1
|
Mongeau JM, Yang Y, Escalante I, Cowan N, Jayaram K. Moving in an Uncertain World: Robust and Adaptive Control of Locomotion from Organisms to Machine Intelligence. Integr Comp Biol 2024; 64:1390-1407. [PMID: 39090982 PMCID: PMC11579605 DOI: 10.1093/icb/icae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: (1) compensation to appendage loss and (2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, 16802 PA, USA
| | - Yu Yang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Ignacio Escalante
- Department of Biological Sciences, University of Illinois, Chicago, 845 W Taylor St, 60607 IL, USA
| | - Noah Cowan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, 80309 CO, USA
| |
Collapse
|
2
|
Escalante I, O'Brien SL. Robustness to Leg Loss in Opiliones: A Review and Framework Considerations for Future Research. Integr Comp Biol 2024; 64:1338-1353. [PMID: 38782725 DOI: 10.1093/icb/icae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Animals have evolved behavioral and morphological traits that allow them to respond to environmental challenges. However, these traits may have long-term consequences that could impact an animal's performance, fitness, and welfare. Several species in a group of the arachnid order of Opiliones release their legs voluntarily to escape predators. These animals use their legs for locomotion, sensation, and reproduction. Here, we first compile data across species in the suborder Eupnoi, showing that more than half of individuals are found missing legs. Then, we review recent work on the ultimate and proximate implications of leg loss in Opiliones. Field and laboratory experiments showed that leg loss (a) did not affect their survival or mating success and (b) compromised the kinematics and energetics of locomotion, but individuals recovered velocity and acceleration quickly. These findings demonstrate that these animals display robustness, that is, the ability to withstand and overcome the potential consequences of bodily damage. This may explain why leg loss is so prevalent in Opiliones. Additionally, we encourage researchers to consider expanding their hypotheses beyond traditional adaptationist and ableist lenses and incorporate a comprehensive examination of animal welfare when studying animals' responses to bodily damage. Finally, we highlight avenues for future research in Opiliones, namely assessing how individuals move in three-dimensional environments, the neural plasticity aiding recovery post-leg loss, applications for bio-inspired design, and evidence-based animal welfare measures.
Collapse
Affiliation(s)
- Ignacio Escalante
- Department of Biological Sciences, University of Illinois-Chicago, IL, USA. 845 W Taylor St. Chicago, IL 60607
| | - Shannon L O'Brien
- Animal Welfare Science Program, Lincoln Park Zoo, 2001 N Clark St. Chicago, IL 60614, USA
| |
Collapse
|
3
|
Tang L, Wang C, Ma S, Li Y, Li B. Multidirectional Planar Motion Transmission on a Single-Motor Actuated Robot via Microscopic Galumphing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307738. [PMID: 38093662 PMCID: PMC10916667 DOI: 10.1002/advs.202307738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Insect-scale mobile robots can execute diverse arrays of tasks in confined spaces. Although most self-contained crawling robots integrate multiple actuators to ensure high flexibility, the intricate actuators restrict their miniaturization. Conversely, robots with a single actuator lack the requisite agility and precision for planar movements. Herein, a novel eccentric rotation-dependent multidirectional transmission is presented using a tilted eccentric motor and a simplistic two-legged structural configuration for planar locomotion. The speed of the eccentric motor is modulated to enable alternating microscopic jumps to propel the system, creating a mode of motion analogous to galumphing of seals. Upon modeling the motion dynamics and conducting experiments, the effectiveness of direct motion transmission is substantiated through microscopic galumphing encompassing left/right crawling and straight-forward crawling. Finally, a 1.2 g untethered robot is developed, which demonstrates enhanced straight crawling and spot turning, traverses narrow tunnels, and achieves precise movements. Therefore, the proposed motion-transmission technique provides a comprehensive set of innovative solutions of underactuated agile robots.
Collapse
Affiliation(s)
- Lingqi Tang
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Chenghao Wang
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Songsong Ma
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Yao Li
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
- Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive RoboticsHarbin Institute of TechnologyShenzhen518055China
| | - Bing Li
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
- Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive RoboticsHarbin Institute of TechnologyShenzhen518055China
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
4
|
Dinges GF, Zyhowski WP, Lucci A, Friend J, Szczecinski NS. Mechanical modeling of mechanosensitive insect strain sensors as a tool to investigate exoskeletal interfaces. BIOINSPIRATION & BIOMIMETICS 2024; 19:026012. [PMID: 38211340 DOI: 10.1088/1748-3190/ad1db9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
During walking, sensory information is measured and monitored by sensory organs that can be found on and within various limb segments. Strain can be monitored by insect load sensors, campaniform sensilla (CS), which have components embedded within the exoskeleton. CS vary in eccentricity, size, and orientation, which can affect their sensitivity to specific strains. Directly investigating the mechanical interfaces that these sensors utilize to encode changes in load bears various obstacles, such as modeling of viscoelastic properties. To circumvent the difficulties of modeling and performing biological experiments in small insects, we developed 3-dimensional printed resin models based on high-resolution imaging of CS. Through the utilization of strain gauges and a motorized tensile tester, physiologically plausible strain can be mimicked while investigating the compression and tension forces that CS experience; here, this was performed for a field of femoral CS inDrosophila melanogaster. Different loading scenarios differentially affected CS compression and the likely neuronal activity of these sensors and elucidate population coding of stresses acting on the cuticle.
Collapse
Affiliation(s)
- Gesa F Dinges
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - William P Zyhowski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Anastasia Lucci
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Jordan Friend
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Nicholas S Szczecinski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
5
|
Sutton GP, Szczecinski NS, Quinn RD, Chiel HJ. Phase shift between joint rotation and actuation reflects dominant forces and predicts muscle activation patterns. PNAS NEXUS 2023; 2:pgad298. [PMID: 37822766 PMCID: PMC10563792 DOI: 10.1093/pnasnexus/pgad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
During behavior, the work done by actuators on the body can be resisted by the body's inertia, elastic forces, gravity, or viscosity. The dominant forces that resist actuation have major consequences on the control of that behavior. In the literature, features and actuation of locomotion, for example, have been successfully predicted by nondimensional numbers (e.g. Froude number and Reynolds number) that generally express the ratio between two of these forces (gravitational, inertial, elastic, and viscous). However, animals of different sizes or motions at different speeds may not share the same dominant forces within a behavior, making ratios of just two of these forces less useful. Thus, for a broad comparison of behavior across many orders of magnitude of limb length and cycle period, a dimensionless number that includes gravitational, inertial, elastic, and viscous forces is needed. This study proposes a nondimensional number that relates these four forces: the phase shift (ϕ) between the displacement of the limb and the actuator force that moves it. Using allometric scaling laws, ϕ for terrestrial walking is expressed as a function of the limb length and the cycle period at which the limb steps. Scale-dependent values of ϕ are used to explain and predict the electromyographic (EMG) patterns employed by different animals as they walk.
Collapse
Affiliation(s)
- G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - N S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
| | - R D Quinn
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - H J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Li C, Xu AJ, Beery E, Hsieh ST, Kane SA. Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs. J Exp Biol 2023; 226:jeb246340. [PMID: 37668246 PMCID: PMC10565111 DOI: 10.1242/jeb.246340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
How animals jump and land on diverse surfaces is ecologically important and relevant to bioinspired robotics. Here, we describe the jumping biomechanics of the planthopper Lycorma delicatula (spotted lanternfly), an invasive insect in the USA that jumps frequently for dispersal, locomotion and predator evasion. High-speed video was used to analyze jumping by spotted lanternfly nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m s-1) and accelerations (800-1000 m s-2), with mid-air trajectories consistent with ballistic motion without drag forces or steering. Despite rotating rapidly (5-45 Hz) about time-varying axes of rotation, they landed successfully in 58.9% of trials. They also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of spotted lanternflies and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of the measured rotational kinematics. This analysis showed that the rotational inertia of spotted lanternfly nymphs is predominantly due to their legs, enabling them to use posture changes as well as drag torque to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.
Collapse
Affiliation(s)
- Chengpei Li
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - Aaron J. Xu
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - Eric Beery
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| | - S. Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Suzanne Amador Kane
- Physics and Astronomy Department, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
7
|
Righini F, Carpineti M, Giavazzi F, Vailati A. Pronking and bounding allow a fast escape across a grassland populated by scattered obstacles. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230587. [PMID: 37711147 PMCID: PMC10498029 DOI: 10.1098/rsos.230587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
Some quadrupeds have evolved the ability of pronking, which consists in leaping by extending the four limbs simultaneously. Pronking is typically observed in some ungulate species inhabiting grassland populated by obstacles such as shrubs, rocks and fallen branches scattered across the environment. Several possible explanations have been proposed for this peculiar behaviour, including the honest signalling of the fitness of the individual to predators or the transmission of a warning alert to conspecifics, but so far none of them has been advocated as conclusive. In this work, we investigate the kinematics of pronking on a two-dimensional landscape populated by randomly scattered obstacles. We show that when the density of obstacles is larger than a critical threshold, pronking becomes the gait that maximizes the probability of trespassing in the shortest possible time all the obstacles distributed across the distance fled, and thus represents an effective escape strategy based on a simple open-loop control. The transition between pronking and more conventional gaits such as trotting and galloping occurs at a threshold obstacle density and is continuous for a non-increasing monotone distribution of the height of obstacles, and discrete when the distribution is peaked at a non-zero height. We discuss the implications of our results for the autonomous robotic exploration on unstructured terrain.
Collapse
Affiliation(s)
- Francesco Righini
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| | - Marina Carpineti
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - Alberto Vailati
- Dipartimento di Fisica A. Pontremoli, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Dallmann CJ, Dickerson BH, Simpson JH, Wyart C, Jayaram K. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward. Integr Comp Biol 2023; 63:450-463. [PMID: 37279901 PMCID: PMC10445419 DOI: 10.1093/icb/icad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris 75005, France
| | - Kaushik Jayaram
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Ortega-Jimenez VM, Jusufi A, Brown CE, Zeng Y, Kumar S, Siddall R, Kim B, Challita EJ, Pavlik Z, Priess M, Umhofer T, Koh JS, Socha JJ, Dudley R, Bhamla MS. Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots. BIOINSPIRATION & BIOMIMETICS 2023; 18:051001. [PMID: 37552773 DOI: 10.1088/1748-3190/acdb1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/02/2023] [Indexed: 08/10/2023]
Abstract
Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.
Collapse
Affiliation(s)
- Victor M Ortega-Jimenez
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Ardian Jusufi
- Soft Kinetic Group, Engineering Sciences Department, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland
- University of Zurich, Institutes for Neuroinformatics and Palaeontology, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Macquarie University, Sydney, NSW 2109, Australia
| | - Christian E Brown
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
| | - Yu Zeng
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Sunny Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Robert Siddall
- Aerial Robotics Lab, Imperial College of London, London, United Kingdom
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - Elio J Challita
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| | - Zoe Pavlik
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Meredith Priess
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Thomas Umhofer
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Gyeonggi-do 16499, Republic of Korea
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Robert Dudley
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, United States of America
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States of America
| |
Collapse
|
10
|
Liu Y, Liang J, Lu J, Chen H, Miao Z, Wang D, Wang X, Zhang M. Complex Three-Dimensional Terrains Traversal of Insect-Scale Soft Robot. Soft Robot 2023; 10:612-623. [PMID: 36576417 DOI: 10.1089/soro.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article proposes a piezoelectric-driven insect-scale soft robot with ring-like curved legs, enabling it to traverse complex three-dimensional (3D) terrain only by body-terrain mechanical action. Relying on the repeated deformation of the main body's n and u shapes, the robot's leg-ground mechanical action produces an "elastic gait" to move. Regarding the detailed design, first, a theoretical curve of the front leg with a fixed angle of attack of 75° is designed by finite element simulation and comparative experiments. It ensures no increase in drag and no decrease in the lift when climbing steps. Second, a ring-like leg structure with 100% closed degree is proposed to ensure a smooth pass through small-sized uneven terrain without getting stuck. Then, the design of the overall asymmetrical structure of the robot can improve the conversion ratio of vibration to forward force. The shape of curved legs is controlled by pulling the flexible leg structure with two metal wires working as spokes. The semirigid leg structure made of fully flexible materials has shape stability and structural robustness. Compared with the plane-legged robot, the curved-legged robot can smoothly traverse different rugged 3D terrains and cross the terrain covering obstacles 0.36 times body height (BH) at a speed of >4 body lengths per second. Moreover, the curved-legged robot shows 100% and 64% chances of climbing steps with 1.2- and 1.9-times BH, respectively.
Collapse
Affiliation(s)
- Ying Liu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | | | - Jiangfeng Lu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Huimin Chen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zicong Miao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dongkai Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Xiaohao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Min Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
11
|
Austin M, Chase A, Van Stratum B, Clark JE. AquaClimber: a limbed swimming and climbing robot based on reduced order models. BIOINSPIRATION & BIOMIMETICS 2022; 18:016004. [PMID: 36332271 DOI: 10.1088/1748-3190/aca05c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Many legged robots have taken insight from animals to run, jump, and climb. Very few, however, have extended the flexibility of limbs to the task of swimming. In this paper, we address the study of multi-modal limbed locomotion by extending our lateral plane reduced order dynamic model of climbing to swimming. Following this, we develop a robot, AquaClimber, which utilizes the model's locomotive style, similar to human freestyle swimming, to propel itself through fluid and to climb vertical walls, as well as transition between the two. A comparison of simulation and model results indicate that the simulation can predict how hand design, arm compliance, and driving frequency affect swimming speed and behavior. Using this reduced order model, we have successfully developed the first limbed aquatic-scansorial multi-modal robot.
Collapse
Affiliation(s)
- Max Austin
- FAMU/FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Ashley Chase
- FAMU/FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Brian Van Stratum
- FAMU/FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Jonathan E Clark
- FAMU/FSU College of Engineering, Tallahassee, FL 32310, United States of America
| |
Collapse
|
12
|
Strength-mass scaling law governs mass distribution inside honey bee swarms. Sci Rep 2022; 12:17388. [PMID: 36253489 PMCID: PMC9576786 DOI: 10.1038/s41598-022-21347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
To survive during colony reproduction, bees create dense clusters of thousands of suspended individuals. How does this swarm, which is orders of magnitude larger than the size of an individual, maintain mechanical stability? We hypothesize that the internal structure in the bulk of the swarm, about which there is little prior information, plays a key role in mechanical stability. Here, we provide the first-ever 3D reconstructions of the positions of the bees in the bulk of the swarm using x-ray computed tomography. We find that the mass of bees in a layer decreases with distance from the attachment surface. By quantifying the distribution of bees within swarms varying in size (made up of 4000-10,000 bees), we find that the same power law governs the smallest and largest swarms, with the weight supported by each layer scaling with the mass of each layer to the [Formula: see text] power. This arrangement ensures that each layer exerts the same fraction of its total strength, and on average a bee supports a lower weight than its maximum grip strength. This illustrates the extension of the scaling law relating weight to strength of single organisms to the weight distribution within a superorganism made up of thousands of individuals.
Collapse
|
13
|
Yuan J, Wang Z, Song Y, Dai Z. Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:421-433. [PMID: 35362821 DOI: 10.1007/s00359-022-01548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to transition between surfaces (e.g., from the ground to vertical barriers, such as walls, tree trunks, or rock surfaces) is important for the Peking gecko's (Gekko swinhonis Günther 1864) survival. However, quantitative research on gecko's kinematic performance and the effect of obstacle height during transitional locomotion remains scarce. In this study, the transitional locomotion of geckos facing different obstacle heights was assessed. Remarkably, geckos demonstrated a bimodal locomotion ability, as they could climb and jump. Climbing was more common on smaller obstacles and took longer than jumping. The jumping type depended on the obstacle height: when geckos could jump onto the obstacle, the vertical velocity increased with obstacle height; however, geckos jumped from a closer position when the obstacle height exceeded this range and would get attached to the vertical surface. A stability analysis of vertical surface landing using a collision model revealed that geckos can reduce their restraint impulse by increasing the landing angle through limb extension close to the body, consequently dissipating collision energy and reducing their horizontal and vertical velocities. The findings of this study reveal the adaptations evolved by geckos to move in their environments and may have applicability in the robotics field.
Collapse
Affiliation(s)
- Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
14
|
Abstract
Recapitulating avian locomotion opens the door for simple and economical control of legged robots without sensory feedback systems.
Collapse
Affiliation(s)
- Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.,Integrative and Biomedical Physiology Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Gregory S Sawicki
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment. ACTUATORS 2022. [DOI: 10.3390/act11020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The better application of crawl robots depends on their ability to adapt to unstructured environments with significant variations in their structural shape and size. This paper presents the design and analysis of a novel robot with different locomotion configurations to move through varying environments. The leg of the robot, inspired by insects, was designed as a multi-link structure, including the Hoekens linkage and multiple parallel four-link mechanisms. The end trajectory was a symmetrical closed curve composed of an approximate straight line and a shell curve with a downward opening. The special trajectory allowed the robot to share drives and components to achieve structural deformation and locomotion. The structural characteristics of the crawl robot on the inner and outer arcs were obtained based on the working space. The constraint relationship between the structure size, the radius of the arc, and the coefficient of static friction with which the robot could crawl on the arc were established. The feasible support posture and support position of the robot under different arc radii were obtained. The simulation tested the locomotion of the robot on the plane, arc, and restricted space. The robot can be used for detection, search, and rescue missions in unstructured environments.
Collapse
|
16
|
Schiebel PE, Shum J, Cerbone H, Wood RJ. An insect-scale robot reveals the effects of different body dynamics regimes during open-loop running in feature-laden terrain. BIOINSPIRATION & BIOMIMETICS 2022; 17:026006. [PMID: 34874292 DOI: 10.1088/1748-3190/ac3f7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The transition from the lab to natural environments is an archetypal challenge in robotics. While larger robots can manage complex limb-ground interactions using sensing and control, such strategies are difficult to implement on small platforms where space and power are limited. The Harvard Ambulatory Microrobot (HAMR) is an insect-scale quadruped capable of effective open-loop running on featureless, hard substrates. Inspired by the predominantly feedforward strategy of rapidly-running cockroaches on uneven terrain (Sponberg, 2007), we used HAMR to explore open-loop running on two 3D printed heterogeneous terrains generated using fractional Brownian motion. The 'pocked' terrain had foot-scale features throughout while the 'jagged' terrain features increased in height in the direction of travel. We measured the performance of trot and pronk gaits while varying limb amplitude and stride frequency. The frequencies tested encompassed different dynamics regimes: body resonance (10-25 Hz) and kinematic running (30-40 Hz), with dynamics typical of biological running and walking, respectively, and limb-transmission resonance (45-60 Hz). On the featureless and pocked terrains, low mechanical cost-of-transport (mCoT) kinematic running combinations performed best without systematic differences between trot and pronk; indicating that if terrain features are not too tall, a robot can transition from homo-to heterogeneous environments in open-loop. Pronk bypassed taller features than trot on the jagged terrain, and higher mCoT, lower frequency running was more often effective. While increasing input power to the robot improved performance in general, lower frequency pronking on jagged terrain allowed the robot to bypass taller features compared with the same input power at higher frequencies. This was correlated with the increased variation in center-of-mass orientation occurring at frequencies near body resonance. This study established that appropriate choice of robot dynamics, as mediated by gait, frequency, and limb amplitude, can expand the terrains accessible to microrobots without the addition of sensing or closed-loop control.
Collapse
Affiliation(s)
- Perrin E Schiebel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - Jennifer Shum
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - Henry Cerbone
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | - Robert J Wood
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
17
|
Young FR, Chiel HJ, Tresch MC, Heckman CJ, Hunt AJ, Quinn RD. Analyzing Modeled Torque Profiles to Understand Scale-Dependent Active Muscle Responses in the Hip Joint. Biomimetics (Basel) 2022; 7:biomimetics7010017. [PMID: 35225910 PMCID: PMC8883942 DOI: 10.3390/biomimetics7010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Animal locomotion is influenced by a combination of constituent joint torques (e.g., due to limb inertia and passive viscoelasticity), which determine the necessary muscular response to move the limb. Across animal size-scales, the relative contributions of these constituent joint torques affect the muscular response in different ways. We used a multi-muscle biomechanical model to analyze how passive torque components change due to an animal’s size-scale during locomotion. By changing the size-scale of the model, we characterized emergent muscular responses at the hip as a result of the changing constituent torque profile. Specifically, we found that activation phases between extensor and flexor torques to be opposite between small and large sizes for the same kinematic motion. These results suggest general principles of how animal size affects neural control strategies. Our modeled torque profiles show a strong agreement with documented hindlimb torque during locomotion and can provide insights into the neural organization and muscle activation behavior of animals whose motion has not been extensively documented.
Collapse
Affiliation(s)
- Fletcher R. Young
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence:
| | - Hillel J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthew C. Tresch
- Biomedical Engineering, Physical Medicine and Rehabilitation, Physiology, Northwestern University, Chicago, IL 60611, USA;
| | - Charles J. Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander J. Hunt
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201, USA;
| | - Roger D. Quinn
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
18
|
Robustness in action: Leg loss does not affect mating success in male harvestmen. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts. This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alternative hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive behavior of one species of Neotropical Prionostemma harvestmen. These arachnids undergo autotomy frequently, do not regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Overall, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological damage and natural selection favors strategies that increase robustness.
Significance statement
In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors, however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts (tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids are able to withstand the loss of legs with no effects on reproduction.
Collapse
|
19
|
Goldsmith CA, Quinn RD, Szczecinski NS. Investigating the role of low level reinforcement reflex loops in insect locomotion. BIOINSPIRATION & BIOMIMETICS 2021; 16:065008. [PMID: 34547724 DOI: 10.1088/1748-3190/ac28ea] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the 'lower level' ventral nerve cord (VNC) and the 'higher level' head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as 'positive feedback' may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the 'reflex reversal' of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect (Carausius morosus) femur-tibia (FTi) and coxa-trochanter joint control networks 'in-the-loop' with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce 'sideways stepping'. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network's flexion position and velocity afferents generated a reflex reversal in the robot limb's FTi joint. We also explored the intact network's ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.
Collapse
Affiliation(s)
- C A Goldsmith
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| | - R D Quinn
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - N S Szczecinski
- West Virginia University, One Waterfront Place, Morgantown, WV 26506, United States of America
| |
Collapse
|
20
|
Cellini B, Salem W, Mongeau JM. Mechanisms of punctuated vision in fly flight. Curr Biol 2021; 31:4009-4024.e3. [PMID: 34329590 DOI: 10.1016/j.cub.2021.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
To guide locomotion, animals control gaze via movements of their eyes, head, and/or body, but how the nervous system controls gaze during complex motor tasks remains elusive. In many animals, shifts in gaze consist of periods of smooth movement punctuated by rapid eye saccades. Notably, eye movements are constrained by anatomical limits, which requires resetting eye position. By studying tethered, flying fruit flies (Drosophila), we show that flies perform stereotyped head saccades to reset gaze, analogous to optokinetic nystagmus in primates. Head-reset saccades interrupted head smooth movement for as little as 50 ms-representing less than 5% of the total flight time-thereby enabling punctuated gaze stabilization. By revealing the passive mechanics of the neck joint, we show that head-reset saccades leverage the neck's natural elastic recoil, enabling mechanically assisted redirection of gaze. The consistent head orientation at saccade initiation, the influence of the head's angular position on saccade rate, the decrease in wing saccade frequency in head-fixed flies, and the decrease in head-reset saccade rate in flies with their head range of motion restricted together implicate proprioception as the primary trigger of head-reset saccades. Wing-reset saccades were influenced by head orientation, establishing a causal link between neck sensory signals and the execution of body saccades. Head-reset saccades were abolished when flies switched to a landing state, demonstrating that head movements are gated by behavioral state. We propose a control architecture for active vision systems with limits in sensor range of motion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Siddall R, Byrnes G, Full RJ, Jusufi A. Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Commun Biol 2021; 4:1020. [PMID: 34475510 PMCID: PMC8413312 DOI: 10.1038/s42003-021-02378-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Animals use diverse solutions to land on vertical surfaces. Here we show the unique landing of the gliding gecko, Hemidactylus platyurus. Our high-speed video footage in the Southeast Asian rainforest capturing the first recorded, subcritical, short-range glides revealed that geckos did not markedly decrease velocity prior to impact. Unlike specialized gliders, geckos crashed head-first with the tree trunk at 6.0 ± 0.9 m/s (~140 body lengths per second) followed by an enormous pitchback of their head and torso 103 ± 34° away from the tree trunk anchored by only their hind limbs and tail. A dynamic mathematical model pointed to the utility of tails for the fall arresting response (FAR) upon landing. We tested predictions by measuring foot forces during landing of a soft, robotic physical model with an active tail reflex triggered by forefoot contact. As in wild animals, greater landing success was found for tailed robots. Experiments showed that longer tails with an active tail reflex resulted in the lower adhesive foot forces necessary for stabilizing successful landings, with a tail shortened to 25% requiring over twice the adhesive foot force.
Collapse
Affiliation(s)
- Robert Siddall
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Greg Byrnes
- Department of Biology, Siena College, Loudonville, NY, USA
| | - Robert J Full
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Ardian Jusufi
- Locomotion in Biorobotic and Somatic Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Kane SA, Bien T, Contreras-Orendain L, Ochs MF, Tonia Hsieh S. Many ways to land upright: novel righting strategies allow spotted lanternfly nymphs to land on diverse substrates. J R Soc Interface 2021; 18:20210367. [PMID: 34376093 DOI: 10.1098/rsif.2021.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Unlike large animals, insects and other very small animals are so unsusceptible to impact-related injuries that they can use falling for dispersal and predator evasion. Reorienting to land upright can mitigate lost access to resources and predation risk. Such behaviours are critical for the spotted lanternfly (SLF) (Lycorma delicatula), an invasive, destructive insect pest spreading rapidly in the USA. High-speed video of SLF nymphs released under different conditions showed that these insects self-right using both active midair righting motions previously reported for other insects and novel post-impact mechanisms that take advantage of their ability to experience near-total energy loss on impact. Unlike during terrestrial self-righting, in which an animal initially at rest on its back uses appendage motions to flip over, SLF nymphs impacted the surface at varying angles and then self-righted during the rebound using coordinated body rotations, foot-substrate adhesion and active leg motions. These previously unreported strategies were found to promote disproportionately upright, secure landings on both hard, flat surfaces and tilted, compliant host plant leaves. Our results highlight the importance of examining biomechanical phenomena in ecologically relevant contexts, and show that, for small animals, the post-impact bounce period can be critical for achieving an upright landing.
Collapse
Affiliation(s)
| | - Theodore Bien
- Physics and Astronomy Department, Haverford College, Haverford, PA, USA
| | | | - Michael F Ochs
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, USA
| | - S Tonia Hsieh
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Jorge JF, Bergbreiter S, Patek SN. Pendulum-based measurements reveal impact dynamics at the scale of a trap-jaw ant. J Exp Biol 2021; 224:jeb.232157. [PMID: 33504588 DOI: 10.1242/jeb.232157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Small organisms can produce powerful, sub-millisecond impacts by moving tiny structures at high accelerations. We developed and validated a pendulum device to measure the impact energetics of microgram-sized trap-jaw ant mandibles accelerated against targets at 105 m s-2 Trap-jaw ants (Odontomachus brunneus; 19 individuals, 212 strikes) were suspended on one pendulum and struck swappable targets that were either attached to an opposing pendulum or fixed in place. Mean post-impact kinetic energy (energy from a strike converted to pendulum motion) was higher with a stiff target (21.0-21.5 µJ) than with a compliant target (6.4-6.5 µJ). Target mobility had relatively little influence on energy transfer. Mean contact duration of strikes against stiff targets was shorter (3.9-4.5 ms) than against compliant targets (6.2-7.9 ms). Shorter contact duration was correlated with higher post-impact kinetic energy. These findings contextualize and provide an energetic explanation for the diverse, natural uses of trap-jaw ant strikes such as impaling prey, launching away threats and performing mandible-powered jumps. The strong effect of target material on energetic exchange suggests material interactions as an avenue for tuning performance of small, high acceleration impacts. Our device offers a foundation for novel research into the ecomechanics and evolution of tiny biological impacts and their application in synthetic systems.
Collapse
Affiliation(s)
- Justin F Jorge
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Clifton GT, Holway D, Gravish N. Vision does not impact walking performance in Argentine ants. ACTA ACUST UNITED AC 2020; 223:223/20/jeb228460. [PMID: 33067354 DOI: 10.1242/jeb.228460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022]
Abstract
Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.
Collapse
Affiliation(s)
- Glenna T Clifton
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA .,Department of Biology, University of Portland, Portland, OR 97203, USA
| | - David Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego , La Jolla, CA 92093, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Goldsmith CA, Szczecinski NS, Quinn RD. Neurodynamic modeling of the fruit fly Drosophila melanogaster. BIOINSPIRATION & BIOMIMETICS 2020; 15:065003. [PMID: 32924978 DOI: 10.1088/1748-3190/ab9e52] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This manuscript describes neuromechanical modeling of the fruit fly Drosophila melanogaster in the form of a hexapod robot, Drosophibot, and an accompanying dynamic simulation. Drosophibot is a testbed for real-time dynamical neural controllers modeled after the anatomy and function of the insect nervous system. As such, Drosophibot has been designed to capture features of the animal's biomechanics in order to better test the neural controllers. These features include: dynamically scaling the robot to match the fruit fly by designing its joint elasticity and movement speed; a biomimetic actuator control scheme that converts neural activity into motion in the same way as observed in insects; biomimetic sensing, including proprioception from all leg joints and strain sensing from all leg segments; and passively compliant tarsi that mimic the animal's passive compliance to the walking substrate. We incorporated these features into a dynamical simulation of Drosophibot, and demonstrate that its actuators and sensors perform in an animal-like way. We used this simulation to test a neural walking controller based on anatomical and behavioral data from insects. Finally, we describe Drosophibot's hardware and show that the animal-like features of the simulation transfer to the physical robot.
Collapse
Affiliation(s)
- C A Goldsmith
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - N S Szczecinski
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| | - R D Quinn
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States of America
| |
Collapse
|
26
|
St Pierre R, Gao W, Clark JE, Bergbreiter S. Viscoelastic legs for open-loop control of gram-scale robots. BIOINSPIRATION & BIOMIMETICS 2020; 15:055005. [PMID: 32580172 DOI: 10.1088/1748-3190/ab9fa9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gram-scale insects, such as cockroaches, take advantage of the mechanical properties of the musculoskeletal system to enable rapid and robust running. Engineering gram-scale robots, much like their biological counterparts, comes with inherent constraints on resources due to their small sizes. Resource-constrained robots are generally limited in their computational complexity, making controlled, high-speed locomotion a challenge, especially in unstructured environments. In this paper we show that embedding control into the leg mechanics of robots, similarly to cockroaches, results in predictable dynamics from an open-loop control strategy that can be modified through material choice. Tuning the mechanical properties of gram-scale robot legs promotes high-speed, stable running, reducing the need for active control. We utilize a torque-driven damped spring-loaded inverted pendulum model to explore the behavior and the design space of a spring-damper leg at this scale. The resulting design maps show the trade-offs in performance goals, such as speed and efficiency, with stability, as well as the sensitivity in performance to the leg properties and the control input. Finally, we demonstrate experimental results with magnetically actuated quadrupedal gram-scale robots, incorporating viscoelastic legs and demonstrating speeds up to 11.7 body lengths per second.
Collapse
Affiliation(s)
- Ryan St Pierre
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | | | | | | |
Collapse
|
27
|
Tichit P, Alves-Dos-Santos I, Dacke M, Baird E. Accelerated landing in a stingless bee and its unexpected benefits for traffic congestion. Proc Biol Sci 2020; 287:20192720. [PMID: 32070252 DOI: 10.1098/rspb.2019.2720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To land, flying animals must simultaneously reduce speed and control their path to the target. While the control of approach speed has been studied in many different animals, little is known about the effect of target size on landing, particularly for small targets that require precise trajectory control. To begin to explore this, we recorded the stingless bees Scaptotrigona depilis landing on their natural hive entrance-a narrow wax tube built by the bees themselves. Rather than decelerating before touchdown as most animals do, S. depilis accelerates in preparation for its high precision landings on the narrow tube of wax. A simulation of traffic at the hive suggests that this counterintuitive landing strategy could confer a collective advantage to the colony by minimizing the risk of mid-air collisions and thus of traffic congestion. If the simulated size of the hive entrance increases and if traffic intensity decreases relative to the measured real-world values, 'accelerated landing' ceases to provide a clear benefit, suggesting that it is only a useful strategy when target cross-section is small and landing traffic is high. We discuss this strategy in the context of S. depilis' ecology and propose that it is an adaptive behaviour that benefits foraging and nest defence.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund 22362, Sweden.,Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
28
|
Khandelwal PC, Hedrick TL. How biomechanics, path planning and sensing enable gliding flight in a natural environment. Proc Biol Sci 2020; 287:20192888. [PMID: 32070254 DOI: 10.1098/rspb.2019.2888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gliding animals traverse cluttered aerial environments when performing ecologically relevant behaviours. However, it is unknown how gliders execute collision-free flight over varying distances to reach their intended target. We quantified complete glide trajectories amid obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve. In this cluttered habitat, the lizards used glide paths with fewer obstacles than alternatives of similar distance. Their takeoff direction oriented them away from obstacles in their path and they subsequently made mid-air turns with accelerations of up to 0.5 g to reorient towards the target tree. These manoeuvres agreed well with a vision-based steering model which maximized their bearing angle with the obstacle while minimizing it with the target tree. Nonetheless, negotiating obstacles reduced mid-glide shallowing rates, implying greater loss of altitude. Finally, the lizards initiated a pitch-up landing manoeuvre consistent with a visual trigger model, suggesting that the landing decision was based on the optical size and speed of the target. They subsequently followed a controlled-collision approach towards the target, ending with variable impact speeds. Overall, the visually guided path planning strategy that enabled collision-free gliding required continuous changes in the gliding kinematics such that the lizards never attained theoretically ideal steady-state glide dynamics.
Collapse
Affiliation(s)
- Pranav C Khandelwal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Liu P, Sane SP, Mongeau JM, Zhao J, Cheng B. Flies land upside down on a ceiling using rapid visually mediated rotational maneuvers. SCIENCE ADVANCES 2019; 5:eaax1877. [PMID: 31681844 PMCID: PMC6810462 DOI: 10.1126/sciadv.aax1877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/14/2019] [Indexed: 05/31/2023]
Abstract
Flies and other insects routinely land upside down on a ceiling. These inverted landing maneuvers are among the most remarkable aerobatic feats, yet the full range of these behaviors and their underlying sensorimotor processes remain largely unknown. Here, we report that successful inverted landing in flies involves a serial sequence of well-coordinated behavioral modules, consisting of an initial upward acceleration followed by rapid body rotation and leg extension, before terminating with a leg-assisted body swing pivoted around legs firmly attached to the ceiling. Statistical analyses suggest that rotational maneuvers are triggered when flies' relative retinal expansion velocity reaches a threshold. Also, flies exhibit highly variable pitch and roll rates, which are strongly correlated to and likely mediated by multiple sensory cues. When flying with higher forward or lower upward velocities, flies decrease the pitch rate but increase the degree of leg-assisted swing, thereby leveraging the transfer of body linear momentum.
Collapse
Affiliation(s)
- Pan Liu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sanjay P. Sane
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Jianguo Zhao
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Doshi N, Jayaram K, Castellanos S, Kuindersma S, Wood RJ. Effective locomotion at multiple stride frequencies using proprioceptive feedback on a legged microrobot. BIOINSPIRATION & BIOMIMETICS 2019; 14:056001. [PMID: 31189140 DOI: 10.1088/1748-3190/ab295b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Limitations in actuation, sensing, and computation have forced small legged robots to rely on carefully tuned, mechanically mediated leg trajectories for effective locomotion. Recent advances in manufacturing, however, have enabled in such robots the ability for operation at multiple stride frequencies using multi-degree-of-freedom leg trajectories. Proprioceptive sensing and control is key to extending the capabilities of these robots to a broad range of operating conditions. In this work, we use concomitant sensing for piezoelectric actuation with a computationally efficient framework for estimation and control of leg trajectories on a quadrupedal microrobot. We demonstrate accurate position estimation (<16[Formula: see text] root-mean-square error) and control (<16[Formula: see text] root-mean-square tracking error) during locomotion across a wide range of stride frequencies (10 Hz-50 Hz). This capability enables the exploration of two bioinspired parametric leg trajectories designed to reduce leg slip and increase locomotion performance (e.g. speed, cost-of-transport (COT), etc). Using this approach, we demonstrate high performance locomotion at stride frequencies (10 Hz-30 Hz) where the robot's natural dynamics result in poor open-loop locomotion. Furthermore, we validate the biological hypotheses that inspired the trajectories and identify regions of highly dynamic locomotion, low COT (3.33), and minimal leg slippage (<10%).
Collapse
Affiliation(s)
- Neel Doshi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America. Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, United States of America. These authors contributed equally
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
Snakes inhabit environments composed of heterogeneous materials, controlling their body–terrain interactions to generate propulsion. Such complexity makes it challenging to understand the interplay of body mechanics and neural control during obstacle collisions. To simplify, we studied a desert-dwelling snake with a stereotyped waveform moving in a laboratory heterogeneous terrain, an array of posts embedded in a sand-mimic substrate. Compilation of hundreds of trials revealed multipeaked “scattering” patterns, reminiscent of diffraction of subatomic particles. A model incorporating muscle activation patterns and body buckling recovered the mechanical diffraction pattern, indicating passive dynamics facilitates obstacle negotiation without additional neural input. Our study demonstrates the importance of mechanics in snake locomotion as well as the rich dynamics in collisions of self-propelled systems. Limbless animals like snakes inhabit most terrestrial environments, generating thrust to overcome drag on the elongate body via contacts with heterogeneities. The complex body postures of some snakes and the unknown physics of most terrestrial materials frustrates understanding of strategies for effective locomotion. As a result, little is known about how limbless animals contend with unplanned obstacle contacts. We studied a desert snake, Chionactis occipitalis, which uses a stereotyped head-to-tail traveling wave to move quickly on homogeneous sand. In laboratory experiments, we challenged snakes to move across a uniform substrate and through a regular array of force-sensitive posts. The snakes were reoriented by the array in a manner reminiscent of the matter-wave diffraction of subatomic particles. Force patterns indicated the animals did not change their self-deformation pattern to avoid or grab the posts. A model using open-loop control incorporating previously described snake muscle activation patterns and body-buckling dynamics reproduced the observed patterns, suggesting a similar control strategy may be used by the animals. Our results reveal how passive dynamics can benefit limbless locomotors by allowing robust transit in heterogeneous environments with minimal sensing.
Collapse
|
33
|
de Rivaz SD, Goldberg B, Doshi N, Jayaram K, Zhou J, Wood RJ. Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion. Sci Robot 2018; 3:3/25/eaau3038. [DOI: 10.1126/scirobotics.aau3038] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/24/2018] [Indexed: 11/02/2022]
Abstract
The ability to climb greatly increases the reachable workspace of terrestrial robots, improving their utility for inspection and exploration tasks. This is particularly desirable for small (millimeter-scale) legged robots operating in confined environments. This paper presents a 1.48-gram and 4.5-centimeter-long tethered quadrupedal microrobot, the Harvard Ambulatory MicroRobot with Electroadhesion (HAMR-E). The design of HAMR-E enables precise leg motions and voltage-controlled electroadhesion for repeatable and reliable climbing of inverted and vertical surfaces. The innovations that enable this behavior are an integrated leg structure with electroadhesive pads and passive alignment ankles and a parametric tripedal crawling gait. At a relatively low adhesion voltage of 250 volts, HAMR-E achieves speeds up to 1.2 (4.6) millimeters per second and can ambulate for a maximum of 215 (162) steps during vertical (inverted) locomotion. Furthermore, HAMR-E still retains the ability for high-speed locomotion at 140 millimeters per second on horizontal surfaces. As a demonstration of its potential for industrial applications, such as in situ inspection of high-value assets, we show that HAMR-E is capable of achieving open-loop, inverted locomotion inside a curved portion of a commercial jet engine.
Collapse
|