1
|
Bolandi Z, Hashemi SM, Abasi M, Musavi M, Aghamiri S, Miyanmahaleh N, Ghanbarian H. In vitro naive CD4 + T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol Biol Rep 2023; 50:9037-9046. [PMID: 37725284 DOI: 10.1007/s11033-023-08767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. METHODS AND RESULTS Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells' differentiation into other types of T cells. CONCLUSIONS In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.
Collapse
Affiliation(s)
- Zohreh Bolandi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Musavi
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Miyanmahaleh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Qiu H, Wang R, Xing J, Li L, Gao Z, Li J, Fang C, Shi F, Mo F, Liu L, Zhao Y, Xie H, Zhao S, Huang J. Characteristics of Th9 cells in Schistosoma japonicum-infected C57BL/6 mouse mesenteric lymph node. Mol Biochem Parasitol 2023; 254:111561. [PMID: 37086898 DOI: 10.1016/j.molbiopara.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Interleukin 9 (IL-9) is an effective cytokine secreted by newly defined Th9 cells, which is involved in allergic and infectious diseases. In this study, lymphocytes were isolated from mesenteric lymph node (MLN), spleen, liver, lung, and Peyer's patches (PP) of C57BL/6 mice 5-6 weeks after S. japonicum infection, intracellular cytokine staining was done to detect the percentage of IL-9-producing CD4+ T cells. The qPCR and ELISA were used to verify the content of IL-9 in MLN. The population of IL-9-producing lymphocyte subset was identified by FACS. In addition, the dynamic changes and cytokine profiles of Th9 cells in the MLN of infected mice were detected by FACS. ELISA was used to detect IL-9 induced by soluble egg antigen (SEA) from isolated lymphocytes in mouse MLN. The results showed that the percentage of IL-9-secreting Th9 cells in the MLN of the infected mouse was higher than that in the spleen, liver, lung, or PP. Though CD8+ Tc cells, NKT cells, and γδT cells could secrete IL-9, CD4+ Th cells were the main source of IL-9 in S. japonicum-infected C57BL/6 mice (P < 0.05). The percentage of Th9 cells in MLN of infected mouse increased from week 3-4, and reached a peak at week 5-6, then began to decrease from week 7-8 (P < 0.05). Moreover, Th9 cells could also secrete a small amount of IL-4, IFN-γ, IL-5, and IL-10. Our results suggested a higher percentage of Th9 cells was induced in the MLN of S. japonicum-infected mice, which might play an important role in the early stage of S. japonicum-induced disease.
Collapse
Affiliation(s)
- Huaina Qiu
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruohan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Lu Li
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhiyan Gao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Feihu Shi
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Feng Mo
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Zhao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongyan Xie
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Wang J, Li S, Li H, Zhou X, Wen H, Lai B. IRF4 overexpression promotes the transdifferentiation of tregs into macrophage-like cells to inhibit the development of colon cancer. Cancer Cell Int 2021; 21:58. [PMID: 33468159 PMCID: PMC7816309 DOI: 10.1186/s12935-021-01766-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Interferon regulatory factor 4 (IRF4) is a transcription factor from the IRF factor family that exerts regulatory functions in the immune system and oncogenesis. However, the biological role of IRF4 in colon cancer is still unclear. The aim of this study is to investigate whether IRF4 participates in the immune response in colon cancer. Methods We compared the expression of IRF4, the number of regulatory T cells (Tregs) and macrophages in the colon cancer tissues and paracancerous colon tissues from colon cancer patients. Colon cancer mouse model was established by inoculation with colon cancer cells (SW480) as a xenograft tumor, and we observed tumor growth of colon cancer. Furthermore, the mechanism of action of IRF4 in transdifferentiation of Tregs into macrophage-like cells and the effect of IRF4 on colon cancer cells were investigated in vitro. Results IRF4 was severely down-regulated in the colon cancer tissues. Colon cancer tissues exhibited an increase in the number of regulatory T cells (Tregs) and macrophages. Furthermore, IRF4 overexpression repressed proliferation, migration and invasion of colon cancer cells (SW480 and HT116 cells). Moreover, IRF4 up-regulation ameliorated tumor growth of colon cancer by promoting the transdifferentiation of Tregs into macrophage-like cells through inhibition of BCL6 expression. Exosomes derived from colon cancer cells repressed IRF4 expression in Tregs by transmitting miR-27a-3p, miR-30a-5p and miR-320c. Conclusions IRF4 overexpression promoted the transdifferentiation of Tregs into macrophage-like cells to inhibit the occurrence and development of colon cancer. Thus, IRF4 may be a potential target for colon cancer treatment.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Song Li
- Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No 1. Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xiaoshuang Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No 1. Minde Road, Nanchang, Jiangxi, 330006, China
| | - Huabin Wen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No 1. Minde Road, Nanchang, Jiangxi, 330006, China
| | - Bin Lai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No 1. Minde Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Batista-Duharte A, Téllez-Martínez D, de Andrade CR, Polesi MC, Portuondo DL, Carlos IZ. Transient Foxp3(+) regulatory T-cell depletion enhances protective Th1/Th17 immune response in murine sporotrichosis caused by Sporothrix schenckii. Immunobiology 2020; 225:151993. [PMID: 32962813 DOI: 10.1016/j.imbio.2020.151993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The role of regulatory T cells (Tregs) on protective immunity in fungal infections, is controversial. Sporotrichosis is an emerging and worldwide-distributed subcutaneous mycosis caused by various related thermodimorphic fungi of the genus Sporothrix. Previously, we showed an elevated percent of Tregs around 21 days post-infection (dpi) in C57BL/6 mice infected with either Sporothrix schenckii or Sporothrix brasiliensis, but the effect of these cells in the ongoing infection was not evaluated. Here, we aim to characterize the role of Foxp3+ Tregs in a subcutaneous S. schenckii infection model. The flow cytometric analyses showed that S. schenckii infection elicited an expansion of a splenic CD4+Foxp3+ population, including a subset of Helioslow+ after ex vivo stimulation with S. schenckii-heat killed yeast. Depletion of Tregs in DEREG mice revealed a reduction of fungal burden in the skin and systemically in liver and kidneys, associated with enhanced Th1 and Th17 responses. Altogether, our results reveal for the first time that Tregs depletion in ongoing S. schenckii infection improves the protective antifungal immunity and these data suggest that Tregs modulation could be explored as a potential therapeutic strategy in sporotrichosis.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| | - Damiana Téllez-Martínez
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Cleverton Roberto de Andrade
- São Paulo State University (UNESP), School of Dentistry, Department of Physiology & Pathology, Araraquara, SP, Brazil
| | - Marisa Campos Polesi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Deivys Leandro Portuondo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Iracilda Zeppone Carlos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. Front Immunol 2019; 10:51. [PMID: 30766532 PMCID: PMC6366148 DOI: 10.3389/fimmu.2019.00051] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of autoimmune disorders and cancer in recent years has been a controversial issue in all aspects of prevention, diagnosis, prognosis and treatment. Among dietary factors, flavonoids have specific immunomodulatory effects that might be of importance to several cancers. Over different types of immune cells, T lymphocytes play a critical role in protecting the immune system as well as in the pathogenesis of specific autoimmune diseases. One of the important mediators of metabolism and immune system is mTOR, especially in T lymphocytes. In the current review, we assessed the effects of flavonoids on the immune system and then their impact on the mTOR pathway. Flavonoids can suppress mTOR activity and are consequently able to induce the T regulatory subset.
Collapse
Affiliation(s)
- Aysooda Hosseinzade
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Naghdipour Biregani
- Department of Nutrition, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Soukhtehzari
- Department of Pharmaceutical Science, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel S Brandt
- Department of Chemistry, Franklin & Marshall College,, Lancaster, PA, United States
| | - Ahmad Esmaillzadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Transcription regulatory factor expression in T-helper cell differentiation pathway in eutopic endometrial tissue samples of women with endometriosis associated with infertility. Cent Eur J Immunol 2018; 43:90-96. [PMID: 29736151 PMCID: PMC5927178 DOI: 10.5114/ceji.2018.74878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Endometriosis is a disease of epidemiological gravity of unknown primary reason. A complex of constitutional factors including the immune system has been considered as its background. The aim of the study was to identify Th1 and Th2 cells as well as the T-regulatory subset in the endometrium of women with endometriosis associated with infertility upon transcription factors expression. Expression of T-bet, GATA3, and Foxp3 genes was examined using a method of polymerase chain reaction (PCR) in the eutopic endometrial samples of 20 women with endometriosis associated with infertility and 20 women with infertility of tubal origin. An increase in mRNA expression for T-bet and GATA3 with prevailing mRNA level for T-bet and a decrease in Foxp3 expression were observed. In conclusion, the revealed changes in expression of transcription factors may indicate the imbalance between T-helper cells of the Th1 and Th2 type and elimination of regulatory function of T-cells, which can be one of the causes of endometriosis predisposing to the development of infertility associated with this disease.
Collapse
|
8
|
IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Sci Rep 2017; 7:11315. [PMID: 28900244 PMCID: PMC5595963 DOI: 10.1038/s41598-017-11803-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
IL-10 is an immunomodulatory cytokine with a critical role in limiting inflammation in immune-mediated pathologies. The mechanisms leading to IL-10 expression by CD4+ T cells are being elucidated, with several cytokines implicated. We explored the effect of IL-4 on the natural phenomenon of IL-10 production by a chronically stimulated antigen-specific population of differentiated Th1 cells. In vitro, IL-4 blockade inhibited while addition of exogenous IL-4 to Th1 cultures enhanced IL-10 production. In the in vivo setting of peptide immunotherapy leading to a chronically stimulated Th1 phenotype, lack of IL-4Rα inhibited the induction of IL-10. Exploring the interplay of Th1 and Th2 cells through co-culture, Th2-derived IL-4 promoted IL-10 expression by Th1 cultures, reducing their pathogenicity in vivo. Co-culture led to upregulated c-Maf expression with no decrease in the proportion of T-bet+ cells in these cultures. Addition of IL-4 also reduced the encephalitogenic capacity of Th1 cultures. These data demonstrate that IL-4 contributes to IL-10 production and that Th2 cells modulate Th1 cultures towards a self-regulatory phenotype, contributing to the cross-regulation of Th1 and Th2 cells. These findings are important in the context of Th1 driven diseases since they reveal how the Th1 phenotype and function can be modulated by IL-4.
Collapse
|
9
|
Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response. Front Cell Infect Microbiol 2017; 7:341. [PMID: 28791259 PMCID: PMC5524676 DOI: 10.3389/fcimb.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode Heligmosomoides polygyrus in mice previously infected with Toxoplasma gondii. Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1 immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected animals displayed significantly higher worm fecundity although worm burden remained unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells. Co-infection also resulted in the lack of eosinophilia and reduced expression of the Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the protozoan parasite was not diminished and parasitemia of T. gondii was unaffected by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant amount of IFN-γ in co-infected animals. This was not observed in animals infected with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in co-infected mice mirrored this finding. This study suggests that polarization rather than priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response while promoting a shift toward a Th1-type immune response.
Collapse
Affiliation(s)
- Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Anja Kühl
- Division of Gastroenterology, Medical Department, Infection and Rheumatology, Research Center ImmunoSciencesBerlin, Germany
| | - Katrin Hemminger
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
10
|
Chen D, Xie H, Cha H, Qu J, Wang M, Li L, Yu S, Wu C, Tang X, Huang J. Characteristics of Schistosoma japonicum infection induced IFN-γ and IL-4 co-expressing plasticity Th cells. Immunology 2017; 149:25-34. [PMID: 27242265 DOI: 10.1111/imm.12623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN-γ(+) IL-4(+) CD4(+) T cells in mouse livers. This IFN-γ(+) IL-4(+) cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN-γ(+) IL-4(+) Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN-γ(+) IL-4(+) Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection-induced IFN-γ(+) IL-4(+) cells could express interleukin-2 (IL-2), IL-9, IL-17 and high IL-10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN-γ(+) IL-4(+) plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Dianhui Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Functional Experiment Centre, Guangzhou, China
| | - Hefei Cha
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Lu Li
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Guangzhou, China.,Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Affiliated No. 8 Guangzhou People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Krebs CF, Turner JE, Paust HJ, Kapffer S, Koyro T, Krohn S, Ufer F, Friese MA, Flavell RA, Stockinger B, Steinmetz OM, Stahl RAK, Huber S, Panzer U. Plasticity of Th17 Cells in Autoimmune Kidney Diseases. THE JOURNAL OF IMMUNOLOGY 2016; 197:449-57. [PMID: 27271566 DOI: 10.4049/jimmunol.1501831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
The ability of CD4(+) T cells to differentiate into pathogenic Th1 and Th17 or protective T regulatory cells plays a pivotal role in the pathogenesis of autoimmune diseases. Recent data suggest that CD4(+) T cell subsets display a considerable plasticity. This plasticity seems to be a critical factor for their pathogenicity, but also for the potential transition of pathogenic effector T cells toward a more tolerogenic phenotype. The aim of the current study was to analyze the plasticity of Th17 cells in a mouse model of acute crescentic glomerulonephritis and in a mouse chronic model of lupus nephritis. By transferring in vitro generated, highly purified Th17 cells and by using IL-17A fate reporter mice, we demonstrate that Th17 cells fail to acquire substantial expression of the Th1 and Th2 signature cytokines IFN-γ and IL-13, respectively, or the T regulatory transcription factor Foxp3 throughout the course of renal inflammation. In an attempt to therapeutically break the stability of the Th17 phenotype in acute glomerulonephritis, we subjected nephritic mice to CD3-specific Ab treatment. Indeed, this treatment induced an immunoregulatory phenotype in Th17 cells, which was marked by high expression of IL-10 and attenuated renal tissue damage in acute glomerulonephritis. In summary, we show that Th17 cells display a minimum of plasticity in acute and chronic experimental glomerulonephritis and introduce anti-CD3 treatment as a tool to induce a regulatory phenotype in Th17 cells in the kidney that may be therapeutically exploited.
Collapse
Affiliation(s)
- Christian F Krebs
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Jan-Eric Turner
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hans-Joachim Paust
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sonja Kapffer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Koyro
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sonja Krohn
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Friederike Ufer
- Institute of Neuroimmunology and Multiple Sclerosis, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520
| | - Brigitta Stockinger
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Oliver M Steinmetz
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rolf A K Stahl
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulf Panzer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Stervbo U, Bozzetti C, Baron U, Jürchott K, Meier S, Mälzer JN, Nienen M, Olek S, Rachwalik D, Schulz AR, Neumann A, Babel N, Grützkau A, Thiel A. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets. AGE (DORDRECHT, NETHERLANDS) 2015; 37:93. [PMID: 26324156 PMCID: PMC5005833 DOI: 10.1007/s11357-015-9829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Immunosenescence results from a continuous deterioration of immune responses resulting in a decreased response to vaccines. A well-described age-related alteration of the immune system is the decrease of de novo generation of T and B cells. In addition, the accumulation of memory cells and loss of diversity in antigen specificities resulting from a lifetime of exposure to pathogens has also been described. However, the effect of aging on subsets of γδTCR(+) T cells and Tregs has been poorly described, and the efficacy of the recall response to common persistent infections in the elderly remains obscure. Here, we investigated alterations in the subpopulations of the B and T cells among 24 healthy young (aged 19-30) and 26 healthy elderly (aged 53-67) individuals. The analysis was performed by flow cytometry using freshly collected peripheral blood. γδTCR(+) T cells were overall decreased, while CD4(+)CD8(-) cells among γδTCR(+) T cells were increased in the elderly. Helios(+)Foxp3(+) and Helios(-)Foxp3(+) Treg cells were unaffected with age. Recent thymic emigrants, based on CD31 expression, were decreased among the Helios(+)Foxp3(+), but not the Helios(-)Foxp3(+) cell populations. We observed a decrease in Adenovirus-specific CD4(+) and CD8(+) T cells and an increase in CMV-specific CD4(+) T cells in the elderly. Similarly, INFγ(+)TNFα(+) double-positive cells were decreased among activated T cells after Adenovirus stimulation but increased after CMV stimulation. The data presented here indicate that γδTCR(+) T cells might stabilize B cells, and functional senescence might dominate at higher ages than those studied here.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Cecilia Bozzetti
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Udo Baron
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Meier
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Nora Mälzer
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mikalai Nienen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sven Olek
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Dominika Rachwalik
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Axel Ronald Schulz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Avidan Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
13
|
Coomes SM, Pelly VS, Kannan Y, Okoye IS, Czieso S, Entwistle LJ, Perez-Lloret J, Nikolov N, Potocnik AJ, Biró J, Langhorne J, Wilson MS. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells. PLoS Pathog 2015; 11:e1004994. [PMID: 26147567 PMCID: PMC4493106 DOI: 10.1371/journal.ppat.1004994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1–/– mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells. Approximately a third of the world’s population is burdened with chronic intestinal parasitic helminth infections, causing significant morbidities. Identifying the factors that contribute to the chronicity of infection is therefore essential. Co-infection with other pathogens, which is extremely common in helminth endemic areas, may contribute to the chronicity of helminth infections. In this study, we used a mouse model to test whether the immune responses to an intestinal helminth were impaired following malaria co-infection. These two pathogens induce very different immune responses, which, until recently, were thought to be opposing and non-interchangeable. This study identified that the immune cells required for anti-helminth responses are capable of changing their phenotype and providing protection against malaria. By identifying and blocking the factors that drive this change in phenotype, we can preserve anti-helminth immune responses during co-infection. Our studies provide fresh insight into how immune responses are altered during helminth and malaria co-infection.
Collapse
Affiliation(s)
- Stephanie M. Coomes
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Victoria S. Pelly
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Yashaswini Kannan
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Isobel S. Okoye
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Stephanie Czieso
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Lewis J. Entwistle
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jimena Perez-Lloret
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Nikolay Nikolov
- Division of Systems Biology, The Francis Crick Institute, London, United Kingdom
| | - Alexandre J. Potocnik
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Judit Biró
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, Mill Hill Laboratories, London, United Kingdom
| | - Mark S. Wilson
- Division of Molecular Immunology, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Yang WY, Shao Y, Lopez-Pastrana J, Mai J, Wang H, Yang XF. Pathological conditions re-shape physiological Tregs into pathological Tregs. BURNS & TRAUMA 2015; 3. [PMID: 26623425 PMCID: PMC4662545 DOI: 10.1186/s41038-015-0001-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that "physiological Tregs" have been re-shaped into "pathological Tregs" in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression, would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
Collapse
Affiliation(s)
- William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jietang Mai
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A ; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
15
|
Sanin DE, Prendergast CT, Bourke CD, Mountford AP. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive. PLoS Pathog 2015; 11:e1004841. [PMID: 25974019 PMCID: PMC4431738 DOI: 10.1371/journal.ppat.1004841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. The skin is a major barrier protecting the host from pathogen infection, but is also a site for immune regulation. Using a murine model of repeated percutaneous exposure to infectious Schistosoma mansoni cercariae, we show that, in the skin, CD4+ T cells that do not express markers of conventional regulatory T cells are the main early source of immunoregulatory IL-10 and are functionally suppressive of adaptive immune responses. We demonstrate that the production of regulatory IL-10 in the skin is greatly enhanced after repeated schistosome infection compared to levels present after a single infection and that it limits both neutrophil recruitment and local CD4+ T cell proliferation, thereby preventing excessive inflammation and tissue damage. Initially (day 1), IL-10 producing CD4+ T cells are reactive towards skin commensal bacteria, although over succeeding days they progressively become specific for schistosome antigens. Consequently, our findings highlight a role for early IL-10 produced by dermal CD4+ T cells to mediate immune regulation in advance of later stage chronic infection conventionally associated with the presence of IL-10. Our work provides a mechanistic insight into the triggers of early IL-10 production at barrier sites like the skin, and suggests how tolerance and pathogen clearance might be co-regulated early after exposure to infectious agents.
Collapse
Affiliation(s)
- David E. Sanin
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Catriona T. Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Claire D. Bourke
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Adrian P. Mountford
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Bemark M. Translating transitions - how to decipher peripheral human B cell development. J Biomed Res 2015; 29:264-84. [PMID: 26243514 PMCID: PMC4547376 DOI: 10.7555/jbr.29.20150035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
During the last two decades our understanding of human B cell differentiation has developed considerably. Our understanding of the human B cell compartment has advanced from a point where essentially all assays were based on the presence or not of class-switched antibodies to a level where a substantial diversity is appreciated among the cells involved. Several consecutive transitional stages that newly formed IgM expressing B cells go through after they leave the bone marrow, but before they are fully mature, have been described, and a significant complexity is also acknowledged within the IgM expressing and class-switched memory B cell compartments. It is possible to isolate plasma blasts in blood to follow the formation of plasma cells during immune responses, and the importance and uniqueness of the mucosal IgA system is now much more appreciated. Current data suggest the presence of at least one lineage of human innate-like B cells akin to B1 and/or marginal zone B cells in mice. In addition, regulatory B cells with the ability to produce IL-10 have been identified. Clinically, B cell depletion therapy is used for a broad range of conditions. The ability to define different human B cell subtypes using flow cytometry has therefore started to come into clinical use, but as our understanding of human B cell development further progresses, B cell subtype analysis will be of increasing importance in diagnosis, to measure the effect of immune therapy and to understand the underlying causes for diseases. In this review the diversity of human B cells will be discussed, with special focus on current data regarding their phenotypes and functions.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University hospital, SE 413 45 Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.
| |
Collapse
|
17
|
Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 2015; 5:671. [PMID: 25628621 PMCID: PMC4290673 DOI: 10.3389/fimmu.2014.00671] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
CD4+ T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+ T-cells and CD4+ T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+ T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4+ Th2 cells during infection. We review the interpretations of CD4+ T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells.
Collapse
Affiliation(s)
- Damian Perez-Mazliah
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| |
Collapse
|
18
|
Kunes P, Mandak J, Holubcova Z, Kolackova M, Krejsek J. Actual position of interleukin(IL)-33 in atherosclerosis and heart failure: Great Expectations or En attendant Godot? Perfusion 2014; 30:356-74. [DOI: 10.1177/0267659114562269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerosis has been recognized as an inflammatory/autoimmune disease. The long-standing low-grade inflammation which fuels its development is primarily focused on the components of the vessel wall. Originally, inflammation in atherogenesis was supposed to be driven by the pro-inflammatory Th1 cellular and cytokine immune response. On the basis of accumulating evidence, this view has been re-evaluated to include the Th17/Th1 axis which is shared by most diseases of sterile inflammation. The anti-inflammatory Th2 cellular and cytokine immune response is initiated concomitantly with the former two, the latter dampening their harmful reactions which culminate in full-blown atherosclerosis. Interleukin-33, a novel member of the IL-1 cytokine superfamily, was suggested to take part in the anti-atherogenic response by mediating the Th1-to-Th2 switch of the immune reactions. However, IL-33 is a multifaceted mediator with both pro- and anti-inflammatory activities, also called a “dual factor” or a “Janus face” interleukin. IL-33 occurs both in an extracellular (cytokine-like) and in a nuclear-bound (transcription factor-like) form, each of them performing distinct activities of their own. This review article presents the latest data relevant to IL-33’s role in atherosclerosis and cardiac diseases as perceived by a cardiologist and a cardiac surgeon.
Collapse
Affiliation(s)
- P Kunes
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - J Mandak
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - Z Holubcova
- Department of Cardiac Surgery, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - M Kolackova
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| | - J Krejsek
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O'Shea JJ. Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 2014; 381:279-326. [PMID: 24831346 DOI: 10.1007/82_2014_371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) helper T cells are crucial for autoimmune and infectious diseases; however, the recognition of the many, diverse fates available continues unabated. Precisely what controls specification of helper T cells and preserves phenotypic commitment is currently intensively investigated. In this review, we will discuss the major factors that impact helper T cell fate choice, ranging from cytokines and the microbiome to metabolic control and epigenetic regulation. We will also discuss the technological advances along with the attendant challenges presented by "big data," which allow the understanding of these processes on comprehensive scales.
Collapse
Affiliation(s)
- Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Serre K, Silva-Santos B. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets. Front Immunol 2013; 4:431. [PMID: 24367369 PMCID: PMC3852037 DOI: 10.3389/fimmu.2013.00431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses.
Collapse
Affiliation(s)
- Karine Serre
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisbon , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|