1
|
Bian J, Shao R, Li J, Zhu J, Shao A, Liu C, Lu LV, Pan H, Shi Y, Fang N. Mechanism research of non-coding RNA in immune checkpoint inhibitors therapy. Cancer Sci 2024; 115:3520-3531. [PMID: 39136293 PMCID: PMC11531961 DOI: 10.1111/cas.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 11/05/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems.
Collapse
Affiliation(s)
- Jie Bian
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Rui Shao
- Department of PathologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Juan Li
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Jing‐Feng Zhu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Ai‐Zhong Shao
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Chao Liu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - L. V. Lu
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Hui‐Wen Pan
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Yi‐Jun Shi
- Department of Thoracic and Cardiovascular SurgeryThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| | - Na Fang
- Department of OncologyThe Affiliated People's Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
2
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
3
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
5
|
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol 2024; 81:102502. [PMID: 39029379 DOI: 10.1016/j.cbpa.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - M S Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - A Serrano
- Francisco de Vitoria University, Ctra. M-515 Pozuelo-Majadahonda, Km. 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain. https://twitter.com/Antonation2002
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
6
|
Shi X, Xiao B, Feng R. Identification of a glycolysis-related miRNA Signature for Predicting Breast cancer Survival. Mol Biotechnol 2024; 66:1988-2006. [PMID: 37535159 DOI: 10.1007/s12033-023-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Breast cancer (BC) is a common type of cancer and has a poor prognosis. In this study, we collected the mRNA and miRNA expression profiles of BC patients were obtained from The Cancer Genome Atlas (TCGA) to explore a novel prognostic strategy for BC patients using bioinformatics tools. We found that six glycolysis-related miRNAs (GRmiRs, including hsa-mir-1247, hsa-mir148b, hsa-mir-133a-2, has-mir-1307, hsa-mir-195 and hsa-mir-1258) were correlated with prognosis of BC samples. The risk score model was established based on 6 prognosis-associated GRmiRs. The outcome of high risk group was significantly poorer. Cox regression analysis showed that risk score was an independent prognostic factor. Differentially expressed genes identified between high and low risk groups were mainly enriched in inflammation and immune-related signaling pathways. The proportion of infiltration of 12 kinds of immune cells in high and low risk groups were significantly different. Risk score was closely associated with many immune indexes. Multiple DEGRGs and miRNAs were associated with drugs. In conclusion, glycolysis-related miRNA signature effectively predicts BC prognosis.
Collapse
Affiliation(s)
- Xuejing Shi
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China
| | - Baoqiang Xiao
- Department of General Surgery, Tianjin Hospital, Tianjin, Hexi District, 300211, P.R. China
| | - Rui Feng
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China.
| |
Collapse
|
7
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
8
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
9
|
Mitsuyama Y, Matsumoto H, Togami Y, Oda S, Onishi S, Yoshimura J, Murtatsu A, Ito H, Ogura H, Okuzaki D, Oda J. T cell dysfunction in elderly ARDS patients based on miRNA and mRNA integration analysis. Front Immunol 2024; 15:1368446. [PMID: 38571958 PMCID: PMC10987699 DOI: 10.3389/fimmu.2024.1368446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is respiratory failure that commonly occurs in critically ill patients, and the molecular mechanisms underlying its pathogenesis and severity are poorly understood. We evaluated mRNA and miRNA in patients with ARDS and elucidated the pathogenesis of ARDS after performing mRNA and miRNA integration analysis. Methods In this single-center, prospective, observational clinical study of patients with ARDS, peripheral blood of each patient was collected within 24 hours of admission. Sequencing of mRNA and miRNA was performed using whole blood from the ARDS patients and healthy donors. Results Thirty-four ARDS patients were compared with 15 healthy donors. Compared with the healthy donors, 1233 mRNAs and 6 miRNAs were upregulated and 1580 mRNAs and 13 miRNAs were downregulated in the ARDS patients. For both mRNA and miRNA-targeted mRNA, canonical pathway analysis showed that programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) cancer immunotherapy pathway was most activated and the Th2 pathway was most suppressed. For mRNA, the Th1 pathway was most suppressed. miR-149-3p and several miRNAs were identified as upstream regulators. Conclusion miRNAs regulated the PD-1 and PD-L1 cancer immunotherapy pathway and Th2 pathway through miRNA interference action of mRNA. Integrated analysis of mRNAs and miRNAs showed that T cells were dysfunctional in ARDS patients.
Collapse
Affiliation(s)
- Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Togami
- Department of Acute Medicine and Critical Care Medical Center, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Sayaka Oda
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Arisa Murtatsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Alotaibi FM, Min WP, Koropatnick J. CD5 blockade, a novel immune checkpoint inhibitor, enhances T cell anti-tumour immunity and delays tumour growth in mice harbouring poorly immunogenic 4T1 breast tumour homografts. Front Immunol 2024; 15:1256766. [PMID: 38487537 PMCID: PMC10937348 DOI: 10.3389/fimmu.2024.1256766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
CD5 is a member of the scavenger receptor cysteine-rich superfamily that is expressed on T cells and a subset of B cells (B1a) cell and can regulate the T cell receptor signaling pathway. Blocking CD5 function may have therapeutic potential in treatment of cancer by enhancing cytotoxic T lymphocyte recognition and ablation of tumour cells. The effect of administering an anti-CD5 antibody to block or reduce CD5 function as an immune checkpoint blockade to enhance T cell anti-tumour activation and function in vivo has not been explored. Here we challenged mice with poorly immunogenic 4T1 breast tumour cells and tested whether treatment with anti-CD5 monoclonal antibodies (MAb) in vivo could enhance non-malignant T cell anti-tumour immunity and reduce tumour growth. Treatment with anti-CD5 MAb resulted in an increased fraction of CD8+ T cells compared to CD4+ T cell in draining lymph nodes and the tumour microenvironment. In addition, it increased activation and effector function of T cells isolated from spleens, draining lymph nodes, and 4T1 tumours. Furthermore, tumour growth was delayed in mice treated with anti-CD5 MAb. These data suggest that use of anti-CD5 MAb as an immune checkpoint blockade can both enhance activation of T cells in response to poorly immunogenic antigens and reduce tumour growth in vivo. Exploration of anti-CD5 therapies in treatment of cancer, alone and in combination with other immune therapeutic drugs, is warranted.
Collapse
Affiliation(s)
- Faizah M. Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Wei-Ping Min
- Department of Oncology, The University of Western Ontario, London, ON, Canada
| | - James Koropatnick
- Department of Oncology, The University of Western Ontario, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Cancer Research Laboratory Program, London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
12
|
Leonard S, Karabegović I, Ikram MA, Ahmad S, Ghanbari M. Plasma circulating microRNAs associated with blood-based immune markers: a population-based study. Clin Exp Immunol 2024; 215:251-260. [PMID: 37950349 PMCID: PMC10876108 DOI: 10.1093/cei/uxad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and different immune-related pathways. There is a great interest in identifying miRNAs involved in immune cell development and function to elucidate the biological mechanisms underlying the immune system, its regulation, and disease. In this study, we aimed to investigate the association of circulating miRNAs with blood cell compositions and blood-based immune markers. Circulating levels of 2083 miRNAs were measured by RNA-sequencing in plasma samples of 1999 participants from the population-based Rotterdam Study collected between 2002 and 2005. Full blood count measurements were performed for absolute granulocyte, platelet, lymphocyte, monocyte, white, and red blood cell counts. Multivariate analyses were performed to test the association of miRNAs with blood cell compositions and immune markers. We evaluated the overlap between predicted target genes of candidate miRNAs associated with immune markers and genes determining the blood immune response markers. First, principal component regression analysis showed that plasma levels of circulating miRNAs were significantly associated with red blood cell, granulocyte, and lymphocyte counts. Second, the cross-sectional analysis identified 210 miRNAs significantly associated (P < 2.82 × 10-5) with neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index. Further genetic look-ups showed that target genes of seven identified miRNAs (miR-1233-3p, miR-149-3p, miR-150-5p, miR-342-3p, miR-34b-3p, miR-4644, and miR-7106-5p) were also previously linked to NLR and PLR markers. Collectively, our study suggests several circulating miRNAs that regulate the innate and adaptive immune systems, providing insight into the pathogenesis of miRNAs in immune-related diseases and paving the way for future clinical applications.
Collapse
Affiliation(s)
- Samantha Leonard
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Freen-van Heeren JJ. Posttranscriptional Events Orchestrate Immune Homeostasis of CD8 + T Cells. Methods Mol Biol 2024; 2782:65-80. [PMID: 38622392 DOI: 10.1007/978-1-0716-3754-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Maintaining immune homeostasis is instrumental for host health. Immune cells, such as T cells, are instrumental for the eradication of pathogenic bacteria, fungi and viruses. Furthermore, T cells also play a major role in the fight against cancer. Through the formation of immunological memory, a pool of antigen-experienced T cells remains in the body to rapidly protect the host upon reinfection or retransformation. In order to perform their protective function, T cells produce cytolytic molecules, such as granzymes and perforin, and cytokines such as interferon γ and tumor necrosis factor α. Recently, it has become evident that posttranscriptional regulatory events dictate the kinetics and magnitude of cytokine production by murine and human CD8+ T cells. Here, the recent literature regarding the role posttranscriptional regulation plays in maintaining immune homeostasis of antigen-experienced CD8+ T cells is reviewed.
Collapse
|
14
|
Hernández-Aceves JA, Cervantes-Torres J, Torres-García D, Zuñiga-Flores FJ, Patiño-Chávez OJ, Peña Agudelo JA, Aguayo-Flores JE, Garfias Y, Montero-León L, Romero-Romero L, Pérez-Torres A, Fragoso G, Sciutto E. GK-1 effectively reduces angiogenesis and prevents T cell exhaustion in a breast cancer murine experimental model. Cancer Immunol Immunother 2023; 72:3825-3838. [PMID: 37736849 PMCID: PMC10576684 DOI: 10.1007/s00262-023-03538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Torres-García
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco J Zuñiga-Flores
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Yonathan Garfias
- Unidad de Investigación, Conde de Valenciana, Instituto de Oftalmología, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Montero-León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Romero-Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
15
|
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumor Microenvironment. Noncoding RNA 2023; 9:52. [PMID: 37736898 PMCID: PMC10514839 DOI: 10.3390/ncrna9050052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of molecules critical for cell development and growth regulation. They are key regulators of important cellular pathways in the tumor microenvironment. To analyze ncRNAs in the tumor microenvironment, the use of RNA sequencing technology has revolutionized the field. The advancement of this technique has broadened our understanding of the molecular biology of cancer, presenting abundant possibilities for the exploration of novel biomarkers for cancer treatment. In this review, we will summarize recent achievements in understanding the complex role of ncRNA in the tumor microenvironment, we will report the latest studies on the tumor microenvironment using RNA sequencing, and we will discuss the potential use of ncRNAs as therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| |
Collapse
|
16
|
Luo Z, Xu J, Xu D, Xu J, Zhou R, Deng K, Chen Z, Zou F, Yao L, Hu Y. Mechanism of immune escape mediated by receptor tyrosine kinase KIT in thyroid cancer. Immun Inflamm Dis 2023; 11:e851. [PMID: 37506147 PMCID: PMC10336654 DOI: 10.1002/iid3.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/16/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Thyroid cancer (TC) is one of the fastest-growing malignant tumors. This study sought to explore the mechanism of immune escape mediated by receptor tyrosine kinase (KIT) in TC. METHODS The expression microarray of TC was acquired through the GEO database, and the difference analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. KIT levels in TC cell lines (K1/SW579/BCPAP) and human normal thyroid cells were detected using reverse transcription quantitative polymerase chain reaction and western blot analysis. TC cells were transfected with overexpressed (oe)-KIT and CD8+ T cells were cocultured with SW579 cells. Subsequently, cell proliferation, migration, and invasion abilities, CD8+ T cell proliferation, cytokine levels (interferon-γ [IFN-γ]/tumor necrosis factor-α [TNF-α]) were determined using colony formation assay, Transwell assays, flow cytometry, and enzyme-linked immunosorbent assay. The phosphorylation of MAPK pathway-related protein (ERK) was measured by western blot analysis. After transfection with oe-KIT, cells were treated with anisomycin (an activator of the MAPK pathway), and the protein levels of p-ERK/ERK and programmed death-ligand 1 (PD-L1) were detected. RESULTS Differentially expressed genes (N = 2472) were obtained from the GEO database. KIT was reduced in TC samples and lower in tumor cells than those in normal cells. Overexpression of KIT inhibited immune escape of TC cells. Specifically, the proliferation, migration, and invasion abilities of TC cells were lowered, the proliferation level of CD8+ T cells was elevated, and IFN-γ and TNF-α levels were increased. KIT inhibited the activation of the MAPK pathway in TC cells and downregulated PD-L1. CONCLUSION KIT suppressed immune escape of TC by blocking the activation of the MAPK pathway and downregulating PD-L1.
Collapse
Affiliation(s)
- Zhen Luo
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jin Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Dayong Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jiaojiao Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Rongjun Zhou
- Department of SurgeryChangsha Hospital for Maternal and Child Health CareChangshaHunanChina
| | - Keping Deng
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Zheng Chen
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Fang Zou
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Libo Yao
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Yuqin Hu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| |
Collapse
|
17
|
Zhai B, Wu J, Li T. Fibroblast Growth Factor 11 Enables Tumor Cell Immune Escape by Promoting T Cell Exhaustion and Predicts Poor Prognosis in Patients with Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9303632. [PMID: 37250453 PMCID: PMC10219772 DOI: 10.1155/2023/9303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Fibroblast growth factor 11 (FGF11) accelerates tumor proliferation in a variety of cancer types. This study aimed to examine the link between FGF11 and the prognosis of lung adenocarcinoma. FGF11 was searched in the Tumor Cancer Genome Atlas (TCGA) and ImmProt databases. The link between FGF11 and lung cancer clinical data was investigated using TCGA and Kaplan-Meier (KM)-plotter databases, and we developed a prediction model. Putative mechanisms of action were investigated using Gene Ontology (GO) and KEGG enrichment analyses. The GeneMANIA and STRING databases were used to search for genes that interact with FGF11, and the Tumor Immune Estimation Resource (TIMER) database was used to discover connections between FGF11 and immune cells, as well as any correlations with immune-related genes. We found that FGF11 expression was higher in the lung adenocarcinoma tissue than in the paracancerous tissue, and patients with high FGF11 expression had a lower overall survival, progression-free survival, and disease specific survival rate than those with low FGF11 expression. The expression of FGF11 was inversely linked to six types of infiltrating immune cells in the TIMER database and was associated with EGFR, VEGFA, BRAF, and MET expressions. The FGF11 gene is negatively correlated with the expression of most immune cells, mainly with various functional T cells including Th1, Th1-like, Treg, and Resting Treg characterization genes. These results indicate that FGF11 has the potential to be a new lung adenocarcinoma biomarker. It increases tumor cell immune escape by boosting T cell exhaustion in the tumor microenvironment, contributing to the poor prognosis of the patients with lung adenocarcinoma. These results provide incentive to further research FGF11 as a possible biomarker and drug target for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Baoqian Zhai
- Department of Radiotherapy Oncology, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng 224005, China
| | - Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, No. 30, Tongyang bei Road, Tongzhou District, Nantong 226361, China
| | - Tao Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University &Nantong Tumor Hospital, No. 30, Tongyang bei Road, Tongzhou District, Nantong 226361, China
| |
Collapse
|
18
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
20
|
Gao L, Hong Z, Lei G, Guo AL, Wang FS, Jiao YM, Fu J. Decreased granzyme-B expression in CD11c +CD8 + T cells associated with disease progression in patients with HBV-related hepatocellular carcinoma. Front Immunol 2023; 14:1107483. [PMID: 36798119 PMCID: PMC9927008 DOI: 10.3389/fimmu.2023.1107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction CD11c+CD8+ T cells are an unconventional CD8+ T cell subset that exerts antiviral activity in infectious diseases. However, its characteristics in hepatocellular carcinoma (HCC) have not been elucidated. Methods Twenty-six patients with hepatitis B virus (HBV)-related HCC and 25 healthy controls (HC) were enrolled. The frequency and phenotype of CD11c+CD8+ T cells in peripheral blood and tumors in situ were detected by flow cytometry and immunohistochemistry. Results Both the HCC group and HC group had similar frequency and phenotype characteristics of CD11c+CD8+ T cells in the periphery. CD11c+CD8+ T cells were mainly composed of effector T cells, most of which were CD45RA+CCR7-. Compared with CD11c-CD8+ T cells, CD11c+CD8+ T cells had a higher proportion of CD38 and HLA-DR double positive, and expressed high levels of granzyme-B (GB) and degranulation marker CD107a, and produced high levels of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ). However, the ability of degranulation and TNF-α production of CD11c+CD8+ T cells in patients with HCC were significantly lower than that in healthy controls. The GB expression level of peripheral CD11c+CD8+ T cells in patients with advanced stage of HCC was significantly lower than that in patients with early stage of HCC, and the GB expression level of liver-infiltrating CD11c+CD8+ T cells in tumor tissues was lower than that in non-tumor tissues. More importantly, the GB expression level of peripheral CD11c+CD8+ T cells was negatively correlated with tumor volume. Conclusions These findings indicate that CD11c+CD8+ T cells may have potential anti-tumor activity and that GB+CD11c+CD8+ T cells are associated with disease progression in patients with HBV-related HCC.
Collapse
Affiliation(s)
- Lin Gao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Department of Infectious Disease and Hepatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhixian Hong
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guanglin Lei
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - An-Liang Guo
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,*Correspondence: Junliang Fu, ; Yan-Mei Jiao,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,*Correspondence: Junliang Fu, ; Yan-Mei Jiao,
| |
Collapse
|
21
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
22
|
Alotaibi F. Exosomal microRNAs in cancer: Potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Front Genet 2023; 14:1052731. [PMID: 36873941 PMCID: PMC9982116 DOI: 10.3389/fgene.2023.1052731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes are small extracellular vesicles with a lipid bilayer structure secreted from different cell types which can be found in various body fluids including blood, pleural fluid, saliva and urine. They carry different biomolecules including proteins, metabolites, and amino acids such as microRNAs which are small non-coding RNAs that regulate gene expression and promote cell-to-cell communication. One main function of the exosomal miRNAs (exomiRs) is their role in cancer pathogenesis. Alternation in exomiRs expression could indicate disease progression and can regulate cancer growth and facilitate drug response/resistance. It can also influence the tumour microenvironment by controlling important signaling that regulating immune checkpoint molecules leading to activation of T cell anti-tumour immunity. Therefore, they can be used as potential novel cancer biomarkers and innovative immunotherapeutic agents. This review highlights the use of exomiRs as potential reliable biomarkers for cancer diagnosis, treatment response and metastasis. Finally, discuses their potential as immunotherapeutic agents to regulate immune checkpoint molecules and promote T cell anti-tumour immunity.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Wang L, Deng Z, Yang J, Zhao Y, Zhou L, Diao L, Li L, Cheng Y. Epigenetic and transcriptomic characterization of maternal-fetal interface in patients with recurrent miscarriage via an integrated multi-omics approach. J Reprod Immunol 2022; 154:103754. [PMID: 36206604 DOI: 10.1016/j.jri.2022.103754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Recurrent miscarriage (RM) occurs in 2.5 % of women aiming at childbirth, with unknown etiology in half of the cases. To identify the molecular features, an integrative study combining bioinformatics and multi-omics from GEO database was performed in these patients. Two datasets (GSE43256 and GSE73025) were integrated to indicate 1657 differentially expressed genes (DE-genes) in villus of females with RM. DE-genes in villus of females with RM mainly focused on cell growth and development. On the other hand, 230 DE-genes in decidua of RM patients were retrieved from GSE113790, and the DE-genes were involved in diverse functions, including transport of nutrients, immune response, extracellular matrix remodeling, and angiogenesis. Additionally, the results of immunologic signatures indicated that immune regulation played roles in both decidua and villus of RM. Interestingly, C1q and TNF related 7 (C1QTNF7), acquired from the intersection of decidua and villus datasets, is crucial in maintaining immune homeostasis, so is its upstream miRNA (miR-149-3p). The enhanced expression of C1QTNF7 in macrophages might inhibit the proliferation and migration of trophoblasts, and further result in pregnancy loss. The present study suggests C1QTNF7 might be a new target for the diagnosis and treatment of RM, but more basic researches are further required to illustrate its mechanism in RM.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yulin Zhao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Linyan Zhou
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong 518045, PR China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
24
|
Kaminskiy Y, Kuznetsova V, Kudriaeva A, Zmievskaya E, Bulatov E. Neglected, yet significant role of FOXP1 in T-cell quiescence, differentiation and exhaustion. Front Immunol 2022; 13:971045. [PMID: 36268015 PMCID: PMC9576946 DOI: 10.3389/fimmu.2022.971045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
FOXP1 is ubiquitously expressed in the human body and is implicated in both physiological and pathological processes including cancer. However, despite its importance the role of FOXP1 in T-cells has not been extensively studied. Although relatively few phenotypic and mechanistic details are available, FOXP1 role in T-cell quiescence and differentiation of CD4+ subsets has recently been established. FOXP1 prevents spontaneous T-cell activation, preserves memory potential, and regulates the development of follicular helper and regulatory T-cells. Moreover, there is growing evidence that FOXP1 also regulates T-cell exhaustion. Altogether this makes FOXP1 a crucial and highly undervalued regulator of T-cell homeostasis. In this review, we discuss the biology of FOXP1 with a focus on discoveries made in T-cells in recent years.
Collapse
Affiliation(s)
- Yaroslav Kaminskiy
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Varvara Kuznetsova
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emil Bulatov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Emil Bulatov,
| |
Collapse
|
25
|
Li K, Wang Z. Non-coding RNAs: Key players in T cell exhaustion. Front Immunol 2022; 13:959729. [PMID: 36268018 PMCID: PMC9577297 DOI: 10.3389/fimmu.2022.959729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
T cell exhaustion caused by continuous antigen stimulation in chronic viral infections and the tumor microenvironment is a major barrier to successful elimination of viruses and tumor cells. Although immune checkpoint inhibitors should reverse T cell exhaustion, shortcomings, such as off-target effects and single targets, limit their application. Therefore, it is important to identify molecular targets in effector T cells that simultaneously regulate the expression of multiple immune checkpoints. Over the past few years, non-coding RNAs, including microRNAs and long non-coding RNAs, have been shown to participate in the immune response against viral infections and tumors. In this review, we focus on the roles and underlying mechanisms of microRNAs and long non-coding RNAs in the regulation of T cell exhaustion during chronic viral infections and tumorigenesis. We hope that this review will stimulate research to provide more precise and effective immunotherapies against viral infections and tumors.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Ziqiang Wang,
| |
Collapse
|
26
|
Alghazali MW, Al-Hetty HRAK, Ali ZMM, Saleh MM, Suleiman AA, Jalil AT. Non-coding RNAs, another side of immune regulation during triple-negative breast cancer. Pathol Res Pract 2022; 239:154132. [PMID: 36183439 DOI: 10.1016/j.prp.2022.154132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered about 12-24 % of all breast cancer cases. Patients experience poor overall survival, high recurrence rate, and distant metastasis compared to other breast cancer subtypes. Numerous studies have highlighted the crucial roles of non-coding RNAs (ncRNAs) in carcinogenesis and proliferation, migration, and metastasis of tumor cells in TNBC. Recent research has demonstrated that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play a role in the regulation of the immune system by affecting the tumor microenvironment, the epithelial-mesenchymal transition, the regulation of dendritic cells and myeloid-derived stem cells, and T and B cell activation and differentiation. Immune-related miRNAs and lncRNAs, which have been established as predictive markers for various cancers, are strongly linked to immune cell infiltration and could be a viable therapeutic target for TNBC. In the current review, we discuss the recent updates of ncRNAs, including miRNAs and lncRNAs in TNBC, including their biogenesis, target genes, and biological function of their targets, which are mostly involved in the immune response.
Collapse
Affiliation(s)
| | | | - Zahraa Muhsen M Ali
- Department of Medical Laboratory Techniques, Al-Rafidain University College, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq.
| |
Collapse
|
27
|
Xiong Y, Xiong C, Li P, Shan X. Rutaecarpine prevents the malignant biological properties of breast cancer cells by the miR-149-3p/S100A4 axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:930. [PMID: 36172090 PMCID: PMC9511192 DOI: 10.21037/atm-22-3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Background Breast cancer (BC) is a frequent malignancy that endangers women's health, and its fatality rate ranks 1st among female malignancies. Research has shown that rutaecarpine (RUT), which is a Chinese herbal medicine, blocks the proliferation of cancer cells by a variety of molecular mechanisms. However, the possible effects and mechanism of RUT in the autophagy and angiogenesis of BC cells has not been clearly articulated. Methods MiR-149-3p and S100A4 expression levels were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the optimal concentration and time of RUT was confirmed by Cell Counting Kit-8 (CCK-8) assays of the BC cells. After treatment, changes in cell proliferation and the cell cycle were evaluated by CCK-8 assays, clone formation assays, and flow cytometry, and the levels of apoptosis, autophagy, and angiogenesis-related proteins were identified by Western blot. The targeted regulation of miR-149-3p on S100A4 was also examined by luciferase reporter assays. Results We found that RUT inhibited cell growth and upregulated miR-149-3p in MDA-MB-231 cells. In relation to the biological function activity, RUT attenuated proliferation and angiogenesis, and induced cell-cycle arrest and autophagy by miR-149-3p in the MDA-MB-231 cells. Additionally, miR-149-3p downregulated S100A4 by targeting binding to S100A4, and S100A4 was required for miR-149-3p to play a role in BC progression. We also discovered that an autophagy agonist (rapamycin) or an angiogenesis inhibitor (TNP-470) changed BC progression mediated by the RUT/miR-149-3p/S100A4 axis. Conclusions RUT blocks the malignant behaviors of BC cells through the miR-149-3p/S100A4 axis and thus alters autophagy and angiogenesis. Thus, the RUT-mediated miR-149-3p/S100A4 axis might be an underlying therapeutic agent and target for BC.
Collapse
Affiliation(s)
- Yi Xiong
- General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Chao Xiong
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Peng Li
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| | - Xuehua Shan
- General Surgery, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|
28
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
29
|
Regulation of Immune Cells by microRNAs and microRNA-Based Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:75-108. [DOI: 10.1007/978-3-031-08356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Wang J, Liu L. MiR-149-3p promotes the cisplatin resistance and EMT in ovarian cancer through downregulating TIMP2 and CDKN1A. J Ovarian Res 2021; 14:165. [PMID: 34798882 PMCID: PMC8605569 DOI: 10.1186/s13048-021-00919-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Ovarian cancer (OC), a kind of gynecological cancer, is characterized by high mortality rate, with microRNAs (miRNAs) playing essential roles in it. However, the clinical significance of miRNAs and their molecular mechanisms in OC are mostly unknown. Methods miR-149-3p expression was predicted through Gene Expression Omnibus (GEO) data in OC and confirmed by q-PCR in various OC cells and tissues from patients with different clinical characteristics. Moreover, its roles in terms of proliferation, migration and invasion were measured by CCK-8, colony formation, wound healing and transwell assays in OC cells including cisplatin-resistant and cisplatin-sensitive cells. And its effect on epithelial-mesenchymal transition was also assessed through detecting related protein expression. Additionally, its potential targets were verified by dual luciferase assay and Ago-RIP assay. Finally, its oncogenic functions were explored in vivo. Results In data from GSE79943, GSE131790, and TCGA, miR-149-3p was found to be highly expressed in OC tissues and associated with poor survival. In metastasis and chemoresistant tissues and cisplatin-resistant OC cells, its high expression was confirmed. In terms of tumorigenic effects, miR-149-3p knockdown in cisplatin-resistant OC cells inhibited its cisplatin resistance and other malignant phenotypes, while miR-149-3p overexpression in cisplatin-resistant OC cells led to contrary results. Mechanistically, miR-149-3p targeted 3’UTR of CDKN1A and TIMP2 to function as an oncogenic miRNA. Conclusion In brief, miR-149-3p promoted cisplatin resistance and EMT in OC by downregulating CDKN1A and TIMP2, which might provide a potential therapeutic target for OC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00919-5.
Collapse
Affiliation(s)
- Jin Wang
- Department of Gynecology, Banan People's Hospital of Chongqing, No. 659, Yunan Avenue, Banan District, Chongqing, 401320, China
| | - Lingxia Liu
- Department of Gynecology, Banan People's Hospital of Chongqing, No. 659, Yunan Avenue, Banan District, Chongqing, 401320, China.
| |
Collapse
|
31
|
Papaioannou E, González-Molina MDP, Prieto-Muñoz AM, Gámez-Reche L, González-Martín A. Regulation of Adaptive Tumor Immunity by Non-Coding RNAs. Cancers (Basel) 2021; 13:cancers13225651. [PMID: 34830805 PMCID: PMC8616131 DOI: 10.3390/cancers13225651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.
Collapse
|
32
|
Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, Shen C, Ma Y, Jiang S, Ma D, Tong T, Zhang X, Gao Z, Zhu X, Fang JY, Chen H, Hong J. Enterotoxigenic Bacteroidesfragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p. Gastroenterology 2021; 161:1552-1566.e12. [PMID: 34371001 DOI: 10.1053/j.gastro.2021.08.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Enterotoxigenic Bacteroides fragilis (ETBF) is strongly associated with the occurrence of inflammatory bowel disease (IBD), colitis-associated colorectal cancer, and colorectal cancer (CRC). However, the mechanism of ETBF-induced intestinal inflammation and tumorigenesis remains unclear. METHODS microRNA sequencing was used to detect the differentially expressed microRNAs in both ETBF-treated cells and exosomes derived from ETBF-inoculated cells. Cell Counting Kit 8 assays were used to evaluate the effect of ETBF and exosomes on CRC cell proliferation. The biological role and mechanism of ETBF-mediated miR-149-3p in colitis and colon carcinogenesis were determined both in vitro and in vivo. RESULTS ETBF promoted CRC cell proliferation by down-regulating miR-149-3p both in vitro and in vivo. ETBF-down-regulated miR-149-3p depended on METTL14-mediated N6-methyladenosine methylation. As the target gene of miR-149-3p, PHF5A transactivated SOD2 through regulating KAT2A messenger RNA alternative splicing after ETBF treatment in CRC cells. miR-149-3p could be released in exosomes and mediated intercellular communication by modulating T-helper type 17 cell differentiation. The level of plasma exosomal miR-149-3p was gradually decreased from healthy control individuals to patients with IBD and CRC. miR-149-3p, existing in plasma exosomes, negatively correlated with the abundance of ETBF in patients with IBD and CRC. CONCLUSIONS Exosomal miR-149-3p derived from ETBF-treated cells facilitated T-helper type 17 cell differentiation. ETBF-induced colorectal carcinogenesis depended on down-regulating miR-149-3p and further promoting PHF5A-mediated RNA alternative splicing of KAT2A in CRC cells. Targeting the ETBF/miR-149-3p pathway presents a promising approach to treat patients with intestinal inflammation and CRC with a high amount of ETBF.
Collapse
MESH Headings
- Animals
- Bacteroides fragilis/pathogenicity
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/pathology
- Colon/metabolism
- Colon/microbiology
- Colon/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/microbiology
- Colorectal Neoplasms/pathology
- Crohn Disease/genetics
- Crohn Disease/metabolism
- Crohn Disease/microbiology
- Crohn Disease/pathology
- Disease Models, Animal
- Exosomes/genetics
- Exosomes/metabolism
- Exosomes/microbiology
- HCT116 Cells
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Host-Pathogen Interactions
- Humans
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Mice
Collapse
Affiliation(s)
- Yingying Cao
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Gastroenterology and Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes; Shanghai Cancer Institute; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jiang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Ma
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
34
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
35
|
Cong Y, Liu J, Chen G, Qiao G. The Emerging Role of T-Cell Immunoglobulin Mucin-3 in Breast Cancer: A Promising Target For Immunotherapy. Front Oncol 2021; 11:723238. [PMID: 34504800 PMCID: PMC8421567 DOI: 10.3389/fonc.2021.723238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment through immune checkpoint receptor blockade has made significant advances in the recent years. However, resistance to the current immune checkpoint inhibitors (ICIs) has been observed in many patients, who consequently do not respond to these treatments. T-cell immunoglobulin mucin-3 (Tim-3) is a novel immune checkpoint molecule emerging as a potential therapeutic target for cancer immunotherapy. Epidemiologic findings reveal that genetic polymorphisms in the Tim-3 gene are associated with increased susceptibility to breast cancer. In patients with breast cancer, Tim-3 is expressed both on immune and tumor cells. Accumulating evidence demonstrates that Tim-3 can notably affect breast cancer treatment outcome and prognosis. Therefore, Tim-3 is being regarded as a high-potential target for improving breast cancer therapy. In this review, we summarize the role of Tim-3 in breast cancer and the regulation mechanisms of Tim-3 to furnish evidences for future research and therapy.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
36
|
Breast Cancer Drug Resistance: Overcoming the Challenge by Capitalizing on MicroRNA and Tumor Microenvironment Interplay. Cancers (Basel) 2021; 13:cancers13153691. [PMID: 34359591 PMCID: PMC8345203 DOI: 10.3390/cancers13153691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
The clinical management of breast cancer reaches new frontiers every day. However, the number of drug resistant cases is still high, and, currently, this constitutes one of the major challenges that cancer research has to face. For instance, 50% of women affected with HER2 positive breast cancer presents or acquires resistance to trastuzumab. Moreover, for patients affected with triple negative breast cancer, standard chemotherapy is still the fist-line therapy, and often patients become resistant to treatments. Tumor microenvironment plays a crucial role in this context. Indeed, cancer-associated stromal cells deliver oncogenic cues to the tumor and vice versa to escape exogenous insults. It is well known that microRNAs are among the molecules exploited in this aberrant crosstalk. Indeed, microRNAs play a crucial function both in the induction of pro-tumoral traits in stromal cells and in the stroma-mediated fueling of tumor aggressiveness. Here, we summarize the most recent literature regarding the involvement of miRNAs in the crosstalk between tumor and stromal cells and their capability to modulate tumor microenvironment characteristics. All up-to-date findings suggest that microRNAs in the TME could serve both to reverse malignant phenotype of stromal cells, modulating response to therapy, and as predictive/prognostic biomarkers.
Collapse
|
37
|
Tripathi A, Pandit I, Perles A, Zhou Y, Cheng F, Dutta R. Identifying miRNAs in multiple sclerosis gray matter lesions that correlate with atrophy measures. Ann Clin Transl Neurol 2021; 8:1279-1291. [PMID: 33978322 PMCID: PMC8164853 DOI: 10.1002/acn3.51365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/27/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Though MS was initially considered to be a white matter demyelinating disease, myelin loss in cortical gray matter has been reported in all disease stages. We previously identified microRNAs (miRNAs) in white matter lesions (WMLs) that are detected in serum from MS patients. However, miRNA expression profiles in gray matter lesions (GMLs) from progressive MS brains are understudied. METHODS We used a combination of global miRNAs and gene expression profiling of GMLs and independent validation using real-time quantitative polymerase chain reaction (RT-qPCR), immuno-in situ hybridization, and immunohistochemistry. RESULTS Compared to matched myelinated gray matter (GM) regions, we identified 82 miRNAs in GMLs, of which 10 were significantly upregulated and 17 were significantly downregulated. Among these 82 miRNAs, 13 were also detected in serum and importantly were associated with brain atrophy in MS patients. The predicted target mRNAs of these miRNAs belonged to pathways associated with axonal guidance, TGF-β signaling, and FOXO signaling. Further, using state-of-the-art human protein-protein interactome network analysis, we mapped the four key GM atrophy-associated miRNAs (hsa-miR-149*, hsa-miR-20a, hsa-miR-29c, and hsa-miR-25) to their target mRNAs that were also changed in GMLs. INTERPRETATION Our study identifies miRNAs altered in GMLs in progressive MS brains that correlate with atrophy measures. As these miRNAs were also detected in sera of MS patients, these could act as markers of GML demyelination in MS.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Ishani Pandit
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aaron Perles
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feixiong Cheng
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Mondal P, Kaur B, Natesh J, Meeran SM. The emerging role of miRNA in the perturbation of tumor immune microenvironment in chemoresistance: Therapeutic implications. Semin Cell Dev Biol 2021; 124:99-113. [PMID: 33865701 DOI: 10.1016/j.semcdb.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Chemoresistance is a major hindrance in cancer chemotherapies, a leading cause of tumor recurrence and cancer-related deaths. Cancer cells develop numerous strategies to elude immune attacks and are regulated by immunological factors. Cancer cells can alter the expression of several immune modulators to upregulate the activities of immune checkpoint pathways. Targeting the immune checkpoint inhibitors is a part of the cancer immunotherapy altered during carcinogenesis. These immune modulators have the capability to reprogram the tumor microenvironment, thereby change the efficacy of chemotherapeutics. In general, the sensitivity of drugs is reduced in the immunosuppressive tumor microenvironment, resulting in chemoresistance and tumor relapse. The regulation of microRNAs (miRNAs) is well established in cancer initiation, progression, and therapy. Intriguingly, miRNA affects cancer immune surveillance and immune response by targeting immune checkpoint inhibitors in the tumor microenvironment. miRNAs alter the gene expression at the post-transcriptional level, which modulates both innate and adaptive immune systems. Alteration of tumor immune microenvironment influences drug sensitivity towards cancer cells. Besides, the expression profile of immune-modulatory miRNAs can be used as a potential biomarker to predict the response and clinical outcomes in cancer immunotherapy and chemotherapy. Recent evidences have revealed that cancer-derived immune-modulatory miRNAs might be promising targets to counteract cancer immune escape, thereby increasing drug efficacy. In this review, we have compiled the role of miRNAs in overcoming the chemoresistance by modulating tumor microenvironment and discussed their preclinical and clinical implications.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
39
|
Inhibition of long non-coding RNA XIST upregulates microRNA-149-3p to repress ovarian cancer cell progression. Cell Death Dis 2021; 12:145. [PMID: 33542185 PMCID: PMC7862378 DOI: 10.1038/s41419-020-03358-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in human diseases. We aimed to clarify the role of lncRNA X-inactive specific transcript (XIST)/miR-149-3p/forkhead box P3 (FOXP3) axis in ovarian cancer (OC) cell growth. XIST, miR-149-3p and FOXP3 expression in OC tissues and cell lines was assessed, and the predictive role of XIST in prognosis of OC patients was analyzed. The OC cell lines were screened and accordingly treated with silenced/overexpressed XIST plasmid or miR-149-3p mimic/inhibitor, and then the proliferation, invasion, migration, colony formation ability, apoptosis, and cell cycle distribution of OC cells were measured. Effect of altered XIST and miR-149-3p on tumor growth in vivo was observed. Online website prediction and dual luciferase reporter gene were implemented to detect the targeting relationship of lncRNA XIST, miR-149-3p, and FOXP3. XIST and FOXP3 were upregulated, whereas miR-149-3p was downregulated in OC tissues and cells. High XIST expression indicated a poor prognosis of OC. Inhibition of XIST or elevation of miR-149-3p repressed proliferation, invasion, migration, and colony formation ability, and promoted apoptosis and cell cycle arrest of HO-8910 cells. In SKOV3 cells upon treatment of overexpressed XIST or reduction of miR-149-3p, there exhibited an opposite tendency. Based on online website prediction, dual luciferase reporter gene, and RNA pull-down assays, we found that there was a negative relationship between XIST and miR-149-3p, and miR-149-3p downregulated FOXP3 expression. This study highlights that knockdown of XIST elevates miR-149-3p expression to suppress malignant behaviors of OC cells, thereby inhibiting OC development.
Collapse
|
40
|
Huemer F, Leisch M, Geisberger R, Zaborsky N, Greil R. miRNA-Based Therapeutics in the Era of Immune-Checkpoint Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14020089. [PMID: 33530393 PMCID: PMC7911012 DOI: 10.3390/ph14020089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to complementary target regions on gene transcripts. Thus, miRNAs fine-tune gene expression profiles in a cell-type-specific manner and thereby regulate important cellular functions, such as cell growth, proliferation and cell death. MiRNAs are frequently dysregulated in cancer cells by several mechanisms, which significantly affect the course of the disease. In this review, we summarize the current knowledge on how dysregulated miRNAs contribute to cancer and how miRNAs can be exploited as predictive factors and therapeutic targets, particularly in regard to immune-checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (R.G.); (N.Z.)
- Salzburg Cancer Research Institute–Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
41
|
Patil N, Allgayer H, Leupold JH. MicroRNAs in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:1-31. [PMID: 33119862 DOI: 10.1007/978-3-030-50224-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is decisive for the eradication or survival of any tumor mass. Moreover, it plays a pivotal role for metastasis and for providing the metastatic niche. The TME offers special physiological conditions and is composed of, for example, surrounding blood vessels, the extracellular matrix (ECM), diverse signaling molecules, exosomes and several cell types including, but not being limited to, infiltrated immune cells, cancer-associated endothelial cells (CAEs), and cancer-associated fibroblasts (CAFs). These cells can additionally and significantly contribute to tumor and metastasis progression, especially also by acting via their own deregulated micro (mi) RNA expression or activity. Thus, miRNAs are essential players in the crosstalk between cancer cells and the TME. MiRNAs are small non-coding (nc) RNAs that typically inhibit translation and stability of messenger (m) RNAs, thus being able to regulate several cell functions including proliferation, migration, differentiation, survival, invasion, and several steps of the metastatic cascade. The dynamic interplay between miRNAs in different cell types or organelles such as exosomes, ECM macromolecules, and the TME plays critical roles in many aspects of cancer development. This chapter aims to give an overview on the multiple contributions of miRNAs as players within the TME, to summarize the role of miRNAs in the crosstalk between different cell populations found within the TME, and to illustrate how they act on tumorigenesis and the behavior of cells in the TME context. Lastly, the potential clinical utility of miRNAs for cancer therapy is discussed.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
42
|
Shen Q, Zhu H, Lei Q, Chen L, Yang D, Sui W. MicroRNA‑149‑3p inhibits cell proliferation by targeting AKT2 in oral squamous cell carcinoma. Mol Med Rep 2021; 23:172. [PMID: 33398370 PMCID: PMC7821286 DOI: 10.3892/mmr.2020.11811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRs) exhibit oncogenic or tumor suppressive functions that contribute to the initiation and development of various types of human cancer. miR-149-3p has been reported to serve multiple roles in the regulation of proliferation, apoptosis and metastasis. However, the effects and detailed mechanism of miR-149-3p in oral squamous cell carcinoma (OSCC) remain unclear. In the present study, miR-149-3p mimic, mimic control, miR-149-3p inhibitor and inhibitor control were transiently transfected into Cal27 and SCC-9 cells. The viability, proliferation and apoptosis of OSCC cells were determined using Cell Counting Kit-8, colony formation and Annexin V assays, respectively. The mRNA expression levels of miR-149-3p and AKT2 were determined by reverse transcription-quantitative PCR. The protein expression levels of AKT2, cleaved caspase-3 and cleaved PARP were examined by western blot analysis. The binding of miR-149-3p to the AKT2 3′-untranslated region was evaluated by a dual luciferase reporter assay. In the present study, overexpression of miR-149-3p reduced the viability and proliferation of OSCC cells. By contrast, increased cell viability and proliferation was observed in miR-149-3p-deficient OSCC cells. Dual luciferase reporter assay indicated that miR-149-3p significantly decreased the luciferase activity of the wild-type AKT2 3′-untranslated region. Moreover, overexpression of miR-149-3p downregulated the mRNA and protein expression levels of AKT2, suggesting that miR-149-3p was a negative modulator of AKT2. Restoration of AKT2 efficiently reversed the miR-149-3p-mediated reduction in the proliferative capacity of OSCC cells. In addition, miR-149-3p enhanced the sensitivity of OSCC cells to the chemotherapeutic drug 5-fluorouracil. Taken together, the current findings revealed an inhibitory effect of miR-149-3p on the proliferation of OSCC cells through the post-transcriptional suppression of AKT2, and indicated a potential chemosensitizing function of miR-149-3p for the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Qin Shen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Hong Zhu
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Qiaoling Lei
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Luyuan Chen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Dajiang Yang
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Wen Sui
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
43
|
Li M, Chi C, Zhou L, Chen Y, Tang X. Circular PVT1 regulates cell proliferation and invasion via miR-149-5p/FOXM1 axis in ovarian cancer. J Cancer 2021; 12:611-621. [PMID: 33391456 PMCID: PMC7738991 DOI: 10.7150/jca.52234] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) is a dysregulated gene in malignancy and is associated with oncogenesis. In this study, we found PVT1 RNA was an ovarian specific expressing gene, and overexpressed in multiple cancer types, including ovarian cancer (OV). Higher expression levels of PVT1 are related to shorter survival time in OV patients, especially in patients with advanced stage and grade. Recent studies indicated circular PVT1 also had an important role in cancer progression, whose roles in OV remain unclear. Knockdown of circular PVT1 significantly suppressed OV cell proliferation, migration and invasion. Bioinformatics analysis demonstrated that circular PVT1 was involved in regulating angiogenesis, osteoblast differentiation, regulation of cell growth, type B pancreatic cell proliferation, negative regulation of apoptotic process, phospholipid homeostasis, regulation of neurogenesis, definitive hemopoiesis, cell migration, regulation of glucose metabolic process, central nervous system development and type 2 immune response. Our data showed miR-149-5p targeted FOXM1, which was regulated by circular PVT1. Forkhead Box M1 (FOXM1) expression in ovarian cancer exhibited high level when compared with normal tissues, and had relation with relatively poor survival. FOXM1 promoted cell viability and reduced FOXM1 could rescue circular influence of circular PVT1-caused carcinoma induction. In conclusion, circular PVT1 increased FOXM1 level via binding to miR-149-5p and thus affected ovarian cancer cell viability and migration.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chi Chi
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Liqin Zhou
- Department of Gynecology & Obstetrics, Suzhou Xiangcheng People's Hospital, Suzhou 215006, Jiangsu Province, China
| | - Youguo Chen
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xiuwu Tang
- Department of Gynecology & Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
44
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q, Kuca K. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev 2020; 41:1622-1643. [PMID: 33305856 DOI: 10.1002/med.21771] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays an indispensable role in the hypoxic tumor microenvironment. Hypoxia and HIF-1 are involved in multiple aspects of tumor progression, such as metastasis, angiogenesis, and immune evasion. In innate and adaptive immune systems, malignant tumor cells avoid their recognition and destruction by HIF-1. Tumor immune evasion allows cancer cells to proliferate and metastasize and is associated with immunotherapy failure and chemoresistance. In the hypoxic tumor microenvironment, HIF-1 signaling suppresses the innate and adaptive immune systems to evade immune attack by inducing the expression of immunosuppressive factors and immune checkpoint molecules, including vascular endothelial growth factor, prostaglandin E2 , and programmed death-ligand 1/programmed death-1. Moreover, HIF-1 blocks tumor-associated antigen presentation via major histocompatibility complex class I chain-related/natural killer group 2, member D signaling. Tumor-associated autophagy and the release of tumor-derived exosomes contribute to HIF-1-mediated immune evasion. This review focuses on recent findings on the potential mechanism(s) underlying the effect of hypoxia and HIF-1 signaling on tumor immune evasion in the hypoxic tumor microenvironment. The effects of HIF-1 on immune checkpoint molecules, immunosuppressive molecules, autophagy, and exosomes have been described. Additionally, the potential role of HIF-1 in the regulation of tumor-derived exosomes, as well as the roles of HIF-1 and exosomes in tumor evasion, are discussed. This study will contribute to our understanding of HIF-1-mediated tumor immune evasion, leading to the development of effective HIF-1-targeting drugs and immunotherapies.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
45
|
Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, Wickenhauser C, Seliger B. Expression, Regulation and Function of microRNA as Important Players in the Transition of MDS to Secondary AML and Their Cross Talk to RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21197140. [PMID: 32992663 PMCID: PMC7582632 DOI: 10.3390/ijms21197140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-345-557-4054
| |
Collapse
|
46
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
47
|
Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020; 235:8461-8471. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Samei
- Department of Immunology, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammadi
- Department of cancer and inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Pan Z, Tian Y, Niu G, Cao C. Role of microRNAs in remodeling the tumor microenvironment (Review). Int J Oncol 2019; 56:407-416. [PMID: 31894326 PMCID: PMC6959460 DOI: 10.3892/ijo.2019.4952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are known to regulate gene expression at the post-transcriptional level. miRNA expression is often deregulated in several human cancers, affecting the communication between tumor stroma and tumor cells, among other functions. Understanding the role of miRNAs in the tumor microenvironment is crucial for fully elucidating the molecular mechanisms underlying tumor progression and exploring novel diagnostic biomarkers and therapeutic targets. The present review focused on the role of miRNAs in remodeling the tumor microenvironment, with an emphasis on their impact on tumor growth, metastasis and resistance to treatment, as well as their potential clinical applications.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yiqing Tian
- Xinyi People's Hospital, Xuzhou, Jiangsu 221400, P.R. China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000, P.R. China
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|