1
|
Colebank MJ, Oomen PA, Witzenburg CM, Grosberg A, Beard DA, Husmeier D, Olufsen MS, Chesler NC. Guidelines for mechanistic modeling and analysis in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 327:H473-H503. [PMID: 38904851 PMCID: PMC11442102 DOI: 10.1152/ajpheart.00766.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.
Collapse
Affiliation(s)
- Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Pim A Oomen
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Anna Grosberg
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Dirk Husmeier
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
2
|
Coccarelli A, Pant S, Polydoros I, Harraz OF. A new model for evaluating pressure-induced vascular tone in small cerebral arteries. Biomech Model Mechanobiol 2024; 23:271-286. [PMID: 37925376 PMCID: PMC10901969 DOI: 10.1007/s10237-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/17/2023] [Indexed: 11/06/2023]
Abstract
The capacity of small cerebral arteries (SCAs) to adapt to pressure fluctuations has a fundamental physiological role and appears to be relevant in different pathological conditions. Here, we present a new computational model for quantifying the link, and its contributors, between luminal pressure and vascular tone generation in SCAs. This is assembled by combining a chemical sub-model, representing pressure-induced smooth muscle cell (SMC) signalling, with a mechanical sub-model for the tone generation and its transduction at tissue level. The devised model can accurately reproduce the impact of luminal pressure on different cytoplasmic components involved in myogenic signalling, both in the control case and when combined with some specific pharmacological interventions. Furthermore, the model is also able to capture and predict experimentally recorded pressure-outer diameter relationships obtained for vessels under control conditions, both in a Ca2 + -free bath and under drug inhibition. The modularity of the proposed framework allows the integration of new components for the study of a broad range of processes involved in the vascular function.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Sanjay Pant
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Ioannis Polydoros
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, USA
| |
Collapse
|
3
|
Coccarelli A, Pant S. On the Ca 2+ elevation in vascular endothelial cells due to inositol trisphosphate-sensitive store receptors activation: A data-driven modeling approach. Comput Biol Med 2023; 164:107111. [PMID: 37540925 DOI: 10.1016/j.compbiomed.2023.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/06/2023]
Abstract
Agonist-induced Ca2+ signaling is essential for the regulation of many vital functions in endothelial cells (ECs). A broad range of stimuli elevate the cytosolic Ca2+ concentration by promoting a pathway mediated by inositol 1,4,5 trisphosphate (IP3) which causes Ca2+ release from intracellular stores. Despite its importance, there are very few studies focusing on the quantification of such dynamics in the vascular endothelium. Here, by using data from isolated ECs, we established a minimalistic modeling framework able to quantitatively capture the main features (averaged over a cell population) of the cytosolic Ca2+ response to different IP3 stimulation levels. A suitable description of Ca2+-regulatory function of inositol 1,4,5 trisphosphate receptors (IP3Rs) and corresponding parameter space are identified by comparing the different model variants against experimental mean population data. The same approach is used to numerically assess the relevance of cytosolic Ca2+ buffering, as well as Ca2+ store IP3-sensitivity in the overall cell dynamics. The variability in the dynamics' features observed across the population can be explained (at least in part) through variation of certain model parameters (such as buffering capacity or Ca2+ store sensitivity to IP3). The results, in terms of experimental fitting and validation, support the proposed minimalistic model as a reference framework for the quantification of the EC Ca2+ dynamics induced by IP3Rs activation.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, UK.
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, UK
| |
Collapse
|
4
|
Coccarelli A, Nelson MD. Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques. Ann Biomed Eng 2023; 51:479-492. [PMID: 36709231 PMCID: PMC9928923 DOI: 10.1007/s10439-022-03134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/25/2022] [Indexed: 01/30/2023]
Abstract
Reactive hyperemia is a well-established technique for the non-invasive evaluation of the peripheral microcirculatory function, measured as the magnitude of limb re-perfusion after a brief period of ischemia. Despite widespread adoption by researchers and clinicians alike, many uncertainties remain surrounding interpretation, compounded by patient-specific confounding factors (such as blood pressure or the metabolic rate of the ischemic limb). Mathematical modeling can accelerate our understanding of the physiology underlying the reactive hyperemia response and guide in the estimation of quantities which are difficult to measure experimentally. In this work, we aim to provide a comprehensive guide for mathematical modeling techniques that can be used for describing the key phenomena involved in the reactive hyperemia response, alongside their limitations and advantages. The reported methodologies can be used for investigating specific reactive hyperemia aspects alone, or can be combined into a computational framework to be used in (pre-)clinical settings.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
5
|
Giannokostas K, Dimakopoulos Y, Tsamopoulos J. Shear stress and intravascular pressure effects on vascular dynamics: two-phase blood flow in elastic microvessels accounting for the passive stresses. Biomech Model Mechanobiol 2022; 21:1659-1684. [PMID: 35962247 DOI: 10.1007/s10237-022-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid-structure interaction model. The arteriolar tissue is modeled as a two-layer fiber-reinforced hyperelastic material representing its Media and Adventitia layers. The constitutive model employed (Holzapfel et al. in J Elast 61:1-48, 2000) is parametrized via available data on stress-strain experiments for arterioles. The model is completed by simulating the blood/plasma flow in the lumen, using the thixotropic elasto-viscoplastic model in its core, and the linear Phan-Thien and Tanner viscoelastic model in its annular part. The Cell-Free Layer (CFL) and the Fåhraeus and Fåhraeus-Lindqvist effects are considered via analytical expressions based on experimental data (Giannokostas et al. in Materials (Basel) 14:367, 2021b). The coupling between tissue deformation and blood flow is achieved through the experimentally verified pressure-shear hypothesis (Pries et al. Circ Res 77:1017-1023, 1995). Our calculations confirm that the increase in the reference inner radius produces larger expansion. Also, by increasing the intraluminal pressure, the thinning of the walls is more pronounced and it may reach 40% of the initial thickness. Comparing our predictions with those in rigid-wall microtubes, we conclude that apart from the vital importance of vasodilation, there is an up to 25% reduction in wall shear stress. The passive vasodilation contributes to the decrease in the tissue stress fields and affects the hemodynamic features such as the CFL thickness, reducing the plasma layer when blood flows in vessels with elastic walls, in quantitative agreement with previous experiments. Our calculations verify the correctness of the pressure-shear hypothesis but not that of the Laplace law.
Collapse
Affiliation(s)
- K Giannokostas
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Y Dimakopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece.
| | - J Tsamopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
7
|
Coccarelli A, Saha S, Purushotham T, Arul Prakash K, Nithiarasu P. On the poro-elastic models for microvascular blood flow resistance: An in vitro validation. J Biomech 2021; 117:110241. [PMID: 33486261 DOI: 10.1016/j.jbiomech.2021.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Nowadays, adequate and accurate representation of the microvascular flow resistance constitutes one of the major challenges in computational haemodynamic studies. In this work, a theoretical, porous media framework, ultimately designed for representing downstream resistance, is presented and compared against an in vitro experimental results. The resistor consists of a poro-elastic tube, with either a constant or variable porosity profile in space. The underlying physics, characterizing the fluid flow through the porous media, is analysed by considering flow variables at different network locations. Backward reflections, originated in the reservoir of the in vitro model, are accounted for through a reflection coefficient imposed as an outflow network condition. The simulation results are in good agreement with the measurements for both the homogenous and heterogeneous porosity conditions. In addition, the comparison allows identification of the range of values representing experimental reservoir reflection coefficients. The pressure drops across the heterogeneous porous media increases with respect to the simpler configuration, whilst flow remains almost unchanged. The effect of some fluid network features, such as tube Young's modulus and fluid viscosity, on the theoretical results is also elucidated, providing a reference for the invitro and insilico simulation of different microvascular conditions.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Biomedical Engineering Group, Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| | - Supratim Saha
- Department of Applied Mechanics, Indian Institute of Technology Madras, India
| | - Tanjeri Purushotham
- Department of Applied Mechanics, Indian Institute of Technology Madras, India
| | - K Arul Prakash
- Department of Applied Mechanics, Indian Institute of Technology Madras, India
| | - Perumal Nithiarasu
- Biomedical Engineering Group, Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK; VAJRA Adjunct Professor, Indian Institute of Technology Madras, India.
| |
Collapse
|
8
|
Giannokostas K, Dimakopoulos Y, Anayiotos A, Tsamopoulos J. Advanced Constitutive Modeling of the Thixotropic Elasto-Visco-Plastic Behavior of Blood: Steady-State Blood Flow in Microtubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E367. [PMID: 33451107 PMCID: PMC7828603 DOI: 10.3390/ma14020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022]
Abstract
The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.
Collapse
Affiliation(s)
- Konstantinos Giannokostas
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.G.); (J.T.)
| | - Yannis Dimakopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.G.); (J.T.)
| | - Andreas Anayiotos
- Department of Mechanical and Materials Engineering, Cyprus University of Technology, Limassol 3036, Cyprus;
| | - John Tsamopoulos
- Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (K.G.); (J.T.)
| |
Collapse
|
9
|
Shradhanjali A, Riehl BD, Duan B, Yang R, Lim JY. Spatiotemporal Characterizations of Spontaneously Beating Cardiomyocytes with Adaptive Reference Digital Image Correlation. Sci Rep 2019; 9:18382. [PMID: 31804542 PMCID: PMC6895104 DOI: 10.1038/s41598-019-54768-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
We developed an Adaptive Reference-Digital Image Correlation (AR-DIC) method that enables unbiased and accurate mechanics measurements of moving biological tissue samples. We applied the AR-DIC analysis to a spontaneously beating cardiomyocyte (CM) tissue, and could provide correct quantifications of tissue displacement and strain for the beating CMs utilizing physiologically-relevant, sarcomere displacement length-based contraction criteria. The data were further synthesized into novel spatiotemporal parameters of CM contraction to account for the CM beating homogeneity, synchronicity, and propagation as holistic measures of functional myocardial tissue development. Our AR-DIC analyses may thus provide advanced non-invasive characterization tools for assessing the development of spontaneously contracting CMs, suggesting an applicability in myocardial regenerative medicine.
Collapse
Grants
- P20 GM104320 NIGMS NIH HHS
- P20 GM113126 NIGMS NIH HHS
- P30 GM127200 NIGMS NIH HHS
- U54 GM115458 NIGMS NIH HHS
- American Heart Association (American Heart Association, Inc.)
- National Science Foundation (NSF)
- NIH/NIGMS Nebraska Center for Integrated Biomolecular Communication (NCIBC) (P20GM113126, PI: Takacs), NIH/NIGMS Nebraska Center for Nanomedicine (P30GM127200, PI: Bronich), Nebraska Collaborative Initiative (PI: Yang)
- NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
- NE DHHS Stem Cell Research Project (2018-07, PI: Lim); UNL Layman New Directions Award (PI: Lim); NIH/NIGMS COBRE NPOD Seed Grant (P20GM104320, PI: Zempleni); NIH/NIGMS Great Plains IDeA-CTR Pilot Grant (1U54GM115458-01, PI: Rizzo)
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|