1
|
Lai CY, Hsieh MC, Chou D, Lin KH, Wang HH, Yang PS, Lin TB, Peng HY. The Transcription Factor Tbx5-Dependent Epigenetic Modification Contributes to Neuropathic Allodynia by Activating TRPV1 Expression in the Dorsal Horn. J Neurosci 2024; 44:e0497242024. [PMID: 39174351 PMCID: PMC11426380 DOI: 10.1523/jneurosci.0497-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function. Moreover, SNL-induced Tbx5 upregulation promoted the recruitment and interaction of GATA4 and Brd4 by enhancing its binding activity to H3K9Ac, which was enriched at the Trpv1 promotor, leading to an increase in TRPV1 transcription and the development of neuropathic allodynia. In addition, nerve injury-induced expression of Fbxo3, which abates Fbxl2-dependent Tbx5 ubiquitination, promoted the subsequent Tbx5-dependent epigenetic modification of TRPV1 expression during SNL-induced neuropathic allodynia. Collectively, our findings indicated that spinal Tbx5-dependent TRPV1 transcription signaling contributes to the development of neuropathic allodynia via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic allodynia by targeting Tbx5.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, New Taipei City, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Tzer-Bin Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsien-Yu Peng
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
2
|
Zhang Y, Guo J, Tang C, Xu K, Li Z, Wang C. Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123938. [PMID: 38588970 DOI: 10.1016/j.envpol.2024.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
3
|
Coppola U, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584759. [PMID: 38558972 PMCID: PMC10980076 DOI: 10.1101/2024.03.13.584759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Developmental Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Jones AA, Willoner Jr. T, Mishoe Hernandez L, DeLaurier A. Exposure to valproic acid (VPA) reproduces hdac1 loss of function phenotypes in zebrafish. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000908. [PMID: 37829572 PMCID: PMC10565572 DOI: 10.17912/micropub.biology.000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Histone deacetylases are enzymes that remove acetyl groups from histone tails and are understood to act as repressors of transcriptional activity. Hdac1 has been previously shown to function in eye, pectoral fin, heart, liver, and pharyngeal skeletal development. We show that high doses of Valproic Acid (VPA) reproduce the hdac1 phenotype. We identify tbx5 genes as potential targets of Hdac1 in eye, pectoral fin, and heart development. Using timed exposures, we show that skeletal structures in the pharyngeal arches are impacted by VPA between 24-36 hours post-fertilization, indicating a role for Hdac1 during post-migration patterning, differentiation, or proliferation of cranial neural crest cells.
Collapse
Affiliation(s)
- Alec A. Jones
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Terence Willoner Jr.
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Lacie Mishoe Hernandez
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - April DeLaurier
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| |
Collapse
|
5
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Zhang Y, Chen Y, Xu K, Xia S, Aihaiti A, Zhu M, Wang C. Exposure of embryos to phenanthrene impacts the cardiac development in F1 zebrafish larvae and potential reasons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52369-52379. [PMID: 36840880 DOI: 10.1007/s11356-023-26165-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To explore the impact of embryonic exposure to phenanthrene (Phe), a typical tricyclic polycyclic aromatic hydrocarbon, on cardiac development in next generation, fertilized zebrafish embryos were exposed to 0.05, 0.5, 5 and 50 nM Phe for 96 h, and then transferred to clear water and raised to adulthood. The cardiac development in F1 larvae generated by adult females or males mated with unexposed zebrafish was assessed. Malformation and dysfunction of the heart, such as increased heart rate, arrhythmia, enlarged heart and abnormal contraction, were shown in both paternal and maternal F1 larvae. A greater impact on the distance between the sinus venosus and bulbus arteriosus was exhibited in maternal F1 larvae, while paternal F1 larvae displayed a more severe impact on heart rate and arrhythmia. The transcription of genes related to cardiac development was disturbed in F1 larvae. DNA methylation levels in the promoter of some genes were associated with their transcription. The expression of acetylated histone H3K9Ac and H3K14Ac in maternal F1 larvae was no significantly changed, but was significantly downregulated in paternal F1 larvae, which might be associated with the downregulated transcription of tbx5. These results indicate that exposure to Phe during embryogenesis adversely affects cardiac development in F1 generation, and the effects and toxic mechanisms showed sex-linked hereditary differences, highlighting the risk of Phe exposure in early life to heart health in next generation.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ailifeire Aihaiti
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
7
|
Mu X, Qi S, Liu J, Wang H, Yuan L, Qian L, Li T, Huang Y, Wang C, Guo Y, Li Y. Environmental level of bisphenol F induced reproductive toxicity toward zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:149992. [PMID: 34844315 DOI: 10.1016/j.scitotenv.2021.149992] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol F (BPF), as an important bisphenol A substitute, is being increasingly used for industrial production. Here we performed large scale fecundity test for zebrafish that are continuous exposed to environmental levels of BPF (0.5, 5 and 50 μg/L) from embryonic stage, and identified suppressed spawning capacity of females and reduced fertility rate of males in adulthood. Although pathological change is only observed in female gonads, the transcriptional change in the hypothalamic-pituitary-gonad axis genes occurred in the gonads of both female and male fish at 150 days post-exposure. F1 generation embryos showed abnormal developmental outcomes including decreased heart rate, reduced body length, and inhibition of spontaneous movement after parental exposure to BPF. RNA-sequencing showed that the genes involved in skeletal/cardiac muscle development were significantly altered in F1 embryos spawned by BPF-treated zebrafish. The advanced pathway analysis showed that cancer and tumour formation were the most enriched pathways in the offspring of 0.5 and 5.0 μg/L groups; organismal development and cardiovascular system development were mainly affected after parental exposure to 50 μg/L of BPF; these changes were mediated by several involved regulators such as GATA4, MYF6, and MEF2C. These findings confirmed that long-term exposure to BPF at environment relevant concentration would result in reproductive toxicity among zebrafish indicating the urgent demand for the control of BPA substitutes.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China.
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Hui Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Le Qian
- College of Sciences, China Agricultural University, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, China
| | - Yuanming Guo
- Zhejiang Marine Fisheries Research Institute, China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, China
| |
Collapse
|
8
|
Anderson EB, Mao Q, Ho RK. Tbx5a and Tbx5b paralogues act in combination to control separate vectors of migration in the fin field of zebrafish. Dev Biol 2022; 481:201-214. [PMID: 34756968 PMCID: PMC8665139 DOI: 10.1016/j.ydbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023]
Abstract
The T-box containing family member, TBX5, has been shown to play important functional roles in the pectoral appendages of a variety of vertebrate species. While a single TBX5 gene exists in all tetrapods studied to date, the zebrafish genome retains two paralogues, designated as tbx5a and tbx5b, resulting from a whole genome duplication in the teleost lineage. Zebrafish deficient in tbx5a lack pectoral fin buds, whereas zebrafish deficient in tbx5b exhibit misshapen pectoral fins, showing that both paralogues function in fin development. The mesenchymal cells of the limb/fin bud are derived from the Lateral Plate Mesoderm (LPM). Previous fate mapping work in zebrafish has shown that wildtype (wt) fin field cells are initially located adjacent to somites (s)1-4. The wt fin field cells migrate in opposing diagonal directions placing the limb bud between s2-3 and lateral to the main body. To better characterize tbx5 paralogue functions in zebrafish, time-lapse analyses of the migrations of fin bud precursors under conditions of tbx5a knock-down, tbx5b knock-down and double-knock-down were performed. Our data suggest that zebrafish tbx5a and tbx5b have functionally separated migration direction vectors, that when combined recapitulate the migration of the wt fin field. We and others have shown that loss of Tbx5a function abolishes an fgf24 signaling cue resulting in fin field cells failing to converge in an Antero-Posterior (AP) direction and migrating only in a mediolateral (ML) direction. We show here that loss of Tbx5b function affects initial ML directed movements so that fin field cells fail to migrate laterally but continue to converge along the AP axis. Furthermore, fin field cells in the double Tbx5a/Tbx5b knock-down zebrafish do not engage in directed migrations along either the ML or AP axis. Therefore, these two paralogues may be acting to instruct separate vectors of fin field migration in order to direct proper fin bud formation.
Collapse
Affiliation(s)
- Erin Boyle Anderson
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL
| | - Qiyan Mao
- Committee on Development, Regeneration and Stem Cell Biology; University of Chicago, Chicago, IL,present address: Universite de Aix-Marseille; Marseille, France
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, Yuan W, Meng Y, Lu H. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105870. [PMID: 34107429 DOI: 10.1016/j.aquatox.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Pyridaben is a widely used acaricide in agriculture and reaches a high concentration (97 μg/L) in paddy water for a short time when pyridaben was applied to rice. However, its toxicity to aquatic organisms is still poorly understood. Therefore, we assessed the pyridaben cardiotoxicity to aquatic organisms using the zebrafish (Danio rerio) model. We found that pyridaben is highly toxic to aquatic organisms, and LC50 of pyridaben for zebrafish at 72 hpf was 100.6 μg/L. Pyridaben caused severe cardiac malformations and functional abnormalities. Morphologic abnormity included severe pericardial edema, cardiomegaly, decreased cardiomyocytes, thinning of the myocardial layer, linear heart, and increased the distance between sinus venous and bulbus arteriosus (SV-BA). Functional failure included arrhythmia, heart failure, and reduced pumping efficiency. The genes involved in heart development, WNT signaling, BMP signaling, ATPase, and cardiac troponin C were abnormally expressed in the pyridaben treatment group. Exposure to pyridaben increased oxidative stress and induced cell apoptosis. The above causes may lead to cardiac toxicity. The results suggest that pyridaben exposure induced elevated oxidative stress through the WNT signaling pathway, which in turn led to apoptosis in the heart and cardiotoxicity. Besides, pyridaben exposure at the critical stage of cardiac looping (24-36 hpf) resulted in the greatest cardiotoxicity. The chorion reduced the entry of pyridaben and protected zebrafish embryos, resulting in cardiotoxicity second only to the stage of cardiac looping. The study should provide valuable information that pyridaben exposure causes cardiotoxicity in zebrafish embryos and have potential health risks for other aquatic organisms and humans.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhou Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
10
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
11
|
Anterior lateral plate mesoderm gives rise to multiple tissues and requires tbx5a function in left-right asymmetry, migration dynamics, and cell specification of late-addition cardiac cells. Dev Biol 2021; 472:52-66. [PMID: 33482174 DOI: 10.1016/j.ydbio.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
In this study, we elucidate a single cell resolution fate map in the zebrafish in a sub-section of the anterior Lateral Plate Mesoderm (aLPM) at 18 hpf. Our results show that this tissue is not organized into segregated regions but gives rise to intermingled pericardial sac, peritoneum, pharyngeal arch and cardiac precursors. We further report upon asymmetrical contributions of lateral aLPM-derived heart precursors-specifically that twice as many heart precursors arise from the right side versus the left side of the embryo. Cell tracking analyses and large-scale cell labeling of the lateral aLPM corroborate these differences and show that the observed asymmetries are dependent upon Tbx5a expression. Previously, it was shown that cardiac looping was affected in Tbx5a knock-down and knock-out zebrafish (Garrity et al., 2002; Parrie et al., 2013); our present data also implicate tbx5a function in cell specification, establishment and maintenance of cardiac left-right asymmetry.
Collapse
|
12
|
Wei Y, Meng Y, Huang Y, Liu Z, Zhong K, Ma J, Zhang W, Li Y, Lu H. Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. CHEMOSPHERE 2021; 263:127860. [PMID: 32829219 DOI: 10.1016/j.chemosphere.2020.127860] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Iprodione is a highly effective broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Pesticides often flow into watercourses due to rainfall, causing toxicity in non-target organisms, eventually entering the food chain. However, little information is available in the current literature about the toxicity of iprodione to cardiac development. The present study aimed to investigate the effect of iprodione on early embryonic development and its cardiotoxicity in aquatic animals, using zebrafish as a model. At 6-72 h post-fertilization (hpf), zebrafish were exposed to concentrations of 15 mg/L, 20 mg/L, and 25 mg/L (72 h-LC50 = 21.15 mg/L). We found that exposure to iprodione resulted in yolk edema, increased mortality, and shortened body length in zebrafish embryos. In addition, iprodione was also found to induce edema in the pericardium of zebrafish, decrease heart rate, and cause the failure of cardiac cyclization. Exposure to iprodione significantly increased the accumulation of ROS and altered the activity of antioxidant enzymes (MDA, CAT) in zebrafish embryos. Moreover, iprodione induced changes in the transcription levels of heart developmental-related genes and apoptosis-related genes. In addition, Astaxanthin (antioxidant) can partially rescue the toxic phenotype caused by iprodione. Apoptosis-related genes and heart developmental-related genes were rescued after astaxanazin treatment. The results suggest that iprodione induces developmental and cardiac toxicity in zebrafish embryos, which provides new evidence of the toxicity of iprodione to organisms in aquatic ecosystems and assessing human health risks.
Collapse
Affiliation(s)
- You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Weixin Zhang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
13
|
Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. J Dev Biol 2020; 8:jdb8040022. [PMID: 33020460 PMCID: PMC7712675 DOI: 10.3390/jdb8040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.
Collapse
|
14
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, Li Y, Lin X. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:113876. [PMID: 32806432 DOI: 10.1016/j.envpol.2019.113876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiangming Lin
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Enny A, Flaherty K, Mori S, Turner N, Nakamura T. Developmental constraints on fin diversity. Dev Growth Differ 2020; 62:311-325. [PMID: 32396685 PMCID: PMC7383993 DOI: 10.1111/dgd.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
The fish fin is a breathtaking repository full of evolutionary diversity, novelty, and convergence. Over 500 million years, the adaptation to novel habitats has provided landscapes of fin diversity. Although comparative anatomy of evolutionarily divergent patterns over centuries has highlighted the fundamental architectures and evolutionary trends of fins, including convergent evolution, the developmental constraints on fin evolution, which bias the evolutionary trajectories of fin morphology, largely remain elusive. Here, we review the evolutionary history, developmental mechanisms, and evolutionary underpinnings of paired fins, illuminating possible developmental constraints on fin evolution. Our compilation of anatomical and genetic knowledge of fin development sheds light on the canalized and the unpredictable aspects of fin shape in evolution. Leveraged by an arsenal of genomic and genetic tools within the working arena of spectacular fin diversity, evolutionary developmental biology embarks on the establishment of conceptual framework for developmental constraints, previously enigmatic properties of evolution.
Collapse
Affiliation(s)
- Alyssa Enny
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Kathleen Flaherty
- Rutgers Animal CareRutgers the State University of New JerseyPiscatawayNJUSA
| | - Shunsuke Mori
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Natalie Turner
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Tetsuya Nakamura
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
16
|
Boyle Anderson EAT, Ho RK. A transcriptomics analysis of the Tbx5 paralogues in zebrafish. PLoS One 2018; 13:e0208766. [PMID: 30532148 PMCID: PMC6287840 DOI: 10.1371/journal.pone.0208766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
TBX5 is essential for limb and heart development. Mutations in TBX5 are associated with Holt-Oram syndrome in humans. Due to the teleost specific genome duplication, zebrafish have two copies of TBX5: tbx5a and tbx5b. Both of these genes are expressed in regions of the lateral plate mesoderm and retina. In this study, we perform comparative RNA sequencing analysis on zebrafish embryos during the stages of lateral plate mesoderm migration. This work shows that knockdown of the Tbx5 paralogues results in altered gene expression in many tissues outside of the lateral plate mesoderm, especially in the somitic mesoderm and the intermediate mesoderm. Specifically, knockdown of tbx5b results in changes in somite size, in the differentiation of vasculature progenitors and in later patterning of trunk blood vessels.
Collapse
Affiliation(s)
- Erin A. T. Boyle Anderson
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Robert K. Ho
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Dev Biol 2018; 441:272-284. [PMID: 29940142 PMCID: PMC6142174 DOI: 10.1016/j.ydbio.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans. Differences in heart size, shape and tissue structure between Astyanax populations. Furthermore, differences in cardiac melanophore and adipocyte numbers. Heart size and shape differences are apparent early in development. Surface and Pachón show differences in heart rate during development and adulthood. F1 hybrids show uncoupling of features observed in surface and Pachón populations.
Collapse
|
18
|
Sánchez-Iranzo H, Galardi-Castilla M, Minguillón C, Sanz-Morejón A, González-Rosa JM, Felker A, Ernst A, Guzmán-Martínez G, Mosimann C, Mercader N. Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat Commun 2018; 9:428. [PMID: 29382818 PMCID: PMC5789846 DOI: 10.1038/s41467-017-02650-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
Abstract
During development, mesodermal progenitors from the first heart field (FHF) form a primitive cardiac tube, to which progenitors from the second heart field (SHF) are added. The contribution of FHF and SHF progenitors to the adult zebrafish heart has not been studied to date. Here we find, using genetic tbx5a lineage tracing tools, that the ventricular myocardium in the adult zebrafish is mainly derived from tbx5a+ cells, with a small contribution from tbx5a- SHF progenitors. Notably, ablation of ventricular tbx5a+-derived cardiomyocytes in the embryo is compensated by expansion of SHF-derived cells. In the adult, tbx5a expression is restricted to the trabeculae and excluded from the outer cortical layer. tbx5a-lineage tracing revealed that trabecular cardiomyocytes can switch their fate and differentiate into cortical myocardium during adult heart regeneration. We conclude that a high degree of cardiomyocyte cell fate plasticity contributes to efficient regeneration.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - María Galardi-Castilla
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Carolina Minguillón
- CSIC-Institut de Biologia Molecular de Barcelona Parc Científic de Barcelona C/ Baldiri i Reixac, 10 08028, Barcelona, Spain
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, 08005, Barcelona, Spain
| | - Andrés Sanz-Morejón
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Institute of Anatomy, University of Bern, 3000, Bern 9, Switzerland
| | - Juan Manuel González-Rosa
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, 8057, Zürich, Switzerland
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3000, Bern 9, Switzerland
| | | | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, 8057, Zürich, Switzerland
| | - Nadia Mercader
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- Institute of Anatomy, University of Bern, 3000, Bern 9, Switzerland.
| |
Collapse
|
19
|
Wang F, Liu D, Zhang RR, Yu LW, Zhao JY, Yang XY, Jiang SS, Ma D, Qiao B, Zhang F, Jin L, Gui YH, Wang HY. A TBX5 3'UTR variant increases the risk of congenital heart disease in the Han Chinese population. Cell Discov 2017; 3:17026. [PMID: 28761722 PMCID: PMC5527299 DOI: 10.1038/celldisc.2017.26] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
TBX5 is a vital transcription factor involved in cardiac development in a dosage-dependent manner. But little is known about the potential association of TBX5 3′ untranslated region (UTR) variations with congenital cardiac malformations. This study aimed to investigate the relationship between TBX5 3′UTR variants and risk for congenital heart disease (CHD) susceptibility in two Han Chinese populations, and to reveal its molecular mechanism. The relationship between TBX5 3′UTR variants and CHD susceptibility was examined in 1 177 CHD patients and 990 healthy controls in two independent case–control studies. Variant rs6489956 C>T was found to be associated with increased CHD susceptibility in both cohorts. The combined CHD risk for the CT and TT genotype carriers was 1.83 times higher than that of CC genotype, while the risk for CT or TT genotype was 1.94 times and 2.31 times higher than that of CC carriers, respectively. Quantitative real-time PCR and western blot analysis showed that T allele carriers exhibited reduced TBX5 mRNA and protein levels in CHDs tissues. Compared with C allele, T allele showed increased binding affinity to miR-9 and miR-30a in both luciferase assays and surface plasmon resonance analysis. Functional analysis confirmed that miR-9 and miR-30a downregulated TBX5 expression at the transcriptional and translational levels, respectively. The assays in zebrafish model were in support of the interaction of miR-9/30a and TBX5 3′UTR (C and T allele). We concluded that TBX5 3′UTR variant rs6489956 increased susceptibility of CHD in the Han Chinese population because it changes the binding affinity of two target miRNAs that specifically mediate TBX5 expression.
Collapse
Affiliation(s)
- Feng Wang
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| | - Ran-Ran Zhang
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Li-Wei Yu
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue-Yan Yang
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Song-Shan Jiang
- The State Key laboratory for Biocontrol and MOE Key Laboratory of Gene Engineering, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Duan Ma
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Qiao
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, Jinan, China
| | - Feng Zhang
- The Obstetrics & Gynecology Hospital, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Li Jin
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yong-Hao Gui
- Children's Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai, China
| | - Hong-Yan Wang
- The Obstetrics & Gynecology Hospital, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction & Development, Fudan University, Shanghai, China
| |
Collapse
|
20
|
D'Aurizio R, Russo F, Chiavacci E, Baumgart M, Groth M, D'Onofrio M, Arisi I, Rainaldi G, Pitto L, Pellegrini M. Discovering miRNA Regulatory Networks in Holt-Oram Syndrome Using a Zebrafish Model. Front Bioeng Biotechnol 2016; 4:60. [PMID: 27471727 PMCID: PMC4943955 DOI: 10.3389/fbioe.2016.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in the post-transcriptional regulation of gene expression. miRNAs are involved in the regulation of many biological processes such as differentiation, apoptosis, and cell proliferation. miRNAs are expressed in embryonic, postnatal, and adult hearts, and they have a key role in the regulation of gene expression during cardiovascular development and disease. Aberrant expression of miRNAs is associated with abnormal cardiac cell differentiation and dysfunction. Tbx5 is a member of the T-box gene family, which acts as transcription factor involved in the vertebrate heart development. Alteration of Tbx5 level affects the expression of hundreds of genes. Haploinsufficiency and gene duplication of Tbx5 are at the basis of the cardiac abnormalities associated with Holt–Oram syndrome (HOS). Recent data indicate that miRNAs might be an important part of the regulatory circuit through which Tbx5 controls heart development. Using high-throughput technologies, we characterized genome-widely the miRNA and mRNA expression profiles in WT- and Tbx5-depleted zebrafish embryos at two crucial developmental time points, 24 and 48 h post fertilization (hpf). We found that several miRNAs, which are potential effectors of Tbx5, are differentially expressed; some of them are already known to be involved in cardiac development and functions, such as miR-30, miR-34, miR-190, and miR-21. We performed an integrated analysis of miRNA expression data with gene expression profiles to refine computational target prediction approaches by means of the inversely correlation of miRNA–mRNA expressions, and we highlighted targets, which have roles in cardiac contractility, cardiomyocyte proliferation/apoptosis, and morphogenesis, crucial functions regulated by Tbx5. This approach allowed to discover complex regulatory circuits involving novel miRNAs and protein coding genes not considered before in the HOS such as miR-34a and miR-30 and their targets.
Collapse
Affiliation(s)
- Romina D'Aurizio
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), Institute of Clinical Physiology (IFC), National Research Council (CNR) , Pisa , Italy
| | - Francesco Russo
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy; Department of Computer Science, University of Pisa, Pisa, Italy
| | - Elena Chiavacci
- Institute of Clinical Physiology (IFC), National Research Council (CNR) , Pisa , Italy
| | - Mario Baumgart
- Leibniz Institute on Ageing, Fritz Lipmann Institute (FLI) , Jena , Germany
| | - Marco Groth
- Leibniz Institute on Ageing, Fritz Lipmann Institute (FLI) , Jena , Germany
| | - Mara D'Onofrio
- Genomics Facility, Fondazione EBRI Rita Levi-Montalcini , Roma , Italy
| | - Ivan Arisi
- Genomics Facility, Fondazione EBRI Rita Levi-Montalcini , Roma , Italy
| | - Giuseppe Rainaldi
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), Institute of Clinical Physiology (IFC), National Research Council (CNR) , Pisa , Italy
| | - Letizia Pitto
- Institute of Clinical Physiology (IFC), National Research Council (CNR) , Pisa , Italy
| | - Marco Pellegrini
- Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), Institute of Clinical Physiology (IFC), National Research Council (CNR) , Pisa , Italy
| |
Collapse
|
21
|
Matrone G, Wilson KS, Mullins JJ, Tucker CS, Denvir MA. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation 2015; 89:117-27. [PMID: 26095446 DOI: 10.1016/j.diff.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022]
Abstract
Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.
Collapse
Affiliation(s)
- Gianfranco Matrone
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Kathryn S Wilson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Carl S Tucker
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Martin A Denvir
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|