1
|
Meza Monge K, Rosa C, Sublette C, Pratap A, Kovacs EJ, Idrovo JP. Navigating Hemorrhagic Shock: Biomarkers, Therapies, and Challenges in Clinical Care. Biomedicines 2024; 12:2864. [PMCID: PMC11673713 DOI: 10.3390/biomedicines12122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
Hemorrhagic shock remains a leading cause of preventable death worldwide, with mortality patterns varying significantly based on injury mechanisms and severity. This comprehensive review examines the complex pathophysiology of hemorrhagic shock, focusing on the temporal evolution of inflammatory responses, biomarker utility, and evidence-based therapeutic interventions. The inflammatory cascade progresses through distinct phases, beginning with tissue injury and endothelial activation, followed by a systemic inflammatory response that can transition to devastating immunosuppression. Recent advances have revealed pattern-specific responses between penetrating and blunt trauma, necessitating tailored therapeutic approaches. While damage control resuscitation principles and balanced blood product administration have improved outcomes, many molecular targeted therapies remain investigational. Current evidence supports early hemorrhage control, appropriate blood product ratios, and time-sensitive interventions like tranexamic acid administration. However, challenges persist in biomarker validation, therapeutic timing, and implementation of personalized treatment strategies. Future directions include developing precision medicine approaches, real-time monitoring systems, and novel therapeutic modalities while addressing practical implementation barriers across different healthcare settings. Success in hemorrhagic shock management increasingly depends on integrating multiple interventions across different time points while maintaining focus on patient-centered outcomes.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Caleb Rosa
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Christopher Sublette
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Akshay Pratap
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of G.I, Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO 80045, USA; (K.M.M.); (C.R.); (C.S.); (A.P.); (E.J.K.)
| |
Collapse
|
2
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
3
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G Manole
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M Voiculescu
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E Hinescu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Mason RP. Eicosapentaenoic Acid Improves Endothelial Nitric Oxide Bioavailability Via Changes in Protein Expression During Inflammation. J Am Heart Assoc 2024; 13:e034076. [PMID: 38958135 PMCID: PMC11292741 DOI: 10.1161/jaha.123.034076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Endothelial cell (EC) dysfunction involves reduced nitric oxide (NO) bioavailability due to NO synthase uncoupling linked to increased oxidation and reduced cofactor availability. Loss of endothelial function and NO bioavailability are associated with inflammation, including leukocyte activation. Eicosapentaenoic acid (EPA) administered as icosapent ethyl reduced cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) in relation to on-treatment EPA blood levels. The mechanisms of cardiovascular protection for EPA remain incompletely elucidated but likely involve direct effects on the endothelium. METHODS AND RESULTS In this study, human ECs were treated with EPA and challenged with the cytokine IL-6 (interleukin-6). Proinflammatory responses in the ECs were confirmed by ELISA capture of sICAM-1 (soluble intercellular adhesion molecule-1) and TNF-α (tumor necrosis factor-α). Global protein expression was determined using liquid chromatography-mass spectrometry tandem mass tag. Release kinetics of NO and peroxynitrite were monitored using porphyrinic nanosensors. IL-6 challenge induced proinflammatory responses from the ECs as evidenced by increased release of sICAM-1 and TNF-α, which correlated with a loss of NO bioavailability. ECs pretreated with EPA modulated expression of 327 proteins by >1-fold (P<0.05), compared with IL-6 alone. EPA augmented expression of proteins involved in NO production, including heme oxygenase-1 and dimethylarginine dimethylaminohydrolase-1, and 34 proteins annotated as associated with neutrophil degranulation. EPA reversed the endothelial NO synthase uncoupling induced by IL-6 as evidenced by an increased [NO]/[peroxynitrite] release ratio (P<0.05). CONCLUSIONS These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.
Collapse
Affiliation(s)
- Samuel C. R. Sherratt
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Elucida ResearchBeverlyMAUSA
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Hazem Dawoud
- Nanomedical Research LaboratoryOhio UniversityAthensOHUSA
| | - Deepak L. Bhatt
- Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - R. Preston Mason
- Elucida ResearchBeverlyMAUSA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
5
|
Hernández González LL, Pérez-Campos Mayoral L, Hernández-Huerta MT, Mayoral Andrade G, Martínez Cruz M, Ramos-Martínez E, Pérez-Campos Mayoral E, Cruz Hernández V, Antonio García I, Matias-Cervantes CA, Avendaño Villegas ME, Lastre Domínguez CM, Romero Díaz C, Ruiz-Rosado JDD, Pérez-Campos E. Targeting Neutrophil Extracellular Trap Formation: Exploring Promising Pharmacological Strategies for the Treatment of Preeclampsia. Pharmaceuticals (Basel) 2024; 17:605. [PMID: 38794175 PMCID: PMC11123764 DOI: 10.3390/ph17050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κβ inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Leticia Lorena Hernández González
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Faculty of Biological Systems and Technological Innovation, Autonomous University “Benito Juárez” of Oaxaca, Oaxaca 68125, Mexico
| | - Laura Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Gabriel Mayoral Andrade
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | - Edgar Ramos-Martínez
- School of Sciences, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Eduardo Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | | | | | - Carlos Alberto Matias-Cervantes
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Miriam Emily Avendaño Villegas
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | | | - Carlos Romero Díaz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Research Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Eduardo Pérez-Campos
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Clinical Pathology Laboratory, “Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
6
|
Song C, Liu W, Luo Y, Liu J, Jiang G, Wang R, He Z, Wang X, Mao W. Alterations in the immune landscape characterized by inflammatory activation and immune escape within 12 h after trauma. Immunobiology 2024; 229:152801. [PMID: 38593729 DOI: 10.1016/j.imbio.2024.152801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Trauma is statistically a significant cause of mortality among patients across countries. Nevertheless, the precise correlation between genetic diagnostic markers and the intricate mechanism of trauma remains indistinct. METHODS Our study exclusively centered on trauma patients and selected three trauma-related datasets from the Gene Expression Omnibus (GEO) database, all of which had blood samples collected within post-traumatic 12 h. Differential gene screening, the WGCNA and Cytoscape software were employed to analyze the two datasets, with a particular emphasis on the top 100 genes selected based on MCC algorithm scores. A logistic diagnostic model was constructed by analyzing the intersection genes in the third dataset, leading to the identification of diagnostic biomarkers with high efficiency. The global immune landscape of these patients was extensively investigated using a multidimensional approach. Meanwhile, the underlying pathological and physiological mechanisms associated with early trauma status are summarized by integrating existing literature. RESULTS Out of these two GEO datasets, 21 overlapping genes were identified and incorporated into in the logistic diagnostic model constructed in the GSE36809 dataset. A panel of 9 genes was uncovered as a diagnostic biomarker, and their expression and correlation were subsequently verified. Additionally, by virtue of various algorithms, the findings revealed an upregulation of neutrophil expression and a downregulation of CD8+ T cell expression, indicating characteristic early trauma-induced inflammation activation and immune suppression. The correlation observed between the feature genes and immune cells serves to validate the exceptional diagnostic capability of these 9 genes in identifying trauma status and their promising potential for patients who could benefit from targeted immune interventions. Drawing from these findings, the discussion section offers insights into the underlying pathological and physiological mechanisms at play. CONCLUSION Our research has discovered a novel diagnostic biomarker and unveiled its association with post-traumatic immune alterations. This breakthrough enables accurate and timely diagnosis of early trauma, facilitating the implementation of appropriate healthcare interventions.
Collapse
Affiliation(s)
- Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Yu Luo
- Department of Emergency Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiwei Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
7
|
Ben Shimol J. Perimenopause in women with rheumatologic diseases: a spotlight on an under-addressed transition. Climacteric 2024; 27:115-121. [PMID: 37990992 DOI: 10.1080/13697137.2023.2276201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Abundant research has been published describing the effects invoked during menopause across different organ systems. Changing levels of estrogen and progesterone result in bidirectional alterations of immune cell pathways. Overall, the net trend dampens immunoregulation and promotes inflammation. In paradigmatic rheumatologic diseases, the combined effect is far from predictable. While some features may abate during menopause, studies have shown a general increased frequency toward disease exacerbation. Similarly, while impossible to isolate the ramifications of menopause in women with fibromyalgia, a tendency toward enhanced symptoms is unquestionably apparent. Furthermore, the comorbidities accrued by increasing age and the consequences of long-term medication use may also confound this picture. Periodic rheumatologic visits are warranted, with clinical assessments directed toward a multi-disciplinary approach. Ultimately, while an arsenal of effective tools is available for caring for these women and their underlying conditions, more studies are needed to better clarify how the different stages surrounding perimenopause affect subpopulations with rheumatic diseases and fibromyalgia-related disorders so that clinical course can be predicted and addressed prior to the emergence of symptomatology.
Collapse
Affiliation(s)
- J Ben Shimol
- Department of Rheumatology, Barzilai University Medical Center, Ashqelon, Israel
| |
Collapse
|
8
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
9
|
Mani S, Mirza H, Ziegler J, Chandrasekharan P. Early Pulmonary Hypertension in Preterm Infants. Clin Perinatol 2024; 51:171-193. [PMID: 38325940 PMCID: PMC10850766 DOI: 10.1016/j.clp.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary hypertension (PH) in preterm neonates has multifactorial pathogenesis with unique characteristics. Premature surfactant-deficient lungs are injured following exposure to positive pressure ventilation and high oxygen concentrations resulting in variable phenotypes of PH. The prevalence of early PH is variable and reported to be between 8% and 55% of extremely preterm infants. Disruption of the lung development and vascular signaling pathway could lead to abnormal pulmonary vascular transition. The management of early PH and the off-label use of selective pulmonary vasodilators continue to be controversial.
Collapse
Affiliation(s)
- Srinivasan Mani
- Section of Neonatology, Department of Pediatrics, The University of Toledo/ ProMedica Russell J. Ebeid Children's Hospital, Toledo, OH 43606, USA
| | - Hussnain Mirza
- Section of Neonatology, Department of Pediatrics, Advent Health for Children/ UCF College of Medicine, Orlando, FL 32408, USA
| | - James Ziegler
- Division of Cardiovascular Diseases, Department of Pediatrics, Hasbro Children's Hospital/ Brown University, Providence, RI 02903, USA
| | - Praveen Chandrasekharan
- Division of Neonatology, Department of Pediatrics, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 32408, USA; Oishei Children's Hospital, 818 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int J Mol Sci 2024; 25:1560. [PMID: 38338837 PMCID: PMC10855638 DOI: 10.3390/ijms25031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
11
|
Reis-Mendes A, Ferreira M, Duarte JA, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. The role of inflammation and antioxidant defenses in the cardiotoxicity of doxorubicin in elderly CD-1 male mice. Arch Toxicol 2023; 97:3163-3177. [PMID: 37676301 PMCID: PMC10567829 DOI: 10.1007/s00204-023-03586-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent used against several cancer types. However, due to its cardiotoxic adverse effects, the use of this drug may be also life-threatening. Although most cancer patients are elderly, they are poorly represented and evaluated in pre-clinical and clinical studies. Considering this, the present work aims to evaluate inflammation and oxidative stress as the main mechanisms of DOX-induced cardiotoxicity, in an innovative approach using an experimental model constituted of elderly animals treated with a clinically relevant human cumulative dose of DOX. Elderly (18-20 months) CD-1 male mice received biweekly DOX administrations, for 3 weeks, to reach a cumulative dose of 9.0 mg/kg. One week (1W) or two months (2 M) after the last DOX administration, the heart was collected to determine both drug's short and longer cardiac adverse effects. The obtained results showed that DOX causes cardiac histological damage and fibrosis at both time points. In the 1W-DOX group, the number of nuclear factor kappa B (NF-κB) p65 immunopositive cells increased and a trend toward increased NF-κB p65 expression was seen. An increase of inducible nitric oxide synthase (iNOS) and interleukin (IL)-33 and a trend toward increased IL-6 and B-cell lymphoma-2-associated X (Bax) expression were seen after DOX. In the same group, a decrease in IL-1β, p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3)-I, p38 mitogen-activated protein kinase (MAPK) expression was observed. Contrariwise, the animals sacrificed 2 M after DOX showed a significant increase in glutathione peroxidase 1 and Bax expression with persistent cardiac damage and fibrosis, while carbonylated proteins, erythroid-2-related factor 2 (Nrf2), NF-κB p65, myeloperoxidase, LC3-I, and LC3-II expression decreased. In conclusion, our study demonstrated that in an elderly mouse population, DOX induces cardiac inflammation, autophagy, and apoptosis in the heart in the short term. When kept for a longer period, oxidative-stress-linked pathways remained altered, as well as autophagy markers and tissue damage after DOX treatment, emphasizing the need for continuous post-treatment cardiac monitoring.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Mariana Ferreira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José Alberto Duarte
- Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, 4200-450, Porto, Portugal
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, 4050-313, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
12
|
Zhu H, He M, Wang Y, Zhang Y, Dong J, Chen B, Li Y, Zhou L, Du L, Liu Y, Zhang W, Ta D, Duan S. Low-intensity pulsed ultrasound alleviates doxorubicin-induced cardiotoxicity via inhibition of S100a8/a9-mediated cardiac recruitment of neutrophils. Bioeng Transl Med 2023; 8:e10570. [PMID: 38023700 PMCID: PMC10658545 DOI: 10.1002/btm2.10570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 12/01/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity limits its broad use as a chemotherapy agent. The development of effective and non-invasive strategies to prevent DOX-associated adverse cardiac events is urgently needed. We aimed to examine whether and how low-intensity pulsed ultrasound (LIPUS) plays a protective role in DOX-induced cardiotoxicity. Male C57BL/6J mice were used to establish models of both acute and chronic DOX-induced cardiomyopathy. Non-invasive LIPUS therapy was conducted for four consecutive days after DOX administration. Cardiac contractile function was evaluated by echocardiography. Myocardial apoptosis, oxidative stress, and fibrosis were analyzed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining, dihydroethidium (DHE) staining, and picrosirius red staining assays. RNA-seq analysis was performed to unbiasedly explore the possible downstream regulatory mechanisms. Neutrophil recruitment and infiltration in the heart were analyzed by flow cytometry. The S100a8/a9 inhibitor ABR-238901 was utilized to identify the effect of S100a8/a9 signaling. We found that LIPUS therapy elicited a great benefit on DOX-induced heart contractile dysfunction in both acute and chronic DOX models. Chronic DOX administration increased serum creatine kinase and lactate dehydrogenase levels, as well as myocardial apoptosis, all of which were significantly mitigated by LIPUS. In addition, LIPUS treatment prevented chronic DOX-induced cardiac oxidative stress and fibrosis. RNA-seq analysis revealed that LIPUS treatment partially reversed alterations of gene expression induced by DOX. Gene ontology (GO) analysis of the downregulated genes between DOX-LIPUS and DOX-Sham groups indicated that inhibition of neutrophil chemotaxis might be involved in the protective effects of LIPUS therapy. Flow cytometry analysis illustrated the inhibitory effects of LIPUS on DOX-induced neutrophil recruitment and infiltration in the heart. Moreover, S100 calcium binding protein A8/A9 (S100a8/a9) was identified as a potential key target of LIPUS therapy. S100a8/a9 inhibition by ABR-238901 showed a similar heart protective effect against DOX-induced cardiomyopathy to LIPUS treatment. LIPUS therapy prevents DOX-induced cardiotoxicity through inhibition of S100a8/a9-mediated neutrophil recruitment to the heart, suggesting its potential application in cancer patients undergoing chemotherapy with DOX.
Collapse
Affiliation(s)
- Hong Zhu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan UniversityShanghaiChina
| | - Yong‐Li Wang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yuanxin Zhang
- Department of CardiologyNinth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingsong Dong
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan UniversityShanghaiChina
| | - Bo‐Yan Chen
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yu‐Lin Li
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Lu‐Jun Zhou
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Lin‐Juan Du
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Wu‐Chang Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan UniversityShanghaiChina
- Department of Rehabilitation MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Sheng‐Zhong Duan
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
13
|
Perdomo J, Leung HHL. Immune Thrombosis: Exploring the Significance of Immune Complexes and NETosis. BIOLOGY 2023; 12:1332. [PMID: 37887042 PMCID: PMC10604267 DOI: 10.3390/biology12101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Neutrophil extracellular traps (NETs) are major contributors to inflammation and autoimmunity, playing a key role in the development of thrombotic disorders. NETs, composed of DNA, histones, and numerous other proteins serve as scaffolds for thrombus formation and promote platelet activation, coagulation, and endothelial dysfunction. Accumulating evidence indicates that NETs mediate thrombosis in autoimmune diseases, viral and bacterial infections, cancer, and cardiovascular disease. This article reviews the role and mechanisms of immune complexes in NETs formation and their contribution to the generation of a prothrombotic state. Immune complexes are formed by interactions between antigens and antibodies and can induce NETosis by the direct activation of neutrophils via Fc receptors, via platelet activation, and through endothelial inflammation. We discuss the mechanisms by which NETs induced by immune complexes contribute to immune thrombotic processes and consider the potential development of therapeutic strategies. Targeting immune complexes and NETosis hold promise for mitigating thrombotic events and reducing the burden of immune thrombosis.
Collapse
Affiliation(s)
- José Perdomo
- Haematology Research Group, Faculty Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Halina H. L. Leung
- Haematology Research Unit, St George & Sutherland Clinical Campuses, Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Kogarah, NSW 2217, Australia;
| |
Collapse
|
14
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
15
|
Sherratt SCR, Libby P, Dawoud H, Bhatt DL, Malinski T, Mason RP. Eicosapentaenoic acid (EPA) reduces pulmonary endothelial dysfunction and inflammation due to changes in protein expression during exposure to particulate matter air pollution. Biomed Pharmacother 2023; 162:114629. [PMID: 37027984 DOI: 10.1016/j.biopha.2023.114629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
AIMS Inhalation of air pollution small particle matter (PM) is a leading cause of cardiovascular (CV) disease. Exposure to PMs causes endothelial cell (EC) dysfunction as evidenced by nitric oxide (NO) synthase uncoupling, vasoconstriction and inflammation. Eicosapentaenoic acid (EPA) has been shown to mitigate PM-induced adverse cardiac changes in patients receiving omega-3 fatty acid supplementation. We set out to determine the pro-inflammatory effects of multiple PMs (urban and fine) on pulmonary EC NO bioavailability and protein expression, and whether EPA restores EC function under these conditions. METHODS AND RESULTS We pretreated pulmonary ECs with EPA and then exposed them to urban or fine air pollution PMs. LC/MS-based proteomic analysis to assess relative expression levels. Expression of adhesion molecules was measured by immunochemistry. The ratio of NO to peroxynitrite (ONOO-) release, an indication of eNOS coupling, was measured using porphyrinic nanosensors following calcium stimulation. Urban/fine PMs also modulated 9/12 and 13/36 proteins, respectively, linked to platelet and neutrophil degranulation pathways and caused > 50% (p < 0.001) decrease in the stimulated NO/ONOO- release ratio. EPA treatment altered expression of proteins involved in these inflammatory pathways, including a decrease in peroxiredoxin-5 and an increase in superoxide dismutase-1. EPA also increased expression of heme oxygenase-1 (HMOX1), a cytoprotective protein, by 2.1-fold (p = 0.024). EPA reduced elevations in sICAM-1 levels by 22% (p < 0.01) and improved the NO/ONOO- release ratio by > 35% (p < 0.05). CONCLUSION These cellular changes may contribute to anti-inflammatory, cytoprotective and lipid changes associated with EPA treatment during air pollution exposure.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Elucida Research LLC, Beverly, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, USA.
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Kammersgaard MB, Kielsen K, Nielsen CH, Ifversen M, Bohr AH, Müller K. Plasma Levels of MRP-8/14 Associate With Neutrophil Recovery, Bacterial Bloodstream Infections, and Engraftment Syndrome Following Pediatric Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:242.e1-242.e9. [PMID: 36587741 DOI: 10.1016/j.jtct.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Neutrophil engraftment is essential for the successful outcome after allogeneic hematopoietic stem cell transplantation (HSCT), but neutrophil activation may also induce transplant-related complications. Myeloid-related protein (MRP)-8/14 is expressed in granulocytes during inflammatory conditions and secreted in response to tissue damage along with the release of pro-inflammatory cytokines together with leukocyte recruitment and activation. In this study, we investigated associations between levels of the neutrophil activition marker MRP-8/14, neutrophil recovery and toxicities after pediatric HSCT. We included 73 children undergoing allogeneic HSCT using bone marrow or peripheral blood stem cell grafts from matched sibling or unrelated donors. Plasma levels of MRP-8/14 were measured by enzyme-linked immunosorbent assay from preconditioning until 6 months after transplantation. Overall, MRP-8/14 levels decreased from pre-conditioning to a nadir at day 7 and then rose again until day 28, preceding the reappearance of neutrophils. MRP-8/14 levels were significantly reduced at day 14 in patients with delayed neutrophil engraftment compared with patients who engrafted by day 21 (0.20 versus 0.48 μg/mL, P = .0012) and in patients who developed bacterial bloodstream infections compared to patients without this complication (0.2 versus 0.36 μg/mL, P = .048). Patients developing engraftment syndrome had significantly elevated MRP-8/14 levels at day 7 and 21 compared to patients without engraftment syndrome (0.32 versus 0.2 μg/mL, P = .042 and 1.9 versus 0.80 μg/mL, P = .039, respectively), as well as increased neutrophil counts from day 9 to 25 (P ≤ .016). Similarly, neutrophil counts were increased at day 13 to 17 in patients with acute graft-versus-host disease grade III-IV compared with grade 0-II. This study is the first to monitor neutrophil activation by MRP-8/14 in HSCT patients in relation to infectious, as well as noninfectious post-transplantation complications. Our results provide increased insights into the pathophysiology of these complications, and further studies should explore the potential use of MRP-8/14 as a clinically useful biomarker.
Collapse
Affiliation(s)
- Marte B Kammersgaard
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Katrine Kielsen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Denmark.
| | - Claus H Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Denmark
| | | | - Klaus Müller
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
17
|
Association of platelet-to-neutrophil ratios with 1-year outcome and mortality in patients with acute ischemic stroke. Neurosci Lett 2023; 798:137016. [PMID: 36529389 DOI: 10.1016/j.neulet.2022.137016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Platelet-neutrophil crosstalk is being increasingly recognized as a driver of inflammation and thrombosis in patients with ischemic stroke. The aim of this study was to investigate the potential of PNR value in predicting the long-term prognosis and evaluate whether or not an available and routine blood cell biomarker could help predict the long-term neurological function and mortality in AIS patients. METHODS A total of 718 patients with suspected acute ischemic stroke were involved and followed up for 1 year by standard telephone interview or reexamination. Kaplan-Meier curve, Univariate and Multivariate Cox Regression were analyzed using Statistical Packages for Social Sciences. RESULTS ROC curve for PNR to evaluate 1-year outcomes was analyzed and the area under the curve (AUC) was 0.659 (P < 0.001). The cutoff point was observed at 38.30, with a sensitivity of 53.09 % and a specificity of 71.25 %. Moreover, patients in PNR ≤ 38.30 were more likely to have more serious NIHSS on admission, 1-year mRS and higher 1-year mortality (P < 0.001, respectively). The 1-year mortality in the low PNR group was significantly higher than that of the high PNR group (log-rank tests: P < 0.0001). Age, NIHSS, RBC and PNR were combined into model B which significantly increased the AUC value from 0.736 to 0.888 compared to model A (including Age, NIHSS and RBC). CONCLUSION PNR may serve as a readily assessable biomarker for early predicting neurological deterioration and the long-term prognosis of AIS. The nomogram that included age, NIHSS, PNR and RBC may be a useful predictive tool for 1-year mortality.
Collapse
|
18
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
19
|
Ramachandran V, Mohanasundaram T, Tiwari R, Tiwari G, Vijayakumar P, Bhongiri B, Xavier RM. Nrf2 Mediated Heme Oxygenase-1 Activation Contributes to Diabetic Wound Healing - an Overview. Drug Res (Stuttg) 2022; 72:487-495. [PMID: 35931068 DOI: 10.1055/a-1899-8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Diabetic wound healing is a complicated procedure because hyperglycemia changes the various stages of wound healing. In type 2 diabetes mellitus (T2DM), oxidative stress is proven to be a critical factor in causing non-healing wounds and aggravating the inflammatory phase, resulting in the amputation of lower limbs in T2DM patients. This makes scientists figure out how to control oxidative stress and chronic inflammation at the molecular level. Nuclear factor erythroid 2- related factor 2 (Nrf2) releases antioxidant proteins to suppress reactive oxygen species (ROS) activation and inflammation. The current review discusses the role of Nrf2 in improving diabetic wound healing by reducing the production of ROS and thus reducing oxidative stress, as well as inhibiting nuclear factor kappa B (NF-kB) dissociation and nuclear translocation, which prevents the release of inflammatory mediators and increases antioxidant protein levels, thereby improving diabetic wound healing. As a result, the researcher will be able to find a more effective diabetic wound healing therapy.
Collapse
Affiliation(s)
- Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Tharani Mohanasundaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Ruchi Tiwari
- Pranveer Singh institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Pranveer Singh institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
| | - Putta Vijayakumar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Bhargav Bhongiri
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Rinu Mary Xavier
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
20
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
22
|
Parfenova NS. Platelets and other cells interactions in the atherosclerosis development. MEDICAL ACADEMIC JOURNAL 2021; 21:73-84. [DOI: 10.17816/maj72110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Atherosclerosis of the blood vessels is one of the main causes of severe chronic vascular pathologies, which quite often lead to the fatal end. It is well known that the development of atherosclerosis is an inflammatory process going through several stages until the formation of an atherosclerotic plaque. The latter, due to increased instability, would come off and cause thromboembolism. Low density lipoproteins, endothelium, platelets, neutrophils, monocytes / macrophages and smooth muscle cells of the vessel wall are all active participants in the development of atherosclerosis. Thus, they trigger and carry out the process by forming a platelet thrombus on the surface of the ulcerated calcified atherosclerotic plaque. In the recent time interest in the role of platelets in inflammatory processes has grown immensely, first of all due to their ability to interact with cells participating in different stages of atherosclerosis development through adhesion, formation of aggregations, the exchange of exovesicles and microparticles, as well as through the mutually increasing secretion of cytokines, chemokines, growth factors and other chemical mediators. This review is devoted to the role of platelets in the formation and regulation of the multicellular ensemble and also local cell modules specific for each stage of atherosclerosis development.
Collapse
|
23
|
Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. Int J Mol Sci 2021; 22:ijms222212380. [PMID: 34830261 PMCID: PMC8620148 DOI: 10.3390/ijms222212380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is strongly influenced by platelet activation. Platelet activation and thrombus formation at atherosclerotic plaque rupture sites is a dynamic process regulated by different signaling networks. Therefore, there are now focused efforts to search for novel bioactive compounds which target receptors and pathways in the platelet activation process while preserving normal hemostatic function. The antiplatelet activity of numerous fruits and vegetables and their multiple mechanisms of action have recently been highlighted. In this review, we review the antiplatelet actions of bioactive compounds via key pathways (protein disulfide isomerase, mitogen-activated protein kinases, mitochondrial function, cyclic adenosine monophosphate, Akt, and shear stress-induced platelet aggregation) with no effects on bleeding time. Therefore, targeting these pathways might lead to the development of effective antiplatelet strategies that do not increase the risk of bleeding.
Collapse
|
24
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
25
|
Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res 2021; 11:4070-4091. [PMID: 34659877 PMCID: PMC8493405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunction. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardiomyopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Issam Makhoul
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| |
Collapse
|
26
|
Wang S, Lai X, Li C, Chen M, Hu M, Liu X, Song Y, Deng Y. Sialic acid-conjugate modified doxorubicin nanoplatform for treating neutrophil-related inflammation. J Control Release 2021; 337:612-627. [PMID: 34332025 DOI: 10.1016/j.jconrel.2021.07.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Neutrophils, the most abundant leukocytes in human peripheral blood, are important effector cells that mediate the inflammatory response. During neutrophil dysfunction, excessive activation and uncontrolled infiltration are the core processes in the progression of inflammation-related diseases, including severe coronavirus disease-19 (COVID-19), sepsis, etc. Herein, we used sialic acid-modified liposomal doxorubicin (DOX-SAL) to selectively target inflammatory neutrophils in the peripheral blood and deliver DOX intracellularly, inducing neutrophil apoptosis, blocking neutrophil migration, and inhibiting the inflammatory response. Strong selectivity resulted from the specific affinity between SA and L-selectin, which is highly expressed on inflammatory neutrophil membranes. In inflammation models of acute lung inflammation/injury (ALI), sepsis, and rheumatoid arthritis (RA), DOX-SAL suppressed the inflammatory response, increased the survival of mice, and delayed disease progression, respectively. Moreover, DOX-SAL restored immune homeostasis in the body, without side effects. We have presented a targeted nanocarrier drug delivery system that can block the recruitment of inflammatory neutrophils, enabling specific inhibition of the core disease process and the potential to treat multiple diseases with a single drug. This represents a revolutionary treatment strategy for inflammatory diseases caused by inappropriate neutrophil activation.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
27
|
De Luca M, Bryan DR, Hunter GR. Circulating Levels of the Heparan Sulfate Proteoglycan Syndecan-4 Positively Associate with Blood Pressure in Healthy Premenopausal Women. Biomolecules 2021; 11:biom11030342. [PMID: 33668381 PMCID: PMC7996250 DOI: 10.3390/biom11030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Syndecans (SDCs) are transmembrane proteins that are present on most cell types where they play a role in multiple physiological processes, including cell-matrix adhesion and inflammation. Growing evidence suggests that elevated levels of both shed SDC1 and SDC4 are associated with hypertension and cardiovascular diseases, but their relationships with cardiovascular risk factors in healthy individuals are unknown. The primary objective of this study was to investigate whether serum levels of SDC4 and SDC1 were associated with body composition, hemodynamic parameters, pro-inflammatory cytokine concentrations, and urinary noradrenaline and dopamine levels in healthy women (17 African American and 20 European American) between the ages of 20 and 40 years old. Univariate analyses revealed only a significant (p < 0.05) inverse correlation between serum SDC1 and body fat percentage. On the other hand, serum SDC4 was positively correlated with systolic blood pressure, diastolic blood pressure, and urinary levels of noradrenaline and dopamine. Serum SDC4 was also a significant predictor of systolic blood pressure in a multivariate regression model that included fat-free mass and urinary dopamine levels as significant independent variables. The result did not change even adjusting for race. Our findings indicate that SDC4 has an important role in the physiological regulation of blood pressure.
Collapse
Affiliation(s)
- Maria De Luca
- Correspondence: ; Tel.: +1-205-934-7033; Fax: +1-205-934-7050
| | | | | |
Collapse
|