments and how the multi-body mechanics of the insect structure-wings and body-are at the core of the flight control question. The issues herein should be considered when applying bio-informed design principles to robotic flapping wings.
Collapse
Affiliation(s)
- Richard J Bomphrey
- Structure and Motion Laboratory, Royal Veterinary College, London, United Kingdom
| | - Ramiro Godoy-Diana
- Physique et Mécanique des Milieux Hétérogènes laboratory (PMMH), CNRS, ESPCI Paris – PSL Research University, Sorbonne Université, Université Paris Diderot, Paris, France
| |
Collapse
|
8
|
Henningsson P, Jakobsen L, Hedenström A. Aerodynamics of manoeuvring flight in brown long-eared bats ( Plecotus auritus). J R Soc Interface 2018; 15:rsif.2018.0441. [PMID: 30404906 DOI: 10.1098/rsif.2018.0441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
In this study, we explicitly examine the aerodynamics of manoeuvring flight in animals. We studied brown long-eared bats flying in a wind tunnel while performing basic sideways manoeuvres. We used particle image velocimetry in combination with high-speed filming to link aerodynamics and kinematics to understand the mechanistic basis of manoeuvres. We predicted that the bats would primarily use the downstroke to generate the asymmetries for the manoeuvre since it has been shown previously that the majority of forces are generated during this phase of the wingbeat. We found instead that the bats more often used the upstroke than they used the downstroke for this. We also found that the bats used both drag/thrust-based and lift-based asymmetries to perform the manoeuvre and that they even frequently switch between these within the course of a manoeuvre. We conclude that the bats used three main modes: lift asymmetries during downstroke, thrust/drag asymmetries during downstroke and thrust/drag asymmetries during upstroke. For future studies, we hypothesize that lift asymmetries are used for fast turns and thrust/drag for slow turns and that the choice between up- and downstroke depends on the timing of when the bat needs to generate asymmetries.
Collapse
Affiliation(s)
| | - Lasse Jakobsen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
9
|
Flow Visualization around a Flapping-Wing Micro Air Vehicle in Free Flight Using Large-Scale PIV. AEROSPACE 2018. [DOI: 10.3390/aerospace5040099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flow visualizations have been performed on a free flying, flapping-wing micro air vehicle (MAV), using a large-scale particle image velocimetry (PIV) approach. The PIV method involves the use of helium-filled soap bubbles (HFSB) as tracer particles. HFSB scatter light with much higher intensity than regular seeding particles, comparable to that reflected off the flexible flapping wings. This enables flow field visualization to be achieved close to the flapping wings, in contrast to previous PIV experiments with regular seeding. Unlike previous tethered wind tunnel measurements, in which the vehicle is fixed relative to the measurement setup, the MAV is now flown through the measurement area. In this way, the experiment captures the flow field of the MAV in free flight, allowing the true nature of the flow representative of actual flight to be appreciated. Measurements were performed for two different orientations of the light sheet with respect to the flight direction. In the first configuration, the light sheet is parallel to the flight direction, and visualizes a streamwise plane that intersects the MAV wings at a specific spanwise position. In the second configuration, the illumination plane is normal to the flight direction, and visualizes the flow as the MAV passes through the light sheet.
Collapse
|
10
|
Warfvinge K, KleinHeerenbrink M, Hedenström A. The power-speed relationship is U-shaped in two free-flying hawkmoths ( Manducasexta). J R Soc Interface 2018; 14:rsif.2017.0372. [PMID: 28954850 DOI: 10.1098/rsif.2017.0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
A flying animal can minimize its energy consumption by choosing an optimal flight speed depending on the task at hand. Choice of flight speed can be predicted by modelling the aerodynamic power required for flight, and this tool has previously been used extensively in bird migration research. For insects, however, it is uncertain whether any of the commonly used power models are useful, as insects often operate in a very different flow regime from vertebrates. To investigate this, we measured aerodynamic power in the wake of two Manduca sexta flying freely in a wind tunnel at 1-3.8 ms-1, using tomographic particle image velocimetry (tomo-PIV). The expended power was similar in magnitude to that predicted by two classic models. However, the most ubiquitously used model, originally intended for vertebrates, failed to predict the sharp increase in power at higher speeds, leading to an overestimate of predicted flight speed during longer flights. In addition to measuring aerodynamic power, the tomo-PIV system yielded a highly detailed visualization of the wake, which proved to be significantly more intricate than could be inferred from previous smoke trail- and two-dimensional-PIV studies.
Collapse
Affiliation(s)
| | - Marco KleinHeerenbrink
- Department of Biology, Lund University, Lund, Sweden.,Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Bomphrey RJ, Nakata T, Henningsson P, Lin HT. Flight of the dragonflies and damselflies. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0389. [PMID: 27528779 PMCID: PMC4992713 DOI: 10.1098/rstb.2015.0389] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 12/05/2022] Open
Abstract
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.
Collapse
Affiliation(s)
- Richard J Bomphrey
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hatfield AL9 7TA, UK
| | - Toshiyuki Nakata
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Per Henningsson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Huai-Ti Lin
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
12
|
Hubel TY, Hristov NI, Swartz SM, Breuer KS. Wake structure and kinematics in two insectivorous bats. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0385. [PMID: 27528775 DOI: 10.1098/rstb.2015.0385] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 11/12/2022] Open
Abstract
We compare kinematics and wake structure over a range of flight speeds (4.0-8.2 m s(-1)) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis velifer Body mass and wingspan are similar in these species, but M. velifer has broader wings and lower wing loading. By using high-speed videography and particle image velocimetry of steady flight in a wind tunnel, we show that three-dimensional kinematics and wake structure are similar in the two species at the higher speeds studied, but differ at lower speeds. At lower speeds, the two species show significant differences in mean angle of attack, body-wingtip distance and sweep angle. The distinct body vortex seen at low speed in T. brasiliensis and other bats studied to date is considerably weaker or absent in M. velifer We suggest that this could be influenced by morphology: (i) the narrower thorax in this species probably reduces the body-induced discontinuity in circulation between the two wings and (ii) the wing loading is lower, hence the lift coefficient required for weight support is lower. As a result, in M. velifer, there may be a decreased disruption in the lift generation between the body and the wing, and the strength of the characteristic root vortex is greatly diminished, both suggesting increased flight efficiency.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Tatjana Y Hubel
- School of Engineering, Brown University, Providence, RI 02912, USA Structure and Motion Laboratory, Royal Veterinary College, Hatfield AL97TA, UK
| | - Nickolay I Hristov
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA Center for Design Innovation, Winston Salem, NC 27101-4019, USA
| | - Sharon M Swartz
- School of Engineering, Brown University, Providence, RI 02912, USA Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Kenneth S Breuer
- School of Engineering, Brown University, Providence, RI 02912, USA Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
13
|
Gutierrez E, Quinn DB, Chin DD, Lentink D. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. BIOINSPIRATION & BIOMIMETICS 2016; 12:016004. [PMID: 27921999 DOI: 10.1088/1748-3190/12/1/016004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
Collapse
Affiliation(s)
- Eric Gutierrez
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA. Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
14
|
Johansson LC, Håkansson J, Jakobsen L, Hedenström A. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus). Sci Rep 2016; 6:24886. [PMID: 27118083 PMCID: PMC4846812 DOI: 10.1038/srep24886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022] Open
Abstract
Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.
Collapse
Affiliation(s)
| | - Jonas Håkansson
- Dept. Biology, Lund University, Ecology building, SE-223 62 Lund, Sweden
| | | | - Anders Hedenström
- Dept. Biology, Lund University, Ecology building, SE-223 62 Lund, Sweden
| |
Collapse
|
15
|
Abstract
Bats are diverse, speciose, and inhabit most of earth’s habitats, aided by powered flapping flight. The many traits that enable flight in these mammals have long attracted popular and research interest, but recent technological and conceptual advances have provided investigators with new kinds of information concerning diverse aspects of flight biology. As a consequence of these new data, our understanding of how bats fly has begun to undergo fundamental changes. Physical and neural science approaches are now beginning to inform understanding of structural architecture of wings. High-speed videography is dramatically expanding documentation of how bats fly. Experimental fluid dynamics and innovative physiological techniques profoundly influence how we interpret the ways bats produce aerodynamic forces as they execute distinctive flight behaviors and the mechanisms that underlie flight energetics. Here, we review how recent bat flight research has provided significant new insights into several important aspects of bat flight structure and function. We suggest that information coming from novel approaches offer opportunities to interconnect studies of wing structure, aerodynamics, and physiology more effectively, and to connect flight biology to newly emerging studies of bat evolution and ecology.
Collapse
Affiliation(s)
- S.M. Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - N. Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|