1
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
2
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
3
|
Chen M, Liu H, Wang R. Dynamical behaviors of quorum sensing network mediated by combinatorial perturbation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4812-4840. [PMID: 35430842 DOI: 10.3934/mbe.2022225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamical behaviors of the quorum sensing (QS) system are closely related to the release drugs and control the PH value in microorganisms and plants. However, the effect of the main molecules AiiA, LuxI, H$ _2 $O$ _2 $, and time delayed individual and combinatorial perturbation on the QS system dynamics and the above-mentioned biological phenomena is still unclear, which are seen as a key consideration in our paper. This paper formulates a QS computational model by incorporating these several substances. First, for the protein production time delay, a critical value is given by Hopf bifurcation theory. It is found that a larger time delay can lead to a larger amplitude and a longer period. This indicates that the length of time for protein synthesis has a regulatory effect on the release of drugs from the bacterial population. Second, hen the concentrations of AiiA, LuxI, and H$ _2 $O$ _2 $ is modulated individually, the QS system undergoes periodic oscillation and bistable state. Meanwhile, oscillatory and bistable regions can be significantly affected by simultaneously perturbing any two parameters related to AiiA, LuxI, and H$ _2 $O$ _2 $. This means that the individual or simultaneous changes of the three intrinsic molecular concentrations can effectively control the drugs release and the PH value in microorganisms and plants. Finally, the sensitivity relationship between the critical value of the delay and AiiA, LuxI, H$ _2 $O$ _2 $ parameters is analyzed.
Collapse
Affiliation(s)
- Menghan Chen
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Haihong Liu
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Indrajit Maity
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Freiburg Institute for Advanced Studies University of Freiburg Freiburg Germany
| | - Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Francisco Lossada
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
5
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021; 60:22537-22546. [PMID: 34347941 PMCID: PMC8518392 DOI: 10.1002/anie.202109735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Compartmentalized reaction networks regulating signal processing, communication and pattern formation are central to living systems. Towards achieving life-like materials, we compartmentalized urea-urease and more complex urea-urease/ester-esterase pH-feedback reaction networks into hydrogel spheres and investigate how fuel-driven pH fronts can be sent out from these spheres and regulated by internal reaction networks. Membrane characteristics are installed by covering urease spheres with responsive hydrogel shells. We then encapsulate the two networks (urea-urease and ester-esterase) separately into different hydrogel spheres to devise communication, pattern formation and attraction. Moreover, these pH fronts and patterns can be used for self-growing hydrogels, and for developing complex geometries from non-injectable hydrogels without 3D printing tools. This study opens possibilities for compartmentalized feedback reactions and their use in next generation materials fabrication.
Collapse
Affiliation(s)
- Indrajit Maity
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Freiburg Institute for Advanced StudiesUniversity of FreiburgFreiburgGermany
| | - Charu Sharma
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Francisco Lossada
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Andreas Walther
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
6
|
Nguindjel AC, Korevaar PA. Self‐Sustained Marangoni Flows Driven by Chemical Reactions**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Déborah C. Nguindjel
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
7
|
Mai AQ, Bánsági T, Taylor AF, Pojman JA. Reaction-diffusion hydrogels from urease enzyme particles for patterned coatings. Commun Chem 2021; 4:101. [PMID: 36697546 PMCID: PMC9814597 DOI: 10.1038/s42004-021-00538-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023] Open
Abstract
The reaction and diffusion of small molecules is used to initiate the formation of protective polymeric layers, or biofilms, that attach cells to surfaces. Here, inspired by biofilm formation, we present a general method for the growth of hydrogels from urease enzyme-particles by combining production of ammonia with a pH-regulated polymerization reaction in solution. We show through experiments and simulations how the propagating basic front and thiol-acrylate polymerization were continuously maintained by the localized urease reaction in the presence of urea, resulting in hydrogel layers around the enzyme particles at surfaces, interfaces or in motion. The hydrogels adhere the enzyme-particles to surfaces and have a tunable growth rate of the order of 10 µm min-1 that depends on the size and spatial distribution of particles. This approach can be exploited to create enzyme-hydrogels or chemically patterned coatings for applications in biocatalytic flow reactors.
Collapse
Affiliation(s)
- Anthony Q. Mai
- grid.64337.350000 0001 0662 7451Department of Chemistry & The Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA USA
| | - Tamás Bánsági
- grid.11835.3e0000 0004 1936 9262Chemical and Biological Engineering, University of Sheffield, Sheffield, UK ,grid.6572.60000 0004 1936 7486Department of Chemistry, University of Birmingham, Birmingham, UK
| | - Annette F. Taylor
- grid.11835.3e0000 0004 1936 9262Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - John A. Pojman
- grid.64337.350000 0001 0662 7451Department of Chemistry & The Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA USA
| |
Collapse
|
8
|
Walther A. Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905111. [PMID: 31762134 PMCID: PMC7612550 DOI: 10.1002/adma.201905111] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/13/2019] [Indexed: 05/17/2023]
Abstract
Soft matter systems and materials are moving toward adaptive and interactive behavior, which holds outstanding promise to make the next generation of intelligent soft materials systems inspired from the dynamics and behavior of living systems. But what is an adaptive material? What is an interactive material? How should classical responsiveness or smart materials be delineated? At present, the literature lacks a comprehensive discussion on these topics, which is however of profound importance in order to identify landmark advances, keep a correct and noninflating terminology, and most importantly educate young scientists going into this direction. By comparing different levels of complex behavior in biological systems, this Viewpoint strives to give some definition of the various different materials systems characteristics. In particular, the importance of thinking in the direction of training and learning materials, and metabolic or behavioral materials is highlighted, as well as communication and information-processing systems. This Viewpoint aims to also serve as a switchboard to further connect the important fields of systems chemistry, synthetic biology, supramolecular chemistry and nano- and microfabrication/3D printing with advanced soft materials research. A convergence of these disciplines will be at the heart of empowering future adaptive and interactive materials systems with increasingly complex and emergent life-like behavior.
Collapse
Affiliation(s)
- Andreas Walther
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany
| |
Collapse
|
9
|
Modelling Bacteria-Inspired Dynamics with Networks of Interacting Chemicals. Life (Basel) 2019; 9:life9030063. [PMID: 31362385 PMCID: PMC6789575 DOI: 10.3390/life9030063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
One approach to understanding how life-like properties emerge involves building synthetic cellular systems that mimic certain dynamical features of living cells such as bacteria. Here, we developed a model of a reaction network in a cellular system inspired by the ability of bacteria to form a biofilm in response to increasing cell density. Our aim was to determine the role of chemical feedback in the dynamics. The feedback was applied through the enzymatic rate dependence on pH, as pH is an important parameter that controls the rates of processes in cells. We found that a switch in pH can be used to drive base-catalyzed gelation or precipitation of a substance in the external solution. A critical density of cells was required for gelation that was essentially independent of the pH-driven feedback. However, the cell pH reached a higher maximum as a result of the appearance of pH oscillations with feedback. Thus, we conclude that while feedback may not play a vital role in some density-dependent behavior in cellular systems, it nevertheless can be exploited to activate internally regulated cell processes at low cell densities.
Collapse
|
10
|
Markovic VM, Bánsági T, McKenzie D, Mai A, Pojman JA, Taylor AF. Influence of reaction-induced convection on quorum sensing in enzyme-loaded agarose beads. CHAOS (WOODBURY, N.Y.) 2019; 29:033130. [PMID: 30927847 DOI: 10.1063/1.5089295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In theory, groups of enzyme-loaded particles producing an acid or base may show complex behavior including dynamical quorum sensing, the appearance of synchronized oscillations above a critical number or density of particles. Here, experiments were performed with the enzyme urease loaded into mm-sized agarose beads and placed in a solution of urea, resulting in an increase in pH. This behavior was found to be dependent upon the number of beads present in the array; however, reaction-induced convection occurred and plumes of high pH developed that extended to the walls of the reactor. The convection resulted in the motion of the mm-sized particles and conversion of the solution to high pH. Simulations in a simple model of the beads demonstrated the suppression of dynamical quorum sensing in the presence of flow.
Collapse
Affiliation(s)
- Vladimir M Markovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Tamás Bánsági
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Dennel McKenzie
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Anthony Mai
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - John A Pojman
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
11
|
Yang D, Fan J, Cao F, Deng Z, Pojman JA, Ji L. Immobilization adjusted clock reaction in the urea–urease–H+ reaction system. RSC Adv 2019; 9:3514-3519. [PMID: 35518065 PMCID: PMC9060300 DOI: 10.1039/c8ra09244c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The bell-shaped reactivity-pH curve is the fundamental reason that the temporal programmable kinetic switch in clock reactions can be obtained in bio-competitive enzymatic reactions. In this work, urease was loaded on small resin particles through ionic binding. Experimental results reveal that the immobilization not only increased the stability of the enzyme and the reproducibility of the clock reaction, but also shifted the bell-shaped activity curve to lower pHs. The latter change enables the clock reaction to occur from an initial pH of 2.3, where the free enzyme had already lost its activity. Two mechanisms explain the influence of the immobilization on the clock reaction. Immobilization modified the pH sensitive functional groups on the enzyme, shifting the activity curve to a more acidic region, and reduced diffusion alters the enzyme dynamics. The reported immobilization shifts the bell-shaped reactivity-pH curve to lower pHs and enables the clock reaction to occur from a very low initial pH, where the free enzyme had already lost its activity.![]()
Collapse
Affiliation(s)
- Dan Yang
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Junhe Fan
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Fengyi Cao
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Zuojun Deng
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - John A. Pojman
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Lin Ji
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| |
Collapse
|