1
|
Ramenofsky M, Campion AW, Hwee DT, Wood SK, Krause JS, Németh Z, Pérez JH, Bodine S. Comparison of the Phenotypic Flexibility of Muscle and Body Condition of Migrant and Resident White-Crowned Sparrows. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:11-28. [PMID: 38717370 DOI: 10.1086/729666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.
Collapse
|
2
|
Elowe CR, Stager M, Gerson AR. Sarcolipin relates to fattening, but not sarco/endoplasmic reticulum Ca2+-ATPase uncoupling, in captive migratory gray catbirds. J Exp Biol 2024; 227:jeb246897. [PMID: 38044822 DOI: 10.1242/jeb.246897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
In order to complete their energetically demanding journeys, migratory birds undergo a suite of physiological changes to prepare for long-duration endurance flight, including hyperphagia, fat deposition, reliance on fat as a fuel source, and flight muscle hypertrophy. In mammalian muscle, SLN is a small regulatory protein which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis, increasing energy consumption, heat production, and cytosolic Ca2+ transients that signal for mitochondrial biogenesis, fatigue resistance and a shift to fatty acid oxidation. Using a photoperiod manipulation of captive gray catbirds (Dumetella carolinensis), we investigated whether SLN may play a role in coordinating the development of the migratory phenotype. In response to long-day photostimulation, catbirds demonstrated migratory restlessness and significant body fat stores, alongside higher SLN transcription while SERCA2 remained constant. SLN transcription was strongly correlated with h-FABP and PGC1α transcription, as well as fat mass. However, SLN was not significantly correlated with HOAD or CD36 transcripts or measurements of SERCA activity, SR membrane Ca2+ leak, Ca2+ uptake rates, pumping efficiency or mitochondrial biogenesis. Therefore, SLN may be involved in the process of storing fat and shifting to fat as a fuel, but the mechanism of its involvement remains unclear.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| |
Collapse
|
3
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
4
|
Krause JS, Watkins T, Reid AMA, Cheah JC, Pérez JH, Bishop VR, Ramenofsky M, Wingfield JC, Meddle SL. Gene expression of sex steroid metabolizing enzymes and receptors in the skeletal muscle of migrant and resident subspecies of white-crowned sparrow (Zonotrichia leucophrys). Oecologia 2022; 199:549-562. [PMID: 35732927 DOI: 10.1007/s00442-022-05204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Sarah Fleischmann 109, Reno, NV, 89557, USA. .,Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA.
| | - Trevor Watkins
- Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Sarah Fleischmann 109, Reno, NV, 89557, USA
| | - Angus M A Reid
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, Scotland, UK.,The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Jeffrey C Cheah
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Valerie R Bishop
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| | - Marilyn Ramenofsky
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - John C Wingfield
- Department of Neurobiology Physiology Behavior, University of California, Davis, CA, 95616, USA
| | - Simone L Meddle
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
5
|
Elowe CR, Gerson AR. Migratory disposition alters lean mass dynamics and protein metabolism in migratory White-throated Sparrows ( Zonotrichia albicollis). Am J Physiol Regul Integr Comp Physiol 2022; 323:R98-R109. [PMID: 35503523 DOI: 10.1152/ajpregu.00295.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Migratory birds seasonally increase fat stores and the capacity to use fat to fuel long-distance migratory flights. However, lean mass loss also occurs during migratory flights and, if adaptive, should exhibit seasonal changes in the capacity for protein metabolism. We conducted a photoperiod manipulation using captive White-throated Sparrows (Zonotrichia albicollis) to investigate seasonal changes in protein metabolism between the non-migratory "winter" condition and after exposure to a long-day "spring" photoperiod to stimulate the migratory condition. After photostimulation, birds in the migratory condition rapidly increased fat mass and activity of fat catabolism enzymes. Meanwhile, total lean mass did not change, but birds increased activity of protein catabolism enzymes and lost more water and lean mass during water-restricted metabolic testing. These data suggest that more protein may be catabolized during migratory seasons, corresponding with more water loss. Counter to predictions, birds in the migratory condition also showed an approximately 30-fold increase in muscle expression of sarcolipin, which binds to sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis. Our documented changes to protein catabolism enzymes and whole-animal lean mass dynamics may indicate protein breakdown or increased protein turnover is adaptive during migration in songbirds.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
6
|
Fudickar AM, Jahn AE, Ketterson ED. Animal Migration: An Overview of One of Nature's Great Spectacles. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-031035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.
Collapse
Affiliation(s)
- Adam M. Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Alex E. Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Ellen D. Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
7
|
Pradhan DS, Van Ness R, Jalabert C, Hamden JE, Austin SH, Soma KK, Ramenofsky M, Schlinger BA. Phenotypic flexibility of glucocorticoid signaling in skeletal muscles of a songbird preparing to migrate. Horm Behav 2019; 116:104586. [PMID: 31473198 DOI: 10.1016/j.yhbeh.2019.104586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023]
Abstract
Glucocorticoids are commonly associated with responses to stress, but other important functions include homeostatic regulation, energy metabolism and tissue remodeling. At low circulating levels, glucocorticoids bind to high-affinity mineralocorticoid receptors (MR) to activate tissue repair and homeostasis (anabolic pathways), whereas at elevated levels, glucocorticoids bind to glucocorticoid receptors (GR) to activate catabolic pathways. Long distance migrations, such as those performed by Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii), require modification of anatomy, physiology and behavior. Plasma corticosterone (CORT) increases in association with impending departure and flight and may promote muscle-specific anabolic states. To test this idea, we explored glucocorticoid signaling in the pectoralis (flight) and gastrocnemius (leg) muscles of male sparrows on the wintering grounds at three stages leading up to spring departure: winter (February), pre-nuptial molt (March), and pre-departure (April). CORT was detected in plasma and in both muscles, but measures of CORT signaling differed across muscles and stages. Expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) Type 2 (inactivates CORT) increased in the pectoralis at pre-departure, whereas 11β-HSD Type 1 (regenerates CORT) did not change. Neither of the two 11β-HSD isoforms was detectable in the gastrocnemius. Expression of MR, but not GR, was elevated in the pectoralis at pre-departure, while only GR expression was elevated at pre-nuptial molt in gastrocnemius. These data suggest that anabolic functions predominate in the pectoralis only while catabolic activity is undetected in either muscle at pre-departure.
Collapse
Affiliation(s)
- Devaleena S Pradhan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Laboratory for Neuroendocrinology, University of California, Los Angeles, United States of America.
| | - Raymond Van Ness
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Suzanne H Austin
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, United States of America
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology, Behavior, University of California, Davis, United States of America
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Laboratory for Neuroendocrinology, University of California, Los Angeles, United States of America; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States of America
| |
Collapse
|
8
|
Pradhan DS, Ma C, Schlinger BA, Soma KK, Ramenofsky M. Preparing to migrate: expression of androgen signaling molecules and insulin-like growth factor-1 in skeletal muscles of Gambel's white-crowned sparrows. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:113-123. [PMID: 30535830 DOI: 10.1007/s00359-018-1308-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Migratory birds, including Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii), exhibit profound modifications of skeletal muscles prior to migration, notably hypertrophy of the pectoralis muscle required for powered flight. Muscle growth may be influenced by anabolic effects of androgens; however, prior to spring departure, circulating androgens are low in sparrows. A seasonal increase in local androgen signaling may occur within muscle to promote remodeling. We measured morphological parameters, plasma and tissue levels of testosterone, as well as mRNA expression levels of androgen receptor, 5α-reductase (converts testosterone to 5α-dihydrotestosterone), and the androgen-dependent myotrophic factor insulin-like growth factor-1. We studied the pectoralis muscle as well as the gastrocnemius (leg) muscle of male sparrows across three stages on the wintering grounds: winter (February), pre-nuptial molt (March), and pre-departure (April). Testosterone levels were low, but detectable, in plasma and muscles at all three stages. Androgen receptor mRNA and 5α-reductase Type 1 mRNA increased at pre-departure, but did so in both muscles. Notably, mRNA levels of insulin-like growth factor-1, an androgen-dependent gene critical for muscle remodeling, increased at pre-departure in the pectoralis but decreased in the gastrocnemius. Taken together, these data suggest a site-specific molecular basis for muscle remodeling that may serve to enable long-distance flight.
Collapse
Affiliation(s)
- Devaleena S Pradhan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
- Laboratory for Neuroendocrinology, University of California, Los Angeles, USA.
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209-8007, USA.
| | - Chunqi Ma
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA
- Laboratory for Neuroendocrinology, University of California, Los Angeles, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Marilyn Ramenofsky
- Department of Neurobiology Physiology Behavior, University of California, Davis, USA
| |
Collapse
|
9
|
Watts HE, Cornelius JM, Fudickar AM, Pérez J, Ramenofsky M. Understanding variation in migratory movements: A mechanistic approach. Gen Comp Endocrinol 2018; 256:112-122. [PMID: 28756245 DOI: 10.1016/j.ygcen.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
Spatial and temporal fluctuations in resource availability have led to the evolution of varied migration patterns. In order to appropriately time movements in relation to resources, environmental cues are used to provide proximate information for timing and the endocrine system serves to integrate these external cues and behavioral and physiological responses. Yet, the regulatory mechanisms underlying migratory timing have rarely been compared across a broad range of migratory patterns. First, we offer an updated nomenclature of migration using a mechanistic perspective to clarify terminology describing migratory types in relation to ecology, behavior and endocrinology. We divide migratory patterns into three types: obligate, nomadic, and fugitive. Obligate migration is characterized by regular and directed annual movements between locations, most commonly for breeding and overwintering, where resources are predictable and sufficient. Nomadic migrations occur less predictably than do obligate migrations as animals make use of potentially rich but ephemeral resources that occur unpredictably in space or time. Fugitive migrations move animals away from an area in response to severe disruption of environmental conditions and occur as part of an emergency life history stage. We also consider partially migratory populations, which include a mix of sedentary and migratory individuals; the movement patterns of partial migrants are expected to fall into one of the three types above. For these various forms of migration, we review our understanding of the environmental cues and endocrine mechanisms that underlie the expression of a migratory state. Several common hormonal mechanisms exist across the varied migratory forms, but there are also important areas where further investigations are needed in order to gain broad insight into the origin of movements and the diversity of migratory patterns. We propose that taking a comparative approach across the migratory types that considers endocrine mechanisms will advance a new understanding of migration biology.
Collapse
Affiliation(s)
- Heather E Watts
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan Pérez
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| |
Collapse
|