1
|
Dorant Y, Laporte M, Rougemont Q, Cayuela H, Rochette R, Bernatchez L. Landscape genomics of the American lobster (Homarus americanus). Mol Ecol 2022; 31:5182-5200. [PMID: 35960266 DOI: 10.1111/mec.16653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
In marine species experiencing intense fishing pressures, knowledge of genetic structure and local adaptation represent a critical information to assist sustainable management. In this study, we performed a landscape genomics analysis in the American lobster to investigate the issues pertaining to the consequences of making use of putative adaptive loci to reliably infer population structure and thus more rigorously delineating biological management units in marine exploited species. Toward this end, we genotyped 14,893 single nucleotide polymorphism (SNPs) in 4190 lobsters sampled across 96 sampling sites distributed along 1000 km in the northwest Atlantic in both Canada and the USA. As typical for most marine species, we observed a weak, albeit highly significant genetic structure. We also found that adaptive genetic variation allows detecting fine-scale population structure not resolved by neutral genetic variation alone. Using the recent genome assembly of the American lobster, we were able to map and annotate several SNPs located in functional genes potentially implicated in adaptive processes such as thermal stress response, salinity tolerance and growth metabolism pathways. Taken together, our study indicates that weak population structure in high gene flow systems can be resolved at various spatial scales, and that putatively adaptive genetic variation can substantially enhance the delineation of biological management units of marine exploited species.
Collapse
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- IHPE, CNRS, Ifremer, Université de Montpellier, Université de Perpignan Via Domitia, Montpellier, France
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Ministère des Forêts de la Faune et des Parcs du Québec, Québec, Québec, Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - Rémy Rochette
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
2
|
Papa Y, Morrison MA, Wellenreuther M, Ritchie PA. Genomic Stock Structure of the Marine Teleost Tarakihi (Nemadactylus macropterus) Provides Evidence of Potential Fine-Scale Adaptation and a Temperature-Associated Cline Amid Panmixia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tarakihi (Nemadactylus macropterus) is an important fishery species with widespread distribution around New Zealand and off the southern coasts of Australia. However, little is known about whether the populations are locally adapted or genetically structured. To address this, we conducted whole-genome resequencing of 175 tarakihi from around New Zealand and Tasmania (Australia) to obtain a dataset of 7.5 million genome-wide and high-quality single nucleotide polymorphisms (SNPs). Variant filtering, FST-outlier analysis, and redundancy analysis (RDA) were used to evaluate population structure, adaptive structure, and locus-environment associations. A weak but significant level of neutral genetic differentiation was found between tarakihi from New Zealand and Tasmania (FST = 0.0054–0.0073, P ≤ 0.05), supporting the existence of at least two separate reproductive stocks. No clustering was detected among the New Zealand populations (ΦST < 0.001, P = 0.77). Outlier-based, presumably adaptive variation suggests fine-scale adaptive structure between locations around central New Zealand off the east (Wairarapa, Cape Campbell, and Hawke’s Bay) and the west coast (Tasman Bay/Golden Bay and Upper West Coast of South Island). Allele frequencies from 55 loci were associated with at least one of six environmental variables, of which 47 correlated strongly with yearly mean water temperature. Although genes associated with these loci are linked to various functions, the most common functions were integral components of membrane and cilium assembly. Projection of the RDA indicates the existence of a latitudinal temperature cline. Our work provides the first genomic insights supporting panmixia of tarakihi in New Zealand and evidence of a genomic cline that appears to be driven by the temperature gradients, together providing crucial information to inform the stock assessment of this species, and to widen the insights of the ecological drivers of adaptive variation in a marine species.
Collapse
|
3
|
Iannucci A, Benazzo A, Natali C, Arida EA, Zein MSA, Jessop TS, Bertorelle G, Ciofi C. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol Ecol 2021; 30:6309-6324. [PMID: 34390519 PMCID: PMC9292392 DOI: 10.1111/mec.16121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Population and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species. Three main genomic groups were observed. The populations of the Island of Komodo and the northern coast of Flores, in particular, were identified as two distinct conservation units. Degrees of genomic divergence among island populations were interpreted as a result of changes in sea level affecting connectivity across islands. Demographic inference suggested that Komodo dragons probably experienced a relatively steep population decline over the last million years, reaching a relatively stable Ne during the Saalian glacial cycle (400-150 thousand years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons was similar to that found in endangered or already extinct reptile species. Overall, this study provides an example of how whole-genome analysis of a few individuals per population can help define population structure and intraspecific demographic dynamics. This is particularly important when applying population genomics data to conservation of rare or elusive endangered species.
Collapse
Affiliation(s)
| | - Andrea Benazzo
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Chiara Natali
- Department of BiologyUniversity of FlorenceFirenzeItaly
| | - Evy Ayu Arida
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Moch Samsul Arifin Zein
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Tim S. Jessop
- School of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceFirenzeItaly
| |
Collapse
|
4
|
Baecklund TM, Donaldson ME, Hueffer K, Kyle CJ. Genetic structure of immunologically associated candidate genes suggests arctic rabies variants exert differential selection in arctic fox populations. PLoS One 2021; 16:e0258975. [PMID: 34714859 PMCID: PMC8555846 DOI: 10.1371/journal.pone.0258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Patterns of local adaptation can emerge in response to the selective pressures diseases exert on host populations as reflected in increased frequencies of respective, advantageous genotypes. Elucidating patterns of local adaptation enhance our understanding of mechanisms of disease spread and the capacity for species to adapt in context of rapidly changing environments such as the Arctic. Arctic rabies is a lethal disease that largely persists in northern climates and overlaps with the distribution of its natural host, arctic fox. Arctic fox populations display little neutral genetic structure across their North American range, whereas phylogenetically unique arctic rabies variants are restricted in their geographic distributions. It remains unknown if arctic rabies variants impose differential selection upon host populations, nor what role different rabies variants play in the maintenance and spread of this disease. Using a targeted, genotyping-by-sequencing assay, we assessed correlations of arctic fox immunogenetic variation with arctic rabies variants to gain further insight into the epidemiology of this disease. Corroborating past research, we found no neutral genetic structure between sampled regions, but did find moderate immunogenetic structuring between foxes predominated by different arctic rabies variants. FST outliers associated with host immunogenetic structure included SNPs within interleukin and Toll-like receptor coding regions (IL12B, IL5, TLR3 and NFKB1); genes known to mediate host responses to rabies. While these data do not necessarily reflect causation, nor a direct link to arctic rabies, the contrasting genetic structure of immunologically associated candidate genes with neutral loci is suggestive of differential selection and patterns of local adaptation in this system. These data are somewhat unexpected given the long-lived nature and dispersal capacities of arctic fox; traits expected to undermine local adaptation. Overall, these data contribute to our understanding of the co-evolutionary relationships between arctic rabies and their primary host and provide data relevant to the management of this disease.
Collapse
Affiliation(s)
- Tristan M. Baecklund
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- * E-mail:
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
- Natural Resources DNA Profiling & Forensic Centre, Trent University, Peterborough, ON, Canada
| |
Collapse
|
5
|
Gallego-García N, Caballero S, Shaffer HB. Are genomic updates of well-studied species worth the investment for conservation? A case study of the Critically Endangered Magdalena River turtle. J Hered 2021; 112:575-589. [PMID: 34628509 DOI: 10.1093/jhered/esab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
As genomic-scale data sets become economically feasible for most organisms, a key question for conservation biology is whether the increased resolution offered by new genomic approaches justifies repeating earlier studies based on traditional markers, rather than investing those same time and monetary resources in less-known species. Genomic studies offer clear advantages when the objective is to identify adaptive loci that may be critical to conservation policy-makers. However, the answer is far less certain for the population and landscape studies based on neutral loci that dominate the conservation genetics research agenda. We used RADseq to revisit earlier molecular studies of the IUCN Critically Endangered Magdalena River turtle (Podocnemis lewyana), documenting the conservation insights gained by increasing the number of neutral markers by several orders of magnitude. Earlier research indicated that P. lewyana has the lowest genetic diversity known for any chelonian, and little or no population differentiation among independent rivers. In contrast, the RADseq data revealed discrete population structure with isolation-by-distance within river segments and identified precise population breaks clearly delineating management units. It also confirmed that the species does not have extremely low heterozygosity and that effective population sizes are probably sufficient to maintain long-term evolutionary potential. Contrary to earlier inferences from more limited population genetic markers, our genomic data suggest that management strategies should shift from active genetic rescue to more passive protection without extreme interventions. We conclude with a list of examples of conservation studies in other vertebrates indicating that for many systems a genomic update is worth the investment.
Collapse
Affiliation(s)
- Natalia Gallego-García
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.,Departamento de Ciencias Biológicas, Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Universidad de los Andes, Bogotá, Colombia
| | - Susana Caballero
- Departamento de Ciencias Biológicas, Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Universidad de los Andes, Bogotá, Colombia
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.,La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Baecklund TM, Morrison J, Donaldson ME, Hueffer K, Kyle CJ. The role of a mechanistic host in maintaining arctic rabies variant distributions: Assessment of functional genetic diversity in Alaskan red fox (Vulpes vulpes). PLoS One 2021; 16:e0249176. [PMID: 33831031 PMCID: PMC8031376 DOI: 10.1371/journal.pone.0249176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Populations are exposed to different types and strains of pathogens across heterogeneous landscapes, where local interactions between host and pathogen may present reciprocal selective forces leading to correlated patterns of spatial genetic structure. Understanding these coevolutionary patterns provides insight into mechanisms of disease spread and maintenance. Arctic rabies (AR) is a lethal disease with viral variants that occupy distinct geographic distributions across North America and Europe. Red fox (Vulpes vulpes) are a highly susceptible AR host, whose range overlaps both geographically distinct AR strains and regions where AR is absent. It is unclear if genetic structure exists among red fox populations relative to the presence/absence of AR or the spatial distribution of AR variants. Acquiring these data may enhance our understanding of the role of red fox in AR maintenance/spread and inform disease control strategies. Using a genotyping-by-sequencing assay targeting 116 genomic regions of immunogenetic relevance, we screened for sequence variation among red fox populations from Alaska and an outgroup from Ontario, including areas with different AR variants, and regions where the disease was absent. Presumed neutral SNP data from the assay found negligible levels of neutral genetic structure among Alaskan populations. The immunogenetically-associated data identified 30 outlier SNPs supporting weak to moderate genetic structure between regions with and without AR in Alaska. The outliers included SNPs with the potential to cause missense mutations within several toll-like receptor genes that have been associated with AR outcome. In contrast, there was a lack of genetic structure between regions with different AR variants. Combined, we interpret these data to suggest red fox populations respond differently to the presence of AR, but not AR variants. This research increases our understanding of AR dynamics in the Arctic, where host/disease patterns are undergoing flux in a rapidly changing Arctic landscape, including the continued northward expansion of red fox into regions previously predominated by the arctic fox (Vulpes lagopus).
Collapse
Affiliation(s)
- Tristan M. Baecklund
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- * E-mail:
| | - Jaycee Morrison
- Forensic Science Undergraduate Program, Trent University, Peterborough, Ontario, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling & Forensic Centre, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Movements and behaviour of blue whales satellite tagged in an Australian upwelling system. Sci Rep 2020; 10:21165. [PMID: 33273533 PMCID: PMC7713308 DOI: 10.1038/s41598-020-78143-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
Abstract
Knowledge about the movement ecology of endangered species is needed to identify biologically important areas and the spatio-temporal scale of potential human impacts on species. Blue whales (Balaenoptera musculus) are endangered due to twentieth century whaling and currently threatened by human activities. In Australia, they feed in the Great Southern Australian Coastal Upwelling System (GSACUS) during the austral summer. We investigate their movements, occupancy, behaviour, and environmental drivers to inform conservation management. Thirteen whales were satellite tagged, biopsy sampled and photo-identified in 2015. All were genetically confirmed to be of the pygmy subspecies (B. m. brevicauda). In the GSACUS, whales spent most of their time over the continental shelf and likely foraging in association with several seascape variables (sea surface temperature variability, depth, wind speed, sea surface height anomaly, and chlorophyll a). When whales left the region, they migrated west and then north along the Australian coast until they reached West Timor and Indonesia, where their movements indicated breeding or foraging behaviour. These results highlight the importance of the GSACUS as a foraging ground for pygmy blue whales inhabiting the eastern Indian Ocean and indicate the whales’ migratory route to proposed breeding grounds off Indonesia. Information about the spatio-temporal scale of potential human impacts can now be used to protect this little-known subspecies of blue whale.
Collapse
|
8
|
Papa Y, Oosting T, Valenza-Troubat N, Wellenreuther M, Ritchie PA. Genetic stock structure of New Zealand fish and the use of genomics in fisheries management: an overview and outlook. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1788612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yvan Papa
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Tom Oosting
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Noemie Valenza-Troubat
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Maren Wellenreuther
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter A. Ritchie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
9
|
Etherington GJ, Heavens D, Baker D, Lister A, McNelly R, Garcia G, Clavijo B, Macaulay I, Haerty W, Di Palma F. Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal. Gigascience 2020; 9:5836134. [PMID: 32396200 PMCID: PMC7216774 DOI: 10.1093/gigascience/giaa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background Whilst much sequencing effort has focused on key mammalian model organisms such as mouse and human, little is known about the relationship between genome sequencing techniques for non-model mammals and genome assembly quality. This is especially relevant to non-model mammals, where the samples to be sequenced are often degraded and of low quality. A key aspect when planning a genome project is the choice of sequencing data to generate. This decision is driven by several factors, including the biological questions being asked, the quality of DNA available, and the availability of funds. Cutting-edge sequencing technologies now make it possible to achieve highly contiguous, chromosome-level genome assemblies, but rely on high-quality high molecular weight DNA. However, funding is often insufficient for many independent research groups to use these techniques. Here we use a range of different genomic technologies generated from a roadkill European polecat (Mustela putorius) to assess various assembly techniques on this low-quality sample. We evaluated different approaches for de novo assemblies and discuss their value in relation to biological analyses. Results Generally, assemblies containing more data types achieved better scores in our ranking system. However, when accounting for misassemblies, this was not always the case for Bionano and low-coverage 10x Genomics (for scaffolding only). We also find that the extra cost associated with combining multiple data types is not necessarily associated with better genome assemblies. Conclusions The high degree of variability between each de novo assembly method (assessed from the 7 key metrics) highlights the importance of carefully devising the sequencing strategy to be able to carry out the desired analysis. Adding more data to genome assemblies does not always result in better assemblies, so it is important to understand the nuances of genomic data integration explained here, in order to obtain cost-effective value for money when sequencing genomes.
Collapse
Affiliation(s)
| | - Darren Heavens
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - David Baker
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Ashleigh Lister
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Rose McNelly
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Gonzalo Garcia
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Bernardo Clavijo
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Iain Macaulay
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Wilfried Haerty
- The Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
10
|
D’Urban Jackson J, Bruford MW, Székely T, DaCosta JM, Sorenson MD, Russo IRM, Maher KH, Cruz-López M, Galindo-Espinosa D, Palacios E, De Sucre-Medrano AE, Cavitt J, Pruner R, Morales AL, Gonzalez O, Burke T, Küpper C. Population differentiation and historical demography of the threatened snowy plover Charadrius nivosus (Cassin, 1858). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01256-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractDelineating conservation units is a complex and often controversial process that is particularly challenging for highly vagile species. Here, we reassess population genetic structure and identify those populations of highest conservation value in the threatened snowy plover (Charadrius nivosus, Cassin, 1858), a partial migrant shorebird endemic to the Americas. We use four categories of genetic data—mitochondrial DNA (mtDNA), microsatellites, Z-linked and autosomal single nucleotide polymorphisms (SNPs)—to: (1) assess subspecies delineation and examine population structure (2) compare the sensitivity of the different types of genetic data to detect spatial genetic patterns, and (3) reconstruct demographic history of the populations analysed. Delineation of two traditionally recognised subspecies was broadly supported by all data. In addition, microsatellite and SNPs but not mtDNA supported the recognition of Caribbean snowy plovers (C. n. tenuirostris) and Floridian populations (eastern C. n. nivosus) as distinct genetic lineage and deme, respectively. Low migration rates estimated from autosomal SNPs (m < 0.03) reflect a general paucity of exchange between genetic lineages. In contrast, we detected strong unidirectional migration (m = 0.26) from the western into the eastern nivosus deme. Within western nivosus, we found no genetic differentiation between coastal Pacific and inland populations. The correlation between geographic and genetic distances was weak but significant for all genetic data sets. All demes showed signatures of bottlenecks occurring during the past 1000 years. We conclude that at least four snowy plover conservation units are warranted: in addition to subspecies nivosus and occidentalis, a third unit comprises the Caribbean tenuirostris lineage and a fourth unit the distinct eastern nivosus deme.
Collapse
|
11
|
Sun YQ, Zhao W, Xu CQ, Xu Y, El-Kassaby YA, De La Torre AR, Mao JF. Genetic Variation Related to High Elevation Adaptation Revealed by Common Garden Experiments in Pinus yunnanensis. Front Genet 2020; 10:1405. [PMID: 32117429 PMCID: PMC7027398 DOI: 10.3389/fgene.2019.01405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Local adaptation, adaptation to specialized niches and environmental clines have been extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial for forest resource management and breeding, especially in the context of global climate change. Here, we utilized a Pinus yunnanensis common garden experiments established at high and low elevation sites to assess the differences in growth and survival among populations and between the two common garden sites. The studied traits showed significant variation between the two test sites and among populations, suggesting adaptive divergence. To detect genetic variation related to environment, we captured 103,608 high quality SNPs based on RNA sequencing, and used them to assess the genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes showing significant divergence in allelic frequency between survival populations of two sites. Functional categories associated with adaptation to high elevation were found to be related to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species, and membrane lipid metabolic process. Further investigation of the outlier genes showed overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may play a key role in P. yunnanensis adaptation to high elevation environments. The outlier genes identified, and their variants, provide a basic reference for advanced investigations.
Collapse
Affiliation(s)
- Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yulan Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | | | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Sandoval-Castillo J. Conservation genetics of elasmobranchs of the Mexican Pacific Coast, trends and perspectives. ADVANCES IN MARINE BIOLOGY 2019; 83:115-157. [PMID: 31606069 DOI: 10.1016/bs.amb.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most critical threats to biodiversity is the high extinction rate driven by human activities. Reducing extinction rates requires the implementation of conservation programmes based on robust scientific data. Elasmobranchs are important ecological components of the ocean, and several species sustain substantial economic activities. Unfortunately, elasmobranchs are one of the most threatened and understudied animal taxa. The Mexican Pacific Coast (MPC) is a region with high elasmobranch diversity and is the seat of major elasmobranch fisheries. But it is also a developing region with several conservation and management challenges which require national and international attention. Here, we review the conservation genetics literature of elasmobranchs from the MPC. We present a synthesis of the works using samples from the region and emphasize the main gaps and biases in these data. In addition, we discuss the benefits and challenges of generating genomic information to improve the management and conservation of an elasmobranch biodiversity hotspot in a developing country. We found 47 elasmobranch genetic articles that cover <30% of the elasmobranch diversity in the region. These studies mainly used mitochondrial DNA sequences to analyse the genetic structure of commercially important and abundant species of the order Carcharhiniformes. Some of these papers also assessed mating systems, demographic parameters, and taxonomic uncertainties, all of which are important topics for efficient management decisions. In terms of conservation genetics, elasmobranchs from the MPC remain understudied. However, high-throughput sequencing technologies have increased the power and accessibility of genomic tools, even in developing countries such as Mexico. The tools described here provide information relevant for biodiversity conservation. Therefore, we strongly suggest that investment in genomic research will assist implementation of efficient management strategies. In time, this will reduce the extinction risk of the unique elasmobranch biodiversity from the MPC.
Collapse
Affiliation(s)
- Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
13
|
Hosoya S, Hirase S, Kikuchi K, Nanjo K, Nakamura Y, Kohno H, Sano M. Random PCR-based genotyping by sequencing technology GRAS-Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes. Mol Ecol Resour 2019; 19:1153-1163. [PMID: 31009151 DOI: 10.1111/1755-0998.13025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023]
Abstract
While various technologies for high-throughput genotyping have been developed for ecological studies, simple methods tolerant to low-quality DNA samples are still limited. In this study, we tested the availability of a random PCR-based genotyping-by-sequencing technology, genotyping by random amplicon sequencing, direct (GRAS-Di). We focused on population genetic analysis of estuarine mangrove fishes, including two resident species, the Amboina cardinalfish (Fibramia amboinensis, Bleeker, 1853) and the Duncker's river garfish (Zenarchopterus dunckeri, Mohr, 1926), and a marine migrant, the blacktail snapper (Lutjanus fulvus, Forster, 1801). Collections were from the Ryukyu Islands, southern Japan. PCR amplicons derived from ~130 individuals were pooled and sequenced in a single lane on a HiSeq2500 platform, and an average of three million reads was obtained per individual. Consensus contigs were assembled for each species and used for genotyping of single nucleotide polymorphisms by mapping trimmed reads onto the contigs. After quality filtering steps, 4,000-9,000 putative single nucleotide polymorphisms were detected for each species. Although DNA fragmentation can diminish genotyping performance when analysed on next-generation sequencing technology, the effect was small. Genetic differentiation and a clear pattern of isolation-by-distance was observed in F. amboinensis and Z. dunckeri by means of principal component analysis, FST and the admixture analysis. By contrast, L. fulvus comprised a genetically homogeneous population with directional recent gene flow. These genetic differentiation patterns reflect patterns of estuary use through life history. These results showed the power of GRAS-Di for fine-grained genetic analysis using field samples, including mangrove fishes.
Collapse
Affiliation(s)
- Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Japan
| | - Kusuto Nanjo
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
| | - Yohei Nakamura
- Department of Agriculture, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Hiroyoshi Kohno
- Okinawa Regional Research Center, Tokai University, Taketomi, Japan
| | - Mitsuhiko Sano
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Batley KC, Sandoval‐Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Evol Appl 2019; 12:718-732. [PMID: 30976305 PMCID: PMC6439501 DOI: 10.1111/eva.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (nonsurvivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic data set consisted of 278,147,988 sequence reads and 35,493 high-quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies among cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3 and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV-affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.
Collapse
Affiliation(s)
- Kimberley C. Batley
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ikuko Tomo
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Luciana M. Möller
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
15
|
Song variation of the South Eastern Indian Ocean pygmy blue whale population in the Perth Canyon, Western Australia. PLoS One 2019; 14:e0208619. [PMID: 30668600 PMCID: PMC6342329 DOI: 10.1371/journal.pone.0208619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Sea noise collected over 2003 to 2017 from the Perth Canyon, Western Australia was analysed for variation in the South Eastern Indian Ocean pygmy blue whale song structure. The primary song-types were: P3, a three unit phrase (I, II and III) repeated with an inter-song interval (ISI) of 170-194 s; P2, a phrase consisting of only units II & III repeated every 84-96 s; and P1 with a phrase consisting of only unit II repeated every 45-49 s. The different ISI values were approximate multiples of each other within a season. When comparing data from each season, across seasons, the ISI value for each song increased significantly through time (all fits had p << 0.001), at 0.30 s/Year (95%CI 0.217-0.383), 0.8 s/Year (95%CI 0.655-1.025) and 1.73 s/Year (95%CI 1.264-2.196) for the P1, P2 and P3 songs respectively. The proportions of each song-type averaged at 21.5, 24.2 and 56% for P1, P2 and P3 occurrence respectively and these ratios could vary by up to ± 8% (95% CI) amongst years. On some occasions animals changed the P3 ISI to be significantly shorter (120-160 s) or longer (220-280 s). Hybrid song patterns occurred where animals combined multiple phrase types into a repeated song. In recent years whales introduced further complexity by splitting song units. This variability of song-type and proportions implies abundance measure for this whale sub population based on song detection needs to factor in trends in song variability to make data comparable between seasons. Further, such variability in song production by a sub population of pygmy blue whales raises questions as to the stability of the song types that are used to delineate populations. The high level of song variability may be driven by an increasing number of background whale callers creating 'noise' and so forcing animals to alter song in order to 'stand out' amongst the crowd.
Collapse
|
16
|
Attard CRM, Beheregaray LB, Möller LM. Genotyping‐by‐sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias. Mol Ecol Resour 2018; 18:381-390. [DOI: 10.1111/1755-0998.12739] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Catherine R. M. Attard
- Molecular Ecology Lab College of Science and Engineering Flinders University Adelaide SA Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Lab College of Science and Engineering Flinders University Adelaide SA Australia
| | - Luciana M. Möller
- Molecular Ecology Lab College of Science and Engineering Flinders University Adelaide SA Australia
| |
Collapse
|