1
|
Hovatter BT, Chester SGB, Wilson Mantilla GP. New records of early Paleocene (earliest Torrejonian) plesiadapiforms from northeastern Montana, USA, provide a window into the diversification of stem primates. J Hum Evol 2024; 192:103500. [PMID: 38762383 DOI: 10.1016/j.jhevol.2024.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 05/20/2024]
Abstract
Plesiadapiforms (putative stem primates) appear in the fossil record shortly after the Cretaceous/Paleogene boundary and subsequently radiated throughout the Paleocene into a taxonomically and ecomorphologically diverse group. The oldest known plesiadapiforms come from early Puercan (the oldest North American Land Mammal 'age' [NALMA] of the Cenozoic) deposits in northeastern Montana, and all records of Puercan plesiadapiforms are taxonomically restricted to members of the Purgatoriidae and the enigmatic genus Pandemonium. Plesiadapiform diversity substantially increased in the following Torrejonian NALMA, but the sparse record of faunas between the Puercan and the well-known middle and late Torrejonian has hampered our understanding of this important interval in early primate evolution. Here we report new plesiadapiform dental fossils from early Torrejonian (To1) deposits from the Tullock Member of the Fort Union Formation in northeastern Montana that record several poorly known taxa including members of the Purgatoriidae, Paromomyidae and Pandemonium, and that document the largest and most diverse assemblage of To1 plesiadapiforms known. We describe a new species of the purgatoriid Ursolestes (Ursolestes blissorum, sp. nov.) that represents the largest plesiadapiform known from the early Paleocene and, among other taxa, provides additional evidence that the temporal range of purgatoriids extended into the Torrejonian. Large sample sizes of the oldest known paromomyid, Paromomys farrandi, allowed us to document intraspecific variability and one undescribed tooth locus. Our observations illuminate changes in dental morphology of some taxa that occurred in To1 and may inform the acquisition of certain diagnostic plesiadapiform dental characters. We evaluate plesiadapiform species richness, mean body mass and body-mass disparity through the Paleocene and reveal unrecognized levels of richness in To1 and a general trend of stable body mass and body-mass disparity. Our findings contribute to documented patterns of plesiadapiform provincialism in the early Paleocene and shed light on the early stages of their Torrejonian radiation.
Collapse
Affiliation(s)
- Brody T Hovatter
- Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm-070, Box 351310, 3920 Okanogan Lane NE, Seattle, WA, 98195-1310, USA; Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, 4303 Memorial Way NE, Seattle, WA, 98195, USA.
| | - Stephen G B Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; New York Consortium in Evolutionary Primatology, 200 Central Park West, New York, NY, 10024, USA
| | - Gregory P Wilson Mantilla
- Department of Biology, University of Washington, 3747 West Stevens Way NE, LSB, Rm B147A, Seattle, WA, 98195-1800, USA; Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, 4303 Memorial Way NE, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Konkel MK, Casanova EL. A mobile DNA sequence could explain tail loss in humans and apes. Nature 2024; 626:958-959. [PMID: 38418909 DOI: 10.1038/d41586-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
3
|
Crowell JW, Wible JR, Chester SGB. Basicranial evidence suggests picrodontid mammals are not stem primates. Biol Lett 2024; 20:20230335. [PMID: 38195058 PMCID: PMC10776232 DOI: 10.1098/rsbl.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
The Picrodontidae from the middle Palaeocene of North America are enigmatic placental mammals that were allied with various mammalian groups but are generally now considered to have close affinities to paromomyid and palaechthonid plesiadapiforms based on proposed dental synapomorphies. The picrodontid fossil record consists entirely of dental and gnathic remains except for one partial cranium of Zanycteris paleocenus (AMNH 17180). Here, we use µCT technology to unveil previously undocumented morphology in AMNH 17180, describe and compare the basicranial morphology of a picrodontid for the first time, and incorporate these new data into cladistic analyses. The basicranial morphology of Z. paleocenus is distinct from plesiadapiforms and shares similarities with the Palaeogene Apatemyidae and Nyctitheriidae. Results of cladistic analyses incorporating these novel data suggest picrodontids are not stem primates nor euarchontan mammals and that the proposed dental synapomorphies uniting picrodontids with plesiadapiforms and, by extension, primates evolved independently. Results highlight the need to scrutinize proposed synapomorphies of highly autapomorphic taxa with limited fossil records.
Collapse
Affiliation(s)
- Jordan W. Crowell
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - John R. Wible
- Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206, USA
| | - Stephen G. B. Chester
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
4
|
Wu Y, Fan L, Bai L, Li Q, Gu H, Sun C, Jiang T, Feng J. Ambush predation and the origin of euprimates. SCIENCE ADVANCES 2022; 8:eabn6248. [PMID: 36103535 PMCID: PMC9473580 DOI: 10.1126/sciadv.abn6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Primates of modern aspect (euprimates) are characterized by a suite of characteristics (e.g., convergent orbits, grasping hands and feet, reduced claws, and leaping), but the selective pressures responsible for the evolution of these euprimate characteristics have long remained controversial. Here, we used a molecular phyloecological approach to determine the diet of the common ancestor of living primates (CALP), and the results showed that the CALP had increased carnivory. Given the carnivory of the CALP, along with the general observation that orbital convergence is largely restricted to ambush predators, our study suggests that the euprimate characteristics could have been more specifically adapted for ambush predation. In particular, our behavior experiment further shows that nonclaw climbing can significantly reduce noises, which could benefit the ancestral euprimates' stalking to ambush their prey in trees. Therefore, our study suggests that the distinctive euprimate characteristics may have evolved as their specialized adaptation for ambush predation in arboreal environments.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Longcheng Fan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Lu Bai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingqing Li
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Congnan Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| |
Collapse
|
5
|
Positional Behavior of Introduced Monk Parakeets (Myiopsitta monachus) in an Urban Landscape. Animals (Basel) 2022; 12:ani12182372. [PMID: 36139232 PMCID: PMC9494974 DOI: 10.3390/ani12182372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Positional behaviors comprise the entirety of animals’ locomotion and posture. Often, these positional behaviors are paired with information about sußbstrate characteristics (e.g., orientation, diameter, texture, height) and frequency to gain an ecological perspective of when and why an animal utilizes a particular behavior. Thus far, quantitative studies of positional behavior have been limited to mammals, leaving a major gap in our understanding of how animals utilize their environment. In this study, we present the first quantitative report of positional behavior within Aves, presenting scan sampling data from an established colony of Monk Parakeets (Myiopsitta monachus) from Brooklyn, New York City. Parrots exhibited a strong preference for small and terminal branches when perching arboreally. Such a pattern is consistent with arboreal primates. We also observed an increase in locomotor diversity on artificial versus naturally occurring substrates. This demonstrates the potential importance of a flexible behavioral repertoire in facilitating a successful transition towards an urban landscape in introduced species and underscores the need for further studies exploring positional behaviors among urban wildlife. Abstract Positional behaviors have been broadly quantified across the Order Primates, and in several other mammalian lineages, to contextualize adaptations to, and evolution within, an arboreal environment. Outside of Mammalia, however, such data are yet to be reported. In this study, we present the first quantitative report of positional behavior within Aves, presenting 11,246 observations of scan sampling data from a colony of Monk Parakeets (Myiopsitta monachus) from Brooklyn, New York City. Each scan recorded locomotor and postural behavior and information about weather condition, temperature, and substrate properties (e.g., type, size, orientation). A distinction was also recorded between natural and artificial substrates. Parrots exhibited a strong preference for small and terminal branches, a selection which may reflect targeted foraging of new fruit growth and leaf-buds. We further observed that the gait transition from walking to sidling appears primarily driven by substrate size, with the former preferred on the ground and on large, broad substrates and the latter used to navigate smaller branches. Finally, we observed an increase in locomotor diversity on artificial versus naturally occurring substrates. This demonstrates the importance of a flexible behavioral repertoire in facilitating a successful transition towards an urban landscape in introduced species.
Collapse
|
6
|
Measuring Molarization: Change Through Time in Premolar Function in An Extinct Stem Primate Lineage. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Hughes JJ, Berv JS, Chester SGB, Sargis EJ, Field DJ. Ecological selectivity and the evolution of mammalian substrate preference across the K-Pg boundary. Ecol Evol 2021; 11:14540-14554. [PMID: 34765124 PMCID: PMC8571592 DOI: 10.1002/ece3.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.
Collapse
Affiliation(s)
- Jonathan J. Hughes
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Jacob S. Berv
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan Museum of PaleontologyUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen G. B. Chester
- Department of AnthropologyBrooklyn CollegeCity University of New YorkBrooklynNew YorkUSA
- Department of AnthropologyThe Graduate CenterCity University of New YorkNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Eric J. Sargis
- Department of AnthropologyYale UniversityNew HavenConnecticutUSA
- Divisions of Vertebrate Paleontology and Vertebrate ZoologyYale Peabody Museum of Natural HistoryNew HavenConnecticutUSA
- Yale Institute for Biospheric StudiesNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Shelley SL, Brusatte SL, Williamson TE. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction. Proc Biol Sci 2021; 288:20210393. [PMID: 33977789 PMCID: PMC8114852 DOI: 10.1098/rspb.2021.0393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammals exhibit vast ecological diversity, including a panoply of locomotor behaviours. The foundations of this diversity were established in the Mesozoic, but it was only after the end-Cretaceous mass extinction that mammals began to increase in body size, diversify into many new species and establish the extant orders. Little is known about the palaeobiology of the mammals that diversified immediately after the extinction during the Palaeocene, which are often perceived as ‘archaic’ precursors to extant orders. Here, we investigate the locomotor ecology of Palaeocene mammals using multivariate and disparity analyses. We show that tarsal measurements can be used to infer locomotor mode in extant mammals, and then demonstrate that Palaeocene mammals occupy distinctive regions of tarsal morphospace relative to Cretaceous and extant therian mammals, that is distinguished by their morphological robustness. We find that many Palaeocene species exhibit tarsal morphologies most comparable with morphologies of extant ground-dwelling mammals. Disparity analyses indicate that Palaeocene mammals attained similar morphospace diversity to the extant sample. Our results show that mammals underwent a post-extinction adaptive radiation in tarsal morphology relating to locomotor behaviour by combining a basic eutherian bauplan with anatomical specializations to attain considerable ecomorphological diversity.
Collapse
Affiliation(s)
- Sarah L Shelley
- School of Geosciences, University of Edinburgh, Edinburgh, UK.,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, USA
| | | | | |
Collapse
|
9
|
Wilson Mantilla GP, Chester SGB, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, Mitchell WS, Mans WW, Mundil R, Renne PR. Earliest Palaeocene purgatoriids and the initial radiation of stem primates. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210050. [PMID: 33972886 PMCID: PMC8074693 DOI: 10.1098/rsos.210050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 06/03/2023]
Abstract
Plesiadapiform mammals, as stem primates, are key to understanding the evolutionary and ecological origins of Pan-Primates and Euarchonta. The Purgatoriidae, as the geologically oldest and most primitive known plesiadapiforms and one of the oldest known placental groups, are also central to the evolutionary radiation of placentals and the Cretaceous-Palaeogene biotic recovery on land. Here, we report new dental fossils of Purgatorius from early Palaeocene (early Puercan) age deposits in northeastern Montana that represent the earliest dated occurrences of plesiadapiforms. We constrain the age of these earliest purgatoriids to magnetochron C29R and most likely to within 105-139 thousand years post-K/Pg boundary. Given the occurrence of at least two species, Purgatorius janisae and a new species, at the locality, we provide the strongest support to date that purgatoriids and, by extension, Pan-Primates, Euarchonta and Placentalia probably originated by the Late Cretaceous. Within 1 million years of their arrival in northeastern Montana, plesiadapiforms outstripped archaic ungulates in numerical abundance and dominated the arboreal omnivore-frugivore niche in mammalian local faunas.
Collapse
Affiliation(s)
- Gregory P. Wilson Mantilla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Stephen G. B. Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - William A. Clemens
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Jason R. Moore
- Honors College, University of New Mexico, Albuquerque, NM 87131, USA
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Brody T. Hovatter
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Wade W. Mans
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Roland Mundil
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| | - Paul R. Renne
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Silcox MT, Selig KR, Bown TM, Chew AE, Rose KD. Cladogenesis and replacement in the fossil record of Microsyopidae (?Primates) from the southern Bighorn Basin, Wyoming. Biol Lett 2021; 17:20200824. [PMID: 33563133 DOI: 10.1098/rsbl.2020.0824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The early Eocene of the southern Bighorn Basin, Wyoming, is notable for its nearly continuous record of mammalian fossils. Microsyopinae (?Primates) is one of several lineages that shows evidence of evolutionary change associated with an interval referred to as Biohorizon A. Arctodontomys wilsoni is replaced by a larger species, Arctodontomys nuptus, during the biohorizon interval in what is likely an immigration/emigration or immigration/local extinction event. The latter is then superseded by Microsyops angustidens after the end of the Biohorizon A interval. Although this pattern has been understood for some time, denser sampling has led to the identification of a specimen intermediate in morphology between A. nuptus and M. angustidens, located stratigraphically as the latter is appearing. Because specimens of A. nuptus have been recovered approximately 60 m above the appearance of M. angustidens, it is clear that A. nuptus did not suffer pseudoextinction. Instead, evidence suggests that M. angustidens branched off from a population of A. nuptus, but the latter species persisted. This represents possible evidence of cladogenesis, which has rarely been directly documented in the fossil record. The improved understanding of both evolutionary transitions with better sampling highlights the problem of interpreting gaps in the fossil record as punctuations.
Collapse
Affiliation(s)
- Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Keegan R Selig
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Thomas M Bown
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523-1701, USA
| | - Amy E Chew
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G-W, Providence, RI 02912, USA
| | - Kenneth D Rose
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Tavares WC, Pessôa LM. Effects of size, phylogeny and locomotor habits on the pelvic and femoral morphology of South American spiny rats (Rodentia: Echimyidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The rodent family Echimyidae (spiny rats, hutias and coypu) is notable for its high phylogenetic and ecological diversity, encompassing ~100 living species with body mass ranging from 70 to 4500 g, including arboreal, epigean (non-arboreal or scansorial), fossorial and semi-aquatic taxa. In view of this diversity, it was hypothesized that echimyid morphological variation in the pelvis and femur should reflect: (1) allometric association with body mass; (2) morphofunctional specializations for the different locomotor habits; and (3) phylogenetic history. To test these propositions, we examined 30 echimyid species, in addition to eight species of two other octodontoid families, Abrocomidae and Octodontidae. Pelvic and femoral variation was assessed with linear morphometry, using bivariate and multivariate statistical methods, part of which was phylogenetically informed. Approximately 80% of the total variation among echimyids was explained by body mass, and some univariate measurements were found potentially to be effective as body mass estimators after simple allometric procedures, notably in the pelvis. Even considering the significant phylogenetic signal, variation in shape was largely structured by locomotor habits, mainly in the pelvis, suggesting that the echimyid hindlimb diversification was driven, in part, by selective pressures related to locomotor habits. Finally, echimyid femoral disparity was considerably greater than in other octodontoids, contrasting with their relatively modest cranial variation. Thus, this study suggests that hindlimb diversity constitutes a key factor for the exceptional echimyid ecological and phyletic diversification.
Collapse
Affiliation(s)
- William Corrêa Tavares
- Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leila Maria Pessôa
- Laboratório de Mastozoologia, Departamento de Zoologia, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Bertrand OC, Shelley SL, Wible JR, Williamson TE, Holbrook LT, Chester SGB, Butler IB, Brusatte SL. Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals. J Anat 2019; 236:21-49. [PMID: 31667836 DOI: 10.1111/joa.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The end-Cretaceous mass extinction allowed placental mammals to diversify ecologically and taxonomically as they filled ecological niches once occupied by non-avian dinosaurs and more basal mammals. Little is known, however, about how the neurosensory systems of mammals changed after the extinction, and what role these systems played in mammalian diversification. We here use high-resolution computed tomography (CT) scanning to describe the endocranial and inner ear endocasts of two species, Chriacus pelvidens and Chriacus baldwini, which belong to a cluster of 'archaic' placental mammals called 'arctocyonid condylarths' that thrived during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose relationships to extant placentals are poorly understood. The endocasts provide new insight into the paleobiology of the long-mysterious 'arctocyonids', and suggest that Chriacus was an animal with an encephalization quotient (EQ) range of 0.12-0.41, which probably relied more on its sense of smell than vision, because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are less developed. Agility scores, estimated from the dimensions of the semicircular canals of the inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, large olfactory bulbs and small petrosal lobules, which are likely plesiomorphic for Placentalia. The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical recesses with extinct species that belong to Euungulata, the extant placental group that includes artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features can provide important insight into both the paleobiology and relationships of early placental mammals.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Sarah L Shelley
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - John R Wible
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | | | - Luke T Holbrook
- Department of Biological Sciences, Rowan University, Glassboro, NJ, USA
| | - Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Department of Anthropology, The Graduate Center, City University of New York, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Ian B Butler
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, UK.,New Mexico Museum of Natural History and Science, Albuquerque, NM, USA
| |
Collapse
|
13
|
Nyakatura JA. Early primate evolution: insights into the functional significance of grasping from motion analyses of extant mammals. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität, Philippstraße, Berlin, Germany
| |
Collapse
|
14
|
Chester SGB, Williamson TE, Silcox MT, Bloch JI, Sargis EJ. Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta, Palaechthonidae). J Hum Evol 2019; 128:76-92. [PMID: 30825983 DOI: 10.1016/j.jhevol.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022]
Abstract
Plesiadapiforms, like other Paleogene mammals, are known mostly from fossil teeth and jaw fragments. The several families of plesiadapiforms known from partial skeletons have all been reconstructed as arborealists, but differences in postcranial morphology among these taxa indicate a diversity of positional behaviors. Here we provide the first detailed descriptions and comparisons of a dentally associated partial skeleton (NMMNH P-54500) and of the most complete dentary with anterior teeth (NMMNH P-71598) pertaining to Torrejonia wilsoni, from the early Paleocene (late Torrejonian To3 interval zone) of the Nacimiento Formation, San Juan Basin, New Mexico, USA. NMMNH P-54500 is the oldest known partial skeleton of a plesiadapiform and the only known postcrania for the Palaechthonidae. This skeleton includes craniodental fragments with all permanent teeth fully erupted, and partial forelimbs and hind limbs with some epiphyses unfused, indicating that this individual was a nearly fully-grown subadult. Analysis of the forelimb suggests mobile shoulder and elbow joints, a habitually flexed forearm, and capacity for manual grasping. The hip joint allowed abduction and lateral rotation of the thigh and provides evidence for frequent orthograde postures on large diameter supports. Other aspects of the hind limb suggest a habitually flexed thigh and knee with no evidence for specialized leaping, and mobile ankle joints capable of high degrees of inversion and eversion. Although it is likely that some variability exists within the group, analysis of this skeleton suggests that palaechthonids are most like paromomyids among plesiadapiforms, but retain more plesiomorphic postcranial features than has been documented for the Paromomyidae. These observations are congruent with craniodental evidence supporting palaechthonids and paromomyids as closely related within the Paromomyoidea. The skeleton of T. wilsoni also demonstrates that many regions of the postcranium were already well adapted for arboreality within the first few million years of the diversification of placental mammals following the Cretaceous-Paleogene extinction event.
Collapse
Affiliation(s)
- Stephen G B Chester
- Department of Anthropology and Archaeology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; Department of Anthropology, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104-1375, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611-7800, USA
| | - Eric J Sargis
- Department of Anthropology, Yale University, P. O. Box 208277, New Haven, CT 06520, USA; Division of Vertebrate Paleontology, Peabody Museum of Natural History, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Youlatos D, Widayati KA, Tsuji Y. Foot postures and grasping of free-ranging Sunda colugos (Galeopterus variegatus) in West Java, Indonesia. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
New fossils, systematics, and biogeography of the oldest known crown primate Teilhardina from the earliest Eocene of Asia, Europe, and North America. J Hum Evol 2019; 128:103-131. [DOI: 10.1016/j.jhevol.2018.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
|
17
|
DeCasien AR, Thompson NA, Williams SA, Shattuck MR. Encephalization and longevity evolved in a correlated fashion in Euarchontoglires but not in other mammals. Evolution 2018; 72:2617-2631. [DOI: 10.1111/evo.13633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Alex R. DeCasien
- Department of Anthropology New York University New York New York 10003
- New York Consortium in Evolutionary Primatology New York New York 10024
| | - Nicole A. Thompson
- New York Consortium in Evolutionary Primatology New York New York 10024
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York New York 10027
| | - Scott A. Williams
- Department of Anthropology New York University New York New York 10003
- New York Consortium in Evolutionary Primatology New York New York 10024
| | - Milena R. Shattuck
- Department of Anthropology and Program of Human Biology Hunter College, CUNY New York New York 10065
| |
Collapse
|
18
|
Dunham NT, McNamara A, Shapiro L, Phelps T, Wolfe AN, Young JW. Locomotor kinematics of tree squirrels (
Sciurus carolinensis
) in free‐ranging and laboratory environments: Implications for primate locomotion and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:103-119. [DOI: 10.1002/jez.2242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Noah T. Dunham
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Allison McNamara
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Liza Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Taylor Phelps
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Adrienne N. Wolfe
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
19
|
Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): Insights into early euprimate evolution. J Hum Evol 2018; 123:148-159. [DOI: 10.1016/j.jhevol.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022]
|
20
|
Kay RF. 100 years of primate paleontology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:652-676. [DOI: 10.1002/ajpa.23429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Richard F. Kay
- Department of Evolutionary Anthropology and Division of Earth and Ocean Sciences; Duke University; Durham North Carolina 27708
| |
Collapse
|
21
|
Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K-Pg mass extinction. Proc Natl Acad Sci U S A 2017; 114:8047-8052. [PMID: 28696285 DOI: 10.1073/pnas.1700188114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence is accumulating for a rapid diversification of birds following the K-Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221-62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recovered Tsidiiyazhi abini gen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery of Tsidiiyazhi pushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post-K-Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously, Tsidiiyazhi provides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly.
Collapse
|