1
|
Negro JJ, Bará S, Galadí-Enríquez D, Nieves JL, Martínez-Domingo MA, Ferrero A, Campos J, Bao-Varela C, Masana E, Camacho C. Nocturnal camouflage through background matching against moonlight. Proc Natl Acad Sci U S A 2025; 122:e2406808121. [PMID: 39680787 PMCID: PMC11725825 DOI: 10.1073/pnas.2406808121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
Camouflage is often considered a daytime phenomenon based on light and shade. Nocturnal camouflage can also occur, but its mechanistic basis remains unclear. Here, we analyze the conditions for background matching (BM) of avian predators against the night sky. Such concealment is achieved when the contrast between the predator and the sky is smaller than the contrast detection threshold of prey. This condition cannot be fulfilled under isotropic skies, as in fully overcast or moonless nights. However, on clear moonlit nights, the isotropy of the sky radiance is broken due to the presence of the Moon, and the conditions for BM can be met for a wide range of sky directions. This effect is mainly dependent on the altitude of the Moon above the horizon, rather than on Moon phase. We have modeled the feasibility of concealment through BM of a typically white barn owl (Tyto alba) when hunting rodents, based on its contrast against the moonlit sky. We considered the radiometric quantities of the sky, the ground, and the bird's undersides. Our results show that a barn owl with highly reflecting underparts may approach a rodent from broad regions of the moonlit sky while keeping itself below the contrast detection threshold of the mouse M-cones and rods. S-cones, in turn, remain below their excitation threshold for most of the lunar cycle. Our results demonstrate that the white color of barn owls serves as camouflage tailored to the moonlit sky background, providing a mechanistic basis for understanding nocturnal camouflage.
Collapse
Affiliation(s)
- Juan J. Negro
- Estación Biológica de Doñana, Department of Ecology and Evolution, Consejo Superior de Investigaciones Científicas (CSIC), SevillaE-41092, Spain
| | - Salvador Bará
- Independent scholar Former Profesor Titular de Universidade (retired) at Universidade de Santiago de Compostela (USC), Facultade de Óptica e Optometría, Santiago de CompostelaE-15782, Galicia
| | | | - Juan Luis Nieves
- Departamento de Óptica, Universidad de Granada (UGR), GranadaE-18071, Spain
| | | | - Alejandro Ferrero
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (CSIC), MadridE-28006, Spain
| | - Joaquín Campos
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (CSIC), MadridE-28006, Spain
| | - Carmen Bao-Varela
- Photonics4Life Research Group, Departamento de Física Aplicada, Facultade de Física and Facultade de Óptica e Optometría, Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Santiago de CompostelaE-15782, Spain
| | - Eduard Masana
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), BarcelonaE-08028, Spain
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), BarcelonaE-08028, Spain
- Institut d’Estudis Espacials de Catalunya (IEEC), Castelldefels (Barcelona)E-08860, Spain
| | - Carlos Camacho
- Estación Biológica de Doñana, Department of Ecology and Evolution, Consejo Superior de Investigaciones Científicas (CSIC), SevillaE-41092, Spain
| |
Collapse
|
2
|
Troscianko J. A hyperspectral open-source imager (HOSI). BMC Biol 2025; 23:5. [PMID: 39773480 PMCID: PMC11708076 DOI: 10.1186/s12915-024-02110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The spatial and spectral properties of the light environment underpin many aspects of animal behaviour, ecology and evolution, and quantifying this information is crucial in fields ranging from optical physics, agriculture/plant sciences, human psychophysics, food science, architecture and materials sciences. The escalating threat of artificial light at night (ALAN) presents unique challenges for measuring the visual impact of light pollution, requiring measurement at low light levels across the human-visible and ultraviolet ranges, across all viewing angles, and often with high within-scene contrast. RESULTS Here, I present a hyperspectral open-source imager (HOSI), an innovative and low-cost solution for collecting full-field hyperspectral data. The system uses a Hamamatsu C12880MA micro spectrometer to take single-point measurements, together with a motorised gimbal for spatial control. The hardware uses off-the-shelf components and 3D printed parts, costing around £350 in total. The system can run directly from a computer or smartphone with a graphical user interface, making it highly portable and user-friendly. The HOSI system can take panoramic hyperspectral images that meet the difficult requirements of ALAN research, sensitive to low light around 0.001 cd.m-2, across 320-880 nm range with spectral resolution of ~ 9 nm (FWHM) and spatial resolution of ~ 2 cycles per degree. The independent exposure of each pixel also allows for an extremely wide dynamic range that can encompass typical natural and artificially illuminated scenes, with sample night-time scans achieving full-spectrum peak-to-peak dynamic ranges of > 50,000:1. CONCLUSIONS This system's adaptability, cost-effectiveness and open-source nature position it as a valuable tool for researchers investigating the complex relationships between light, environment, behaviour, ecology and biodiversity, with further potential uses in many other fields.
Collapse
Affiliation(s)
- Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK.
| |
Collapse
|
3
|
Coetzee BWT, van Zyl L. The Environmental Light Characteristics of Forest Under Different Logging Regimes. Ecol Evol 2024; 14:e70623. [PMID: 39664720 PMCID: PMC11631710 DOI: 10.1002/ece3.70623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Light is a fundamental attribute and key abiotic driver in forest ecosystems. Although the ecological effects of light itself is well studied, capturing the complex parameters that constitute the whole light environment remain an intricate research endeavor. Here, we apply the newly introduced environmental light field (ELF) technique in Kibale National Park, Uganda. We captured whole light scenes with repeat photography and processed it to measure both the spectral composition of light in the red-green-blue range, as well as its variation, or "contrast-span", using the newly introduced International System of Units (SI); "lit". We compare across major and globally common utilized forest types-primary, secondary, and selectively logged areas, as well as a completely cleared area as a control. We find that the ELF system is able to effectively capture key aspects of the local light environment across the range of forest types. The distribution of light intensity and its spectral composition across our study is hardly uniform, with primary forest and a clearing showing two orders of magnitude difference in light. Blue light predominates the sky areas of the clearing, indicating the Rayleigh scattering of sunlight in the atmosphere. In general, radiance decrease with increasing intactness of the forest, and selectively logged and primary forest show the most similar environmental light characteristics. Owing to its ability to capture fine scale variations in light across elevation gradients, their spectral characteristics, as well as their intensities, the ELF system should become a useful tool in better quantifying light in ecology. In particular, we discuss its potential use in restoration ecology.
Collapse
Affiliation(s)
- Bernard W. T. Coetzee
- Conservation Ecology Research Unit, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Layla van Zyl
- Conservation Ecology Research Unit, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
4
|
Fabian ST, Sondhi Y, Allen PE, Theobald JC, Lin HT. Why flying insects gather at artificial light. Nat Commun 2024; 15:689. [PMID: 38291028 PMCID: PMC10827719 DOI: 10.1038/s41467-024-44785-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of "lunar navigation" and "escape to the light". However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.
Collapse
Affiliation(s)
- Samuel T Fabian
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Yash Sondhi
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Pablo E Allen
- Council on International Educational Exchange, Monteverde Apto, 43-5655, Costa Rica
| | - Jamie C Theobald
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA
| | - Huai-Ti Lin
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
5
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
6
|
Bará S, Falchi F. Artificial light at night: a global disruptor of the night-time environment. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220352. [PMID: 37899010 PMCID: PMC10613534 DOI: 10.1098/rstb.2022.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution is the alteration of the natural levels of darkness by an increased concentration of light particles in the night-time environment, resulting from human activity. Light pollution is profoundly changing the night-time environmental conditions across wide areas of the planet, and is a relevant stressor whose effects on life are being unveiled by a compelling body of research. In this paper, we briefly review the basic aspects of artificial light at night as a pollutant, describing its character, magnitude and extent, its worldwide distribution, its temporal and spectral change trends, as well as its dependence on current light production technologies and prevailing social uses of light. It is shown that the overall effects of light pollution are not restricted to local disturbances, but give rise to a global, multiscale disruption of the night-time environment. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Salvador Bará
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
| | - Fabio Falchi
- Departamento de Física Aplicada, Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782 Galicia Spain
- ISTIL Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso–Light Pollution Science and Technology Institute, Via Roma, 13 - I 36016 Thiene, Italy
| |
Collapse
|
7
|
Coetzee BWT, Burke AM, Koekemoer LL, Robertson MP, Smit IPJ. Scaling artificial light at night and disease vector interactions into socio-ecological systems: a conceptual appraisal. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220371. [PMID: 37899011 PMCID: PMC10613543 DOI: 10.1098/rstb.2022.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 10/31/2023] Open
Abstract
There is burgeoning interest in how artificial light at night (ALAN) interacts with disease vectors, particularly mosquitoes. ALAN can alter mosquito behaviour and biting propensity, and so must alter disease transfer rates. However, most studies to date have been laboratory-based, and it remains unclear how ALAN modulates disease vector risk. Here, we identify five priorities to assess how artificial light can influence disease vectors in socio-ecological systems. These are to (i) clarify the mechanistic role of artificial light on mosquitoes, (ii) determine how ALAN interacts with other drivers of global change to influence vector disease dynamics across species, (iii) determine how ALAN interacts with other vector suppression strategies, (iv) measure and quantify the impact of ALAN at scales relevant for vectors, and (v) overcome the political and social barriers in implementing it as a novel vector suppression strategy. These priorities must be addressed to evaluate the costs and benefits of employing appropriate ALAN regimes in complex socio-ecological systems if it is to reduce disease burdens, especially in the developing world. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Bernard W. T. Coetzee
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Ashley M. Burke
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Mark P. Robertson
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Izak P. J. Smit
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
- Scientific Services, South African National Parks, George, South Africa
- Sustainability Research Unit, Nelson Mandela University (NMU), George Campus, Madiba drive, 6531 George, South Africa
| |
Collapse
|
8
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Zeil J. Views from 'crabworld': the spatial distribution of light in a tropical mudflat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:859-876. [PMID: 37460846 PMCID: PMC10643439 DOI: 10.1007/s00359-023-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 11/14/2023]
Abstract
Natural scene analysis has been extensively used to understand how the invariant structure of the visual environment may have shaped biological image processing strategies. This paper deals with four crucial, but hitherto largely neglected aspects of natural scenes: (1) the viewpoint of specific animals; (2) the fact that image statistics are not independent of the position within the visual field; (3) the influence of the direction of illumination on luminance, spectral and polarization contrast in a scene; and (4) the biologically relevant information content of natural scenes. To address these issues, I recorded the spatial distribution of light in a tropical mudflat with a spectrographic imager equipped with a polarizing filter in an attempt to describe quantitatively the visual environment of fiddler crabs. The environment viewed by the crabs has a distinct structure. Depending on the position of the sun, the luminance, the spectral composition, and the polarization characteristics of horizontal light distribution are not uniform. This is true for both skylight and for reflections from the mudflat surface. The high-contrast feature of the line of horizon dominates the vertical distribution of light and is a discontinuity in terms of luminance, spectral distribution and of image statistics. On a clear day, skylight intensity increases towards the horizon due to multiple scattering, and its spectral composition increasingly resembles that of sunlight. Sky-substratum contrast is highest at short wavelengths. I discuss the consequences of this extreme example of the topography of vision for extracting biologically relevant information from natural scenes.
Collapse
Affiliation(s)
- Jochen Zeil
- Research School of Biology, Australian National University, P.O. Box 475, Canberra, ACT, 2601, Australia.
| |
Collapse
|
10
|
Lindkvist S, Ferneborg S, Ståhlberg K, Bånkestad D, Ekesten B, Agenäs S, Ternman E. Effect of light intensity, spectrum, and uniformity on the ability of dairy cows to navigate through an obstacle course. J Dairy Sci 2023; 106:7698-7710. [PMID: 37641357 DOI: 10.3168/jds.2023-23469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/21/2023] [Indexed: 08/31/2023]
Abstract
The most suitable light intensity for cows during nighttime has not been thoroughly investigated. Recommendations on the night-time lighting regimen on dairy farms differ between countries and range from light throughout the night to darkness to allow the animals a rest from artificial light. Commercial actors recommend red light for night-time lighting in cattle barns to facilitate livestock supervision with minimum disturbance for the animals. However, little is known about how light intensity, spectrum, and uniformity affect the ability of cows to navigate their indoor environment. Thus, in a change-over study with 12 pregnant, nonlactating dairy cows, we observed how the cows walked through an obstacle course under different light treatments. Obstacles were positioned differently for every run, to present a novel challenge for each light environment. Fourteen different light treatments were tested, involving intensity ranging from <0.01 (darkness) to 4.49 µmol m-2 s-1, high or low uniformity, and white or red color. Light was characterized in terms of illuminance, photon flux density, spectral composition, and uniformity. Additionally, assessment of the environmental light field was used to describe each lighting condition from a bovine and human perspective. Data were analyzed in a generalized mixed model to assess whether lighting conditions affected cow walking speed or stride rate. Pair-wise post hoc comparisons showed that the cows walked at a slower speed in nonuniform red light compared with uniform white light or uniform red light. Interestingly, darkness did not alter walking speed or stride rate. The odds of different behaviors occurring were not affected by lighting conditions. In conclusion, darkness did not affect the ability of cows to navigate through the obstacle course, but medium-intensity, nonuniform red light affected their speed. Hence, cows do not necessarily need night-time lighting to navigate, even in a test arena with obstacles blocking their way, but nonuniform light distribution may have an effect on their movements.
Collapse
Affiliation(s)
- S Lindkvist
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - S Ferneborg
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - K Ståhlberg
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - D Bånkestad
- Department of Horticulture and Technology, Heliospectra AB, 414 58 Gothenburg, Sweden
| | - B Ekesten
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - S Agenäs
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - E Ternman
- Faculty of Biosciences and Aquaculture, Nord University, 7729 Steinkjer, Norway
| |
Collapse
|
11
|
Troscianko J. OSpRad: an open-source, low-cost, high-sensitivity spectroradiometer. J Exp Biol 2023; 226:jeb245416. [PMID: 37334657 PMCID: PMC10357011 DOI: 10.1242/jeb.245416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Spectroradiometry is a vital tool in a wide range of biological, physical, astronomical and medical fields, yet its cost and accessibility are frequent barriers to use. Research into the effects of artificial light at night (ALAN) further compounds these difficulties with requirements for sensitivity to extremely low light levels across the ultraviolet to human-visible spectrum. Here, I present an open-source spectroradiometry (OSpRad) system that meets these design challenges. The system utilises an affordable miniature spectrometer chip (Hamamatsu C12880MA), combined with an automated shutter and cosine-corrector, microprocessor controller, and graphical user interface 'app' that can be used with smartphones or desktop computers. The system has high ultraviolet sensitivity and can measure spectral radiance at 0.001 cd m-2 and irradiance at 0.005 lx, covering the vast majority of real-world night-time light levels. The OSpRad system's low cost and high sensitivity make it well suited to a range of spectrometry and ALAN research.
Collapse
Affiliation(s)
- Jolyon Troscianko
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
12
|
Yu C, Wijntjes M, Eisemann E, Pont S. Quantifying the spatial, temporal, angular and spectral structure of effective daylight in perceptually meaningful ways. OPTICS EXPRESS 2023; 31:8953-8974. [PMID: 36859999 DOI: 10.1364/oe.479715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We present a method to capture the 7-dimensional light field structure, and translate it into perceptually-relevant information. Our spectral cubic illumination method quantifies objective correlates of perceptually relevant diffuse and directed light components, including their variations over time, space, in color and direction, and the environment's response to sky and sunlight. We applied it "in the wild", capturing how light on a sunny day differs between light and shadow, and how light varies over sunny and cloudy days. We discuss the added value of our method for capturing nuanced lighting effects on scene and object appearance, such as chromatic gradients.
Collapse
|
13
|
Description of Light Environment in Broiler Breeder Houses with Different Light Sources-And How It Differs from Natural Forest Light. Animals (Basel) 2022; 12:ani12233408. [PMID: 36496928 PMCID: PMC9737624 DOI: 10.3390/ani12233408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Light is a key factor in poultry production; however, there is still a lack of knowledge as to describing the light quality, how to measure the light environment as perceived by birds, and how artificial light compares with the light in the natural forest habitats of their wild ancestors. The aim of this study was to describe the light environment in broiler breeder houses with three different light sources, using two different methods of light assessment. We also aimed to compare an artificial light environment with the light in a range of relevant natural forest habitats. A total of 9 commercial broiler breeder houses with one of three different light sources-Lumilux 830 CFL (n = 3), Biolux 965 CFL (n = 3) or LED Evolys with UVA (n = 3) were visited. Assessments of the light environment in the breeder houses were conducted using both a spectrometer and the environmental light field (ELF) method. ELF measurements from three forest types in south India (Kerala) were also included. We found that most aspects of the light environment were similar between the nine breeder houses and were not dependent on the type of light sources. The only clear difference related to the light source was the spectral balance, wherein 830 CFL had the most red-dominated light, 965 CFL had the most blue-dominated light and Evolys was intermediate but with more UV than the latter two. Plumage color had minimal effect on the light environment. Both the spectrometer and the ELF method provided valuable information. The spectrometer gave detailed values about certain aspects of the light environment, while the ELF described the light more in line with human and avian visual perception. We also found that the light environment in the investigated broiler breeder houses differs dramatically in all measured aspects from the natural light habitats of wild junglefowl, suggesting improvement possibilities in artificial lighting systems.
Collapse
|
14
|
Lopez-Reyes K, Armstrong KF, van Tol RWHM, Teulon DAJ, Bok MJ. Colour vision in thrips (Thysanoptera). Philos Trans R Soc Lond B Biol Sci 2022; 377:20210282. [PMID: 36058245 PMCID: PMC9441234 DOI: 10.1098/rstb.2021.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Insects are an astonishingly successful and diverse group, occupying the gamut of habitats and lifestyle niches. They represent the vast majority of described species and total terrestrial animal biomass on the planet. Their success is in part owed to their sophisticated visual systems, including colour vision, which drive a variety of complex behaviours. However, the majority of research on insect vision has focused on only a few model organisms including flies, honeybees and butterflies. Especially understudied are phytophagous insects, such as diminutive thrips (Thysanoptera), in spite of their damage to agriculture. Thrips display robust yet variable colour-specific responses despite their miniaturized eyes, but little is known about the physiological and ecological basis of their visual systems. Here, we review the known visual behavioural information about thrips and the few physiological studies regarding their eyes. Eye structure, spectral sensitivity, opsin genes and the presence of putative colour filters in certain ommatidia strongly imply dynamic visual capabilities. Finally, we discuss the major gaps in knowledge that remain for a better understanding of the visual system of thrips and why bridging these gaps is important for expanding new possibilities for applied pest management strategies for these tiny insects. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Karla Lopez-Reyes
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Karen F. Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
| | - Robert W. H. M. van Tol
- Biointeractions and Plant Health (BIONT), Wageningen University and Research, Wageningen, The Netherlands
- BugResearch Consultancy, TheNetherlands
| | - David A. J. Teulon
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Bonato J, Panzeri S. Neural coding: Looking up and down the visual thalamus. Curr Biol 2022; 32:R941-R943. [PMID: 36167039 DOI: 10.1016/j.cub.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrating sensory and postural information is essential for perception and behavior. A new study shows that information about whether mice are looking up or down is combined with visual information in the primary visual thalamus, an early sensory stage of visual processing.
Collapse
Affiliation(s)
- Jacopo Bonato
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Panzeri
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
17
|
Nilsson DE, Smolka J, Bok M. The vertical light-gradient and its potential impact on animal distribution and behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The visual environment provides vital cues allowing animals to assess habitat quality, weather conditions or measure time of day. Together with other sensory cues and physiological conditions, the visual environment sets behavioral states that make the animal more prone to engage in some behaviors, and less in others. This master-control of behavior serves a fundamental and essential role in determining the distribution and behavior of all animals. Although it is obvious that visual information contains vital input for setting behavioral states, the precise nature of these visual cues remains unknown. Here we use a recently described method to quantify the distribution of light reaching animals’ eyes in different environments. The method records the vertical gradient (as a function of elevation angle) of intensity, spatial structure and spectral balance. Comparison of measurements from different types of environments, weather conditions, times of day, and seasons reveal that these aspects can be readily discriminated from one another. The vertical gradients of radiance, spatial structure (contrast) and color are thus reliable indicators that are likely to have a strong impact on animal behavior and spatial distribution.
Collapse
|
18
|
Aulsebrook AE, Jechow A, Krop-Benesch A, Kyba CCM, Longcore T, Perkin EK, van Grunsven RHA. Nocturnal lighting in animal research should be replicable and reflect relevant ecological conditions. Biol Lett 2022; 18:20220035. [PMID: 35291885 PMCID: PMC8923816 DOI: 10.1098/rsbl.2022.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In nature, light is a key driver of animal behaviour and physiology. When studying captive or laboratory animals, researchers usually expose animals to a period of darkness, to mimic night. However, ‘darkness’ is often poorly quantified and its importance is generally underappreciated in animal research. Even small differences in nocturnal light conditions can influence biology. When light levels during the dark phase are not reported accurately, experiments can be impossible to replicate and compare. Furthermore, when nocturnal light levels are unrealistically dark or bright, the research is less ecologically relevant. Such issues are exacerbated by huge differences in the sensitivity of different light meters, which are not always described in study methods. We argue that nocturnal light levels need to be reported clearly and precisely, particularly in studies of animals housed indoors (e.g. ‘<0.03 lux’ rather than ‘0 lux’ or ‘dark’), and that these light levels should reflect conditions that the animal would experience in a natural context.
Collapse
Affiliation(s)
- Anne E Aulsebrook
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Andreas Jechow
- Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Remote Sensing and Geoinformatics, GFZ German Centre for Geosciences, Potsdam, Germany
| | | | - Christopher C M Kyba
- Remote Sensing and Geoinformatics, GFZ German Centre for Geosciences, Potsdam, Germany
| | - Travis Longcore
- UCLA Institute of the Environment and Sustainability, Los Angeles, CA, USA
| | | | - Roy H A van Grunsven
- Dutch Butterfly Conservation, Mennonietenweg 10, 6702 AD, Wageningen, The Netherlands
| |
Collapse
|
19
|
Mäthger LM, Bok MJ, Liebich J, Sicius L, Nilsson DE. Pupil dilation and constriction in the skate Leucoraja erinacea in a simulated natural light field. J Exp Biol 2022; 225:274366. [DOI: 10.1242/jeb.243221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The skate Leucoraja erinacea has an elaborately shaped pupil, whose characteristics and functions have received little attention. The goal of our study was to investigate the pupil response in relation to natural ambient light intensities. First, we took a recently developed sensory–ecological approach, which gave us a tool for creating a controlled light environment for behavioural work: during a field survey, we collected a series of calibrated natural habitat images from the perspective of the skates' eyes. From these images, we derived a vertical illumination profile using custom-written software for quantification of the environmental light field (ELF). After collecting and analysing these natural light field data, we created an illumination set-up in the laboratory, which closely simulated the natural vertical light gradient that skates experience in the wild and tested the light responsiveness – in particular the extent of dilation – of the skate pupil to controlled changes in this simulated light field. Additionally, we measured pupillary dilation and constriction speeds. Our results confirm that the skate pupil changes from nearly circular under low light to a series of small triangular apertures under bright light. A linear regression analysis showed a trend towards smaller skates having a smaller dynamic range of pupil area (dilation versus constriction ratio around 4-fold), and larger skates showing larger ranges (around 10- to 20-fold). Dilation took longer than constriction (between 30 and 45 min for dilation; less than 20 min for constriction), and there was considerable individual variation in dilation/constriction time. We discuss our findings in terms of the visual ecology of L. erinacea and consider the importance of accurately simulating natural light fields in the laboratory.
Collapse
Affiliation(s)
- Lydia M. Mäthger
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| | - Jan Liebich
- Westphalian Institute for Biomimetics, Westphalian University of Applied Sciences, Bocholt 43697, Germany
| | - Lucia Sicius
- Marine Biological Laboratory, Bell Center, Woods Hole, MA 02543, USA
- Florida State University, Tallahassee, FL 32306, USA
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| |
Collapse
|
20
|
Coetzee BWT, Gaston KJ, Koekemoer LL, Kruger T, Riddin MA, Smit IPJ. Artificial Light as a Modulator of Mosquito-Borne Disease Risk. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.768090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Light is a fundamental cue regulating a host of biological responses. The artificial modification thereof demonstrably impacts a wide range of organisms. The use of artificial light is changing in type, extent and intensity. Insect vector-borne diseases remain a global scourge, but surprisingly few studies have directly investigated the interactions between artificial light and disease vectors, such as mosquitoes. Here we briefly overview the progress to date, which highlights that artificial light must be considered as a modulator of mosquito-borne disease risk. We discuss where the mechanisms may lie, and where future research could usefully be directed, particularly in advancing understanding of the biological effects of the light environment. Further understanding of how artificial light may modulate mosquito-borne disease risk may assist in employing and redesigning light regimes that do not increase, and may even mitigate, already significant disease burdens, especially in the developing world.
Collapse
|
21
|
Hyperspectral characterization of natural lighting environments. PROGRESS IN BRAIN RESEARCH 2022; 273:37-48. [DOI: 10.1016/bs.pbr.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
23
|
Bergman M, Smolka J, Nilsson DE, Kelber A. Seeing the world through the eyes of a butterfly: visual ecology of the territorial males of Pararge aegeria (Lepidoptera: Nymphalidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:701-713. [PMID: 34709430 PMCID: PMC8568875 DOI: 10.1007/s00359-021-01520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022]
Abstract
Combining studies of animal visual systems with exact imaging of their visual environment can get us a step closer to understand how animals see their “Umwelt”. Here, we have combined both methods to better understand how males of the speckled wood butterfly, Pararge aegeria, see the surroundings of their perches. These males are well known to sit and wait for a chance to mate with a passing females, in sunspot territories in European forests. We provide a detailed description of the males' body and head posture, viewing direction, visual field and spatial resolution, as well as the visual environment. Pararge aegeria has sexually dimorphic eyes, the smallest interommatidial angles of males are around 1°, those of females 1.5°. Perching males face the antisolar direction with their retinal region of the highest resolution pointing at an angle of about 45° above the horizon; thus, looking at a rather even and dark background in front of which they likely have the best chance to detect a sunlit female passing through the sunspot.
Collapse
Affiliation(s)
- Martin Bergman
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| |
Collapse
|
24
|
Foster JJ, Tocco C, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Dacke M. Light pollution forces a change in dung beetle orientation behavior. Curr Biol 2021; 31:3935-3942.e3. [PMID: 34329592 DOI: 10.1016/j.cub.2021.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Increasing global light pollution1,2 threatens the night-time darkness to which most animals are adapted. Light pollution can have detrimental effects on behavior,3-5 including by disrupting the journeys of migratory birds,5,6 sand hoppers,7-9 and moths.10 This is particularly concerning, since many night-active species rely on compass information in the sky, including the moon,11,12 the skylight polarization pattern,13,14 and the stars,15 to hold their course. Even animals not directly exposed to streetlights and illuminated buildings may still experience indirect light pollution in the form of skyglow,3,4 which can extend far beyond urban areas.1,2 While some recent research used simulated light pollution to estimate how skyglow may affect orientation behavior,7-9 the consequences of authentic light pollution for celestial orientation have so far been neglected. Here, we present the results of behavioral experiments at light-polluted and dark-sky sites paired with photographic measurements of each environment. We find that light pollution obscures natural celestial cues and induces dramatic changes in dung beetle orientation behavior, forcing them to rely on bright earthbound beacons in place of their celestial compass. This change in behavior results in attraction toward artificial lights, thereby increasing inter-individual competition and reducing dispersal efficiency. For the many other species of insect, bird, and mammal that rely on the night sky for orientation and migration, these effects could dramatically hinder their vital night-time journeys.
Collapse
Affiliation(s)
- James J Foster
- Zoology II, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden.
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Emily Baird
- Functional Morphology, Department of Zoology, Stockholm University, Svante Arrheniusväg 18B, 106 91 Stockholm, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| |
Collapse
|