1
|
Fu X, Zhu X. Key homeobox transcription factors regulate the development of the firefly's adult light organ and bioluminescence. Nat Commun 2024; 15:1736. [PMID: 38443352 PMCID: PMC10914744 DOI: 10.1038/s41467-024-45559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Adult fireflies exhibit unique flashing courtship signals, emitted by specialized light organs, which develop mostly independently from larval light organs during the pupal stage. The mechanisms of adult light organ development have not been thoroughly studied until now. Here we show that key homeobox transcription factors AlABD-B and AlUNC-4 regulate the development of adult light organs and bioluminescence in the firefly Aquatica leii. Interference with the expression of AlAbd-B and AlUnc-4 genes results in undeveloped or non-luminescent adult light organs. AlABD-B regulates AlUnc-4, and they interact with each other. AlABD-B and AlUNC-4 activate the expression of the luciferase gene AlLuc1 and some peroxins. Four peroxins are involved in the import of AlLUC1 into peroxisomes. Our study provides key insights into the development of adult light organs and flash signal control in fireflies.
Collapse
Affiliation(s)
- Xinhua Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xinlei Zhu
- Firefly Conservation Research Centre, Wuhan, 430070, China
| |
Collapse
|
2
|
Hensley NM, Rivers TJ, Gerrish GA, Saha R, Oakley TH. Collective synchrony of mating signals modulated by ecological cues and social signals in bioluminescent sea fireflies. Proc Biol Sci 2023; 290:20232311. [PMID: 38018106 PMCID: PMC10685132 DOI: 10.1098/rspb.2023.2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Individuals often employ simple rules that can emergently synchronize behaviour. Some collective behaviours are intuitively beneficial, but others like mate signalling in leks occur across taxa despite theoretical individual costs. Whether disparate instances of synchronous signalling are similarly organized is unknown, largely due to challenges observing many individuals simultaneously. Recording field collectives and ex situ playback experiments, we describe principles of synchronous bioluminescent signals produced by marine ostracods (Crustacea; Luxorina) that seem behaviorally convergent with terrestrial fireflies, and with whom they last shared a common ancestor over 500 Mya. Like synchronous fireflies, groups of signalling males use visual cues (intensity and duration of light) to decide when to signal. Individual ostracods also modulate their signal based on the distance to nearest neighbours. During peak darkness, luminescent 'waves' of synchronous displays emerge and ripple across the sea floor approximately every 60 s, but such periodicity decays within and between nights after the full moon. Our data reveal these bioluminescent aggregations are sensitive to both ecological and social light sources. Because the function of collective signals is difficult to dissect, evolutionary convergence, like in the synchronous visual displays of diverse arthropods, provides natural replicates to understand the generalities that produce emergent group behaviour.
Collapse
Affiliation(s)
- Nicholai M. Hensley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| | - Trevor J. Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66405, USA
| | - Gretchen A. Gerrish
- Center for Limnology, Trout Lake Station, University of Wisconsin, Boulder Junction, Madison, WI 54512, USA
| | - Raj Saha
- Roux Institute, Northeastern University, Portland, ME 04101, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
3
|
Gerbig D, Schreiner PR. Preparation and Spectroscopic Identification of the Cyclic CO 2 Dimer 1,2-Dioxetanedione. J Am Chem Soc 2023; 145:22341-22346. [PMID: 37812656 DOI: 10.1021/jacs.3c08894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We report the preparation and infrared spectroscopic identification of 1,2-dioxetanedione, which is one of the two possible cyclic dimers of carbon dioxide. We prepared this hitherto experimentally incompletely characterized species in a solid nitrogen matrix at 3 K from the reaction of oxalyl dichloride with the urea·hydrogen peroxide complex. Surprisingly, irradiation at 254 nm does not lead to its dissociation into carbon dioxide but rather yields cyclic carbon trioxide. We further assert our spectroscopic assignments by 18O isotopic labeling and high-level N-electron valence state perturbation theory and coupled-cluster computations. The successful isolation of 1,2-dioxetanedione supports its viability as the postulated high-energy intermediate in the well-known and ubiquitously exploited "peroxyoxalate" chemiluminescent system.
Collapse
Affiliation(s)
- Dennis Gerbig
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
4
|
Sarfati R, Peleg O. Chimera states among synchronous fireflies. SCIENCE ADVANCES 2022; 8:eadd6690. [PMID: 36383660 PMCID: PMC9668303 DOI: 10.1126/sciadv.add6690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Systems of oscillators often converge to a state of synchrony when sufficiently interconnected. Twenty years ago, the mathematical analysis of models of coupled oscillators revealed the possibility for complex phases that exhibit a coexistence of synchronous and asynchronous clusters, known as "chimera states." Beyond their recurrence in theoretical models, chimeras have been observed under specifically designed experimental conditions, yet their emergence in nature has remained elusive. Here, we report evidence for the occurrence of chimeras in a celebrated realization of natural synchrony: fireflies. In video recordings of Photuris frontalis fireflies, we observe, within a single swarm, the spontaneous emergence of different groups flashing with the same periodicity but with a constant delay between them. From the three-dimensional reconstruction of the swarm, we demonstrate that these states are stable over time and spatially intertwined. We discuss the implications of these findings on the synergy between mathematical models and collective behavior.
Collapse
Affiliation(s)
- Raphaël Sarfati
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Orit Peleg
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- Department of Applied Math, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
5
|
Owens ACS, Van den Broeck M, De Cock R, Lewis SM. Behavioral responses of bioluminescent fireflies to artificial light at night. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescent insects have been the subject of scientific interest and popular wonder for millennia. But in the 21st century, the fireflies, click beetles, and cave glow-worms that brighten our nights are threatened by an unprecedented competitor: anthropogenic light pollution. Artificial lights can obscure the light-based signals on which these and other bioluminescent organisms rely to court mates, deter predators, and attract prey. In the following review we summarize a recent influx of research into the behavioral consequences of artificial light at night for firefly beetles (Coleoptera: Lampyridae), which we organize into four distinct courtship signaling systems. We conclude by highlighting several opportunities for further research to advance this emerging field and by offering a set of up-to-date lighting recommendations that can help land managers and other stakeholders balance public safety and ecological sustainability.
Collapse
|
6
|
Sarfati R, Gaudette L, Cicero JM, Peleg O. Statistical analysis reveals the onset of synchrony in sparse swarms of Photinus knulli fireflies. J R Soc Interface 2022; 19:20220007. [PMID: 35317654 PMCID: PMC8941412 DOI: 10.1098/rsif.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flash synchrony within firefly swarms is an elegant but elusive manifestation of collective animal behaviour. It has been observed, and sometimes demonstrated, in a few populations across the world, but exactly which species are capable of large-scale synchronization remains unclear, especially for low-density swarms. The underlying question which we address here is: how does one qualify a collective flashing display as synchronous, given that the only information available is the time and location of flashes? We propose different statistical approaches and apply them to high-resolution stereoscopic video recordings of the collective flashing of Photinus knulli fireflies, hence establishing the occurrence of synchrony in this species. These results substantiate detailed visual observations published in the early 1980s and made at the same experimental site: Peña Blanca Canyon, Coronado National Forest, AZ, USA. We also remark that P. knulli’s collective flashing patterns mirror those observed in Photinus carolinus fireflies in the Eastern USA, consisting of synchronous flashes in periodic bursts with rapid accretion and quick decay.
Collapse
Affiliation(s)
- Raphaël Sarfati
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Laura Gaudette
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL, USA
| | | | - Orit Peleg
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Physics, University of Colorado, Boulder, CO, USA.,Department of Applied Math, University of Colorado, Boulder, CO, USA.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|