1
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2025; 32:27-36. [PMID: 37558732 PMCID: PMC11742036 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
3
|
Daneshpour A, Rezvanimehr A, Niktalab P, Sharif H, Yazdanpanah N, Saleki K, Rezaei N. Exploring the role of vault complex in the nervous system: a literature review. Rev Neurosci 2024:revneuro-2024-0112. [PMID: 39584466 DOI: 10.1515/revneuro-2024-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Vault RNAs (vtRNAs) are a novel group of non-coding RNAs that are involved in various signaling mechanisms. vtRNAs are joined by three proteins major vault protein (MVP), vault poly (ADP-ribose) polymerase (VPARP), and telomerase-associated protein 1 (TEP1) to form the vault complex. In humans, only four vtRNA including vtRNA 1-1, vtRNA 1-2, vtRNA 1-3, vtRNA 2-1) have been discovered. In nerve cells, vtRNA is involved in synapse formation through MAPK signaling. vtRNA travels to the distal area of neurites as a key unit in the vault complex. Moreover, tRNA is detached from the vault complex in the neurite via a mitotic kinase Aurora-A-reliant MVP phosphorylation. Several molecules contribute to the formation of vtRNAs. For instance, SRSF2 and NSUN2 and their attachment to vtRNA1-1 determines the production of small-vtRNAs. Through the same factors, vtRNAs could play a role in neurodevelopmental deficits. Addition the role of vtRNA expression and vault proteins has been recently studied in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as well as brain cancers. While the mechanisms of vtRNA involvement in neurological disorders is not well-demonstrated, we believe this could be related to the impact of vtRNA regulation in autophagy, immunoregulation, RNA stability, cellular stress, apoptosis, and regulation of other epigenetic pathways. The present review captures the state-of-the-art regarding the role of vtRNAs in neurodevelopment, normal nervous system function, and neurological disorders.
Collapse
Affiliation(s)
- Arian Daneshpour
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Ali Rezvanimehr
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Faculty of Medicine, Tehran Medical Science Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Pegah Niktalab
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Helia Sharif
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Niloufar Yazdanpanah
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- 48439 School of Medicine, Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- 48439 Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Kiarash Saleki
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, 4717647745, Iran
- USERN Office, Babol University of Medical Sciences, Babol, 4717647745, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- 48439 School of Medicine, Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- 48439 Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- %2048439 Department of Clinical Immunology, School of Medicine, Tehran University of Medical Sciences , Children's Medical Center Hospital, Tehran, 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholms, 10316, Sweden
| |
Collapse
|
4
|
Taube M, Lisiak N, Totoń E, Rubiś B. Human Vault RNAs: Exploring Their Potential Role in Cellular Metabolism. Int J Mol Sci 2024; 25:4072. [PMID: 38612882 PMCID: PMC11012908 DOI: 10.3390/ijms25074072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Non-coding RNAs have been described as crucial regulators of gene expression and guards of cellular homeostasis. Some recent papers focused on vault RNAs, one of the classes of non-coding RNA, and their role in cell proliferation, tumorigenesis, apoptosis, cancer response to therapy, and autophagy, which makes them potential therapy targets in oncology. In the human genome, four vault RNA paralogues can be distinguished. They are associated with vault complexes, considered the largest ribonucleoprotein complexes. The protein part of these complexes consists of a major vault protein (MVP) and two minor vault proteins (vPARP and TEP1). The name of the complex, as well as vault RNA, comes from the hollow barrel-shaped structure that resembles a vault. Their sequence and structure are highly evolutionarily conserved and show many similarities in comparison with different species, but vault RNAs have various roles. Vaults were discovered in 1986, and their functions remained unclear for many years. Although not much is known about their contribution to cell metabolism, it has become clear that vault RNAs are involved in various processes and pathways associated with cancer progression and modulating cell functioning in normal and pathological stages. In this review, we discuss known functions of human vault RNAs in the context of cellular metabolism, emphasizing processes related to cancer and cancer therapy efficacy.
Collapse
Affiliation(s)
| | | | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.T.); (N.L.); (E.T.)
| |
Collapse
|
5
|
Avila-Bonilla RG, Martínez-Montero JP. Crosstalk between vault RNAs and innate immunity. Mol Biol Rep 2024; 51:387. [PMID: 38443657 PMCID: PMC10914904 DOI: 10.1007/s11033-024-09305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Vault (vt) RNAs are noncoding (nc) RNAs transcribed by RNA polymerase III (RNA Pol III) with 5'-triphosphate (5'-PPP) termini that play significant roles and are recognized by innate immune sensors, including retinoic acid-inducible protein 1 (RIG-I). In addition, vtRNAs adopt secondary structures that can be targets of interferon-inducible protein kinase R (PKR) and the oligoadenylate synthetase (OAS)/RNase L system, both of which are important for activating antiviral defenses. However, changes in the expression of vtRNAs have been associated with pathological processes that activate proinflammatory pathways, which influence cellular events such as differentiation, aging, autophagy, apoptosis, and drug resistance in cancer cells. RESULTS In this review, we summarized the biology of vtRNAs and focused on their interactions with the innate immune system. These findings provide insights into the diverse roles of vtRNAs and their correlation with various cellular processes to improve our understanding of their biological functions.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Genética y Biología Molecular, Av. IPN 2508, 07360, Mexico City, Mexico.
| | | |
Collapse
|
6
|
Aghajani Mir M. Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities. Genes Dis 2024; 11:772-787. [PMID: 37692527 PMCID: PMC10491885 DOI: 10.1016/j.gendis.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
The physicochemical characteristics of RNA admit non-coding RNAs to perform a different range of biological acts through various mechanisms and are involved in regulating a diversity of fundamental processes. Notably, some reports of pathological conditions have proved abnormal expression of many non-coding RNAs guides the ailment. Vault RNAs are a class of non-coding RNAs containing stem regions or loops with well-conserved sequence patterns that play a fundamental role in the function of vault particles through RNA-ligand, RNA-RNA, or RNA-protein interactions. Taken together, vault RNAs have been proposed to be involved in a variety of functions such as cell proliferation, nucleocytoplasmic transport, intracellular detoxification processes, multidrug resistance, apoptosis, and autophagy, and serve as microRNA precursors and signaling pathways. Despite decades of investigations devoted, the biological function of the vault particle or the vault RNAs is not yet completely cleared. In this review, the current scientific assertions of the vital vault RNAs functions were discussed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Health Research Institute, Babol University of Medical Sciences, Babol 47176-4774, Iran
| |
Collapse
|
7
|
Stott J, Wright T, Holmes J, Wilson J, Griffiths-Jones S, Foster D, Wright B. A systematic review of non-coding RNA genes with differential expression profiles associated with autism spectrum disorders. PLoS One 2023; 18:e0287131. [PMID: 37319303 PMCID: PMC10270643 DOI: 10.1371/journal.pone.0287131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
AIMS To identify differential expression of shorter non-coding RNA (ncRNA) genes associated with autism spectrum disorders (ASD). BACKGROUND ncRNA are functional molecules that derive from non-translated DNA sequence. The HUGO Gene Nomenclature Committee (HGNC) have approved ncRNA gene classes with alignment to the reference human genome. One subset is microRNA (miRNA), which are highly conserved, short RNA molecules that regulate gene expression by direct post-transcriptional repression of messenger RNA. Several miRNA genes are implicated in the development and regulation of the nervous system. Expression of miRNA genes in ASD cohorts have been examined by multiple research groups. Other shorter classes of ncRNA have been examined less. A comprehensive systematic review examining expression of shorter ncRNA gene classes in ASD is timely to inform the direction of research. METHODS We extracted data from studies examining ncRNA gene expression in ASD compared with non-ASD controls. We included studies on miRNA, piwi-interacting RNA (piRNA), small NF90 (ILF3) associated RNA (snaR), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transfer RNA (tRNA), vault RNA (vtRNA) and Y RNA. The following electronic databases were searched: Cochrane Library, EMBASE, PubMed, Web of Science, PsycINFO, ERIC, AMED and CINAHL for papers published from January 2000 to May 2022. Studies were screened by two independent investigators with a third resolving discrepancies. Data was extracted from eligible papers. RESULTS Forty-eight eligible studies were included in our systematic review with the majority examining miRNA gene expression alone. Sixty-four miRNA genes had differential expression in ASD compared to controls as reported in two or more studies, but often in opposing directions. Four miRNA genes had differential expression in the same direction in the same tissue type in at least 3 separate studies. Increased expression was reported in miR-106b-5p, miR-155-5p and miR-146a-5p in blood, post-mortem brain, and across several tissue types, respectively. Decreased expression was reported in miR-328-3p in bloods samples. Seven studies examined differential expression from other classes of ncRNA, including piRNA, snRNA, snoRNA and Y RNA. No individual ncRNA genes were reported in more than one study. Six studies reported differentially expressed snoRNA genes in ASD. A meta-analysis was not possible because of inconsistent methodologies, disparate tissue types examined, and varying forms of data presented. CONCLUSION There is limited but promising evidence associating the expression of certain miRNA genes and ASD, although the studies are of variable methodological quality and the results are largely inconsistent. There is emerging evidence associating differential expression of snoRNA genes in ASD. It is not currently possible to say whether the reports of differential expression in ncRNA may relate to ASD aetiology, a response to shared environmental factors linked to ASD such as sleep and nutrition, other molecular functions, human diversity, or chance findings. To improve our understanding of any potential association, we recommend improved and standardised methodologies and reporting of raw data. Further high-quality research is required to shine a light on possible associations, which may yet yield important information.
Collapse
Affiliation(s)
- Jon Stott
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Thomas Wright
- Manchester Centre for Genomic Medicine, Clinical Genetics Service, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jannah Holmes
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, United Kingdom
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Deborah Foster
- Tees, Esk & Wear Valleys NHS Foundation Trust, Foss Park Hospital, York, United Kingdom
| | - Barry Wright
- Child Oriented Mental Health Intervention Collaborative (COMIC), University of York in Collaboration with Leeds and York Partnership NHS Foundation Trust, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
8
|
Alagia A, Tereňová J, Ketley RF, Di Fazio A, Chelysheva I, Gullerova M. Small vault RNA1-2 modulates expression of cell membrane proteins through nascent RNA silencing. Life Sci Alliance 2023; 6:e202302054. [PMID: 37037596 PMCID: PMC10087102 DOI: 10.26508/lsa.202302054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Gene expression can be regulated by transcriptional or post-transcriptional gene silencing. Recently, we described nuclear nascent RNA silencing that is mediated by Dicer-dependent tRNA-derived small RNA molecules. In addition to tRNA, RNA polymerase III also transcribes vault RNA, a component of the ribonucleoprotein complex vault. Here, we show that Dicer-dependent small vault RNA1-2 (svtRNA1-2) associates with Argonaute 2 (Ago2). Although endogenous vtRNA1-2 is present mostly in the cytoplasm, svtRNA1-2 localises predominantly in the nucleus. Furthermore, in Ago2 and Dicer knockdown cells, a subset of genes that are up-regulated at the nascent level were predicted to be targeted by svtRNA1-2 in the intronic region. Genomic deletion of vtRNA1-2 results in impaired cellular proliferation and the up-regulation of genes associated with cell membrane physiology and cell adhesion. Silencing activity of svtRNA1-2 molecules is dependent on seed-plus-complementary-paired hybridisation features and the presence of a 5-nucleotide loop protrusion on target RNAs. Our data reveal a role of Dicer-dependent svtRNA1-2, possessing unique molecular features, in modulation of the expression of membrane-associated proteins at the nascent RNA level.
Collapse
Affiliation(s)
- Adele Alagia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jana Tereňová
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Bornstein S, Shapiro I, Mazumdar A, Zitzmann K, Nölting S, Luca E, Beuschlein F, Sharma A, Hantel C. The Vault Complex Is Significantly Involved in Therapeutic Responsiveness of Endocrine Tumors and Linked to Autophagy under Chemotherapeutic Conditions. Cancers (Basel) 2023; 15:cancers15061783. [PMID: 36980669 PMCID: PMC10046419 DOI: 10.3390/cancers15061783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Cancers display dynamic interactions with their complex microenvironments that influence tumor growth, invasiveness, and immune evasion, thereby also influencing potential resistance to therapeutic treatments. The tumor microenvironment (TME) includes cells of the immune system, the extracellular matrix, blood vessels, and other cell types, such as fibroblasts or adipocytes. Various cell types forming this TME secrete exosomes, and molecules thereby released into the TME have been shown to be important mediators of cellular communication and interplay. Specific stressors in the TME, such as hypoxia, starvation, inflammation, and damage, can furthermore induce autophagy, a fundamental cellular process that degrades and recycles molecules and subcellular components, and recently it has been demonstrated that the small non-coding vault RNA1-1 plays a role as a regulator of autophagy and the coordinated lysosomal expression and regulation (CLEAR) network. Here, we demonstrate for the first time that intra-tumoral damage following effective therapeutic treatment is linked to specific intracellular synthesis and subsequent exosomal release of vault RNAs in endocrine tumors in vitro and in vivo. While we observed a subsequent upregulation of autophagic markers under classical chemotherapeutic conditions, a downregulation of autophagy could be detected under conditions strongly involving inflammatory cascades.
Collapse
Affiliation(s)
- Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Igor Shapiro
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Alekhya Mazumdar
- Department of Orthopedics, Balgrist University Hospital, 8008 Zurich, Switzerland
- Department of Urology, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Ashish Sharma
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +41-43-253-3008
| |
Collapse
|
10
|
Small but Powerful: The Human Vault RNAs as Multifaceted Modulators of Pro-Survival Characteristics and Tumorigenesis. Cancers (Basel) 2022; 14:cancers14112787. [PMID: 35681764 PMCID: PMC9179338 DOI: 10.3390/cancers14112787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Small non-protein-coding RNAs have been recognized as valuable regulators of gene expression in all three domains of life. Particularly in multicellular organisms, ncRNAs-mediated gene expression control has evolved as a central principle of cellular homeostasis. Thus, it is not surprising that non-coding RNA misregulation has been linked to various diseases. Here, we review the contributions of the four human vault RNAs to cellular proliferation, apoptosis and cancer biology. Abstract The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets for oncotherapy. Recent studies revealed a class of highly conserved small ncRNAs, namely vault RNAs, as regulators of several cellular homeostasis mechanisms. The human genome encodes four vault RNA paralogs that share significant sequence and structural similarities, yet they seem to possess distinct roles in mammalian cells. The alteration of vault RNA expression levels has frequently been observed in cancer tissues, thus hinting at a putative role in orchestrating pro-survival characteristics. Over the last decade, significant advances have been achieved in clarifying the relationship between vault RNA and cellular mechanisms involved in cancer development. It became increasingly clear that vault RNAs are involved in controlling apoptosis, lysosome biogenesis and function, as well as autophagy in several malignant cell lines, most likely by modulating signaling pathways (e.g., the pro-survival MAPK cascade). In this review, we discuss the identified and known functions of the human vault RNAs in the context of cell proliferation, tumorigenesis and chemotherapy resistance.
Collapse
|
11
|
Yan RL, Luan CL, Liao CC, Liu LH, Chen FY, Chen HY, Chen RH. Long noncoding RNA BCRP3 stimulates VPS34 and autophagy activities to promote protein homeostasis and cell survival. J Biomed Sci 2022; 29:30. [PMID: 35538574 PMCID: PMC9087997 DOI: 10.1186/s12929-022-00815-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023] Open
Abstract
Background Autophagy plays important roles in cell homeostasis and protein quality control. Long non-coding RNAs (lncRNAs) have been revealed as an emerging class of autophagy regulators, but the majority of them function in regulating the expression of autophagy-related genes. LncRNAs that directly act on the core autophagic proteins remain to be explored. Methods Immunofluorescence staining and Western blotting were used to evaluate the function of BCRP3 in autophagy and aggrephagy. RNA immunoprecipitation and in vitro RNA–protein binding assay were used to evaluate the interaction of BCRP3 with its target proteins. Phosphatidylinositol 3-phosphate ELISA assay was used to quantify the enzymatic activity of VPS34 complex. qRT-PCR analysis was used to determine BCRP3 expression under stresses, whereas mass spectrometry and Gene Ontology analyses were employed to evaluate the effect of BCRP3 deficiency on proteome changes. Results We identified lncRNA BCRP3 as a positive regulator of autophagy. BCRP3 was mainly localized in the cytoplasm and bound VPS34 complex to increase its enzymatic activity. In response to proteotoxicity induced by proteasome inhibition or oxidative stress, BCRP3 was upregulated to promote aggrephagy, thereby facilitating the clearance of ubiquitinated protein aggregates. Proteomics analysis revealed that BCRP3 deficiency under proteotoxicity resulted in a preferential accumulation of proteins acting in growth inhibition, cell death, apoptosis, and Smad signaling. Accordingly, BCRP3 deficiency in proteotoxic cells compromised cell proliferation and survival, which was mediated in part through the upregulation of TGF-β/Smad2 pathway. Conclusions Our study identifies BCRP3 as an RNA activator of the VPS34 complex and a key role of BCRP3-mediated aggrephagy in protein quality control and selective degradation of growth and survival inhibitors to maintain cell fitness. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00815-0.
Collapse
Affiliation(s)
- Ruei-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chiu-Lin Luan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Chieh Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Li-Heng Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Yi Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
12
|
Büscher M, Horos R, Huppertz I, Haubrich K, Dobrev N, Baudin F, Hennig J, Hentze MW. Vault RNA1-1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA (NEW YORK, N.Y.) 2022; 28:742-755. [PMID: 35210358 PMCID: PMC9014876 DOI: 10.1261/rna.079129.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 05/29/2023]
Abstract
Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational mechanisms. We have recently shown that the small, noncoding vault RNA1-1 negatively riboregulates p62 oligomerization in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerization are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and we identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.
Collapse
Affiliation(s)
- Magdalena Büscher
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Rastislav Horos
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ina Huppertz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nikolay Dobrev
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Florence Baudin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Janosch Hennig
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
13
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 PMCID: PMC8142890 DOI: 10.1016/j.molcel.2021.05.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
14
|
Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021; 81:2851-2867.e7. [PMID: 34118193 DOI: 10.1101/2020.11.25.398008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Marko Noerenberg
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Mohamed Kammoun
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ni Shuai
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Anna Andrejeva
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Natasha Johnson
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| | - Michael L Knight
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
| | - Javier Martinez
- Center of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany; Division Virus-Associated Carcinogenesis, Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK; Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, UK; The Rosalind Franklin Institute, OX11 0FA Oxfordshire, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, G61 1QH Glasgow, Scotland, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| |
Collapse
|
15
|
The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochem Soc Trans 2021; 49:1099-1108. [PMID: 34110361 DOI: 10.1042/bst20200664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme-RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme-RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme-RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme-RNA interactions in connecting intermediary metabolism and gene expression.
Collapse
|
16
|
Ferro I, Gavini J, Gallo S, Bracher L, Landolfo M, Candinas D, Stroka DM, Polacek N. The human vault RNA enhances tumorigenesis and chemoresistance through the lysosome in hepatocellular carcinoma. Autophagy 2021; 18:191-203. [PMID: 33960270 PMCID: PMC8865259 DOI: 10.1080/15548627.2021.1922983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The small non-coding VTRNA1-1 (vault RNA 1–1) is known to confer resistance to apoptosis in several malignant cell lines and to also modulate the macroautophagic/autophagic flux in hepatocytes, thus highlighting its pro-survival role. Here we describe a new function of VTRNA1-1 in regulating in vitro and in vivo tumor cell proliferation, tumorigenesis and chemoresistance. Knockout (KO) of VTRNA1-1 in human hepatocellular carcinoma cells reduced nuclear localization of TFEB (transcription factor EB), leading to a downregulation of the coordinated lysosomal expression and regulation (CLEAR) network genes and lysosomal compartment dysfunction. We demonstrate further that impaired lysosome function due to loss of VTRNA1-1 potentiates the anticancer effect of conventional chemotherapeutic drugs. Finally, loss of VTRNA1-1 reduced drug lysosomotropism allowing higher intracellular compound availability and thereby significantly reducing tumor cell proliferation in vitro and in vivo. These findings reveal a so far unknown role of VTRNA1-1 in the intracellular catabolic compartment and describe its contribution to lysosome-mediated chemotherapy resistance. Abbreviations: ATP6V0D2: ATPase H+ transporting V0 subunit d2; BafA: bafilomycin A1; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; DMSO: dimethyl sulfoxide; GST-BHMT: glutathionine S-transferase N-terminal to betaine–homocysteine S-methyltransferase; HCC: hepatocellular carcinoma; LAMP1: lysosomal associated membrane protein 1; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAPK: mitogen-activated protein kinase; MITF: melanocyte inducing transcription factor; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ncRNA: non-coding RNA; RNP: ribonucleoprotein; SF: sorafenib; SQSTM1/p62: sequestosome 1; STS: staurosporine; tdRs: tRNA-derived RNAs; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; vtRNA: vault RNA transcript.
Collapse
Affiliation(s)
- Iolanda Ferro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stefano Gallo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lisamaria Bracher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marc Landolfo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Deborah M Stroka
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Iakovlev M, Faravelli S, Becskei A. Gene Families With Stochastic Exclusive Gene Choice Underlie Cell Adhesion in Mammalian Cells. Front Cell Dev Biol 2021; 9:642212. [PMID: 33996799 PMCID: PMC8117012 DOI: 10.3389/fcell.2021.642212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Exclusive stochastic gene choice combines precision with diversity. This regulation enables most T-cells to express exactly one T-cell receptor isoform chosen from a large repertoire, and to react precisely against diverse antigens. Some cells express two receptor isoforms, revealing the stochastic nature of this process. A similar regulation of odorant receptors and protocadherins enable cells to recognize odors and confer individuality to cells in neuronal interaction networks, respectively. We explored whether genes in other families are expressed exclusively by analyzing single-cell RNA-seq data with a simple metric. This metric can detect exclusivity independently of the mean value and the monoallelic nature of gene expression. Chromosomal segments and gene families are more likely to express genes concurrently than exclusively, possibly due to the evolutionary and biophysical aspects of shared regulation. Nonetheless, gene families with exclusive gene choice were detected in multiple cell types, most of them are membrane proteins involved in ion transport and cell adhesion, suggesting the coordination of these two functions. Thus, stochastic exclusive expression extends beyond the prototypical families, permitting precision in gene choice to be combined with the diversity of intercellular interactions.
Collapse
|
18
|
Abstract
The small non-coding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. vtRNAs regulate a variety of cellular functions when unassociated with the vault complex. Human has four vtRNA paralogs (hvtRNA1-1, hvtRNA1-2, hvtRNA1-3, hvtRNA2-1), which are highly similar and differ only slightly in primary and secondary structure. Despite the increasing research on vtRNAs, a feature that distinguishes one hvtRNA from the others has not been recognized. Recently, we demonstrated that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. Here we showed that expression ofhvtRNA1-1, but not hvtRNA2-1 increases the expression of synaptic marker proteins, ERK phosphorylation and the number of PSD95 and Synapsin I double positive puncta to an extent similar to that of mvtRNA, suggesting that hvtRNA1-1 may enhance synapse formation. This finding opens new perspectives to uncover the function of the different vtRNA paralogs.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Moeka Ohno
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
19
|
Fort RS, Duhagon MA. Pan-cancer chromatin analysis of the human vtRNA genes uncovers their association with cancer biology. F1000Res 2021; 10:182. [PMID: 34354812 PMCID: PMC8287541 DOI: 10.12688/f1000research.28510.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNAs promoters are enriched in transcription factors related to viral infection. VtRNA2-1 is likely the most independently regulated homologue. VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA chromatin status cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, 11600, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay
| |
Collapse
|
20
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
21
|
|
22
|
Zimta AA, Sigurjonsson OE, Gulei D, Tomuleasa C. The Malignant Role of Exosomes as Nanocarriers of Rare RNA Species. Int J Mol Sci 2020; 21:ijms21165866. [PMID: 32824183 PMCID: PMC7461500 DOI: 10.3390/ijms21165866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, advancements in the oncology sector regarding diagnosis methods allow us to specifically detect an increased number of cancer patients, some of them in incipient stages. However, one of the main issues consists of the invasive character of most of the diagnosis protocols or complex medical procedures associated with it, that impedes part of the patients to undergo routine checkups. Therefore, in order to increase the number of cancer cases diagnosed in incipient stages, other minimally invasive alternatives must be considered. The current review paper presents the value of rare RNA species isolated from circulatory exosomes as biomarkers of diagnosis, prognosis or even therapeutic intervention. Rare RNAs are most of the time overlooked in current research in favor of the more abundant RNA species like microRNAs. However, their high degree of stability, low variability and, for most of them, conservation across species could shift the interest toward these types of RNAs. Moreover, due to their low abundance, the variation interval in terms of the number of sequences with differential expression between samples from healthy individuals and cancer patients is significantly diminished and probably easier to interpret in a clinical context.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali University Hospital, 121 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 107 Reykjavik, Iceland
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Correspondence: or
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells 2020; 9:cells9081758. [PMID: 32708015 PMCID: PMC7463552 DOI: 10.3390/cells9081758] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine is often associated as an epigenetic modifier in DNA. However, it is also found increasingly in a plethora of RNA species, predominantly transfer RNAs, but increasingly found in cytoplasmic and mitochondrial ribosomal RNAs, enhancer RNAs, and a number of long noncoding RNAs. Moreover, this modification can also be found in messenger RNAs and has led to an increasing appreciation that RNA methylation can functionally regulate gene expression and cellular activities. In mammalian cells, the addition of m5C to RNA cytosines is carried out by enzymes of the NOL1/NOP2/SUN domain (NSUN) family as well as the DNA methyltransferase homologue DNMT2. In this regard, NSUN2 is a critical RNA methyltransferase for adding m5C to mRNA. In this review, using non-small cell lung cancer and other cancers as primary examples, we discuss the recent developments in the known functions of this RNA methyltransferase and its potential critical role in cancer.
Collapse
Affiliation(s)
- Anitha Chellamuthu
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland;
- Thoracic Oncology Research Group, St. James’s Hospital, Dublin D08 RX0X, Ireland
- Correspondence:
| |
Collapse
|
24
|
Bracher L, Ferro I, Pulido-Quetglas C, Ruepp MD, Johnson R, Polacek N. Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Biomolecules 2020; 10:biom10040614. [PMID: 32316166 PMCID: PMC7226377 DOI: 10.3390/biom10040614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory non-protein coding RNAs perform a remarkable variety of complex biological functions. Previously, we demonstrated a role of the human non-coding vault RNA1-1 (vtRNA1-1) in inhibiting intrinsic and extrinsic apoptosis in several cancer cell lines. Yet on the molecular level, the function of the vtRNA1-1 is still not fully clear. Here, we created HeLa knock-out cell lines revealing that prolonged starvation triggers elevated levels of apoptosis in the absence of vtRNA1-1 but not in vtRNA1-3 knock-out cells. Next-generation deep sequencing of the mRNome identified the PI3K/Akt pathway and the ERK1/2 MAPK cascade, two prominent signaling axes, to be misregulated in the absence of vtRNA1-1 during starvation-mediated cell death conditions. Expression of vtRNA1-1 mutants identified a short stretch of 24 nucleotides of the vtRNA1-1 central domain as being essential for successful maintenance of apoptosis resistance. This study describes a cell signaling-dependent contribution of the human vtRNA1-1 to starvation-induced programmed cell death.
Collapse
Affiliation(s)
- Lisamaria Bracher
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
| | - Iolanda Ferro
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
| | - Carlos Pulido-Quetglas
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland;
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- United Kingdom Dementia Research Institute, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9NU, UK
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland; (L.B.); (I.F.); (M.-D.R.)
- Correspondence:
| |
Collapse
|